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1. Introduction

In this paper, we consider the Cauchy problem for the following two-dimensional inhomogeneous
incompressible viscoelastic rate-type fluids with stress-diffusion:

ρt + u · ∇ρ = 0, (t, x) ∈ R+ × R2,

ρ(ut + u · ∇u) − ∆u + ∇P + σdiv (∇b ⊗ ∇b − 1
2 |∇b|2I) = 0,

bt + u · ∇b + 1
ν
(e′(b) − σ∆b) = 0,

div u = 0,
(ρ, u, b)(t, x)|t=0 = (ρ0, u0, b0)(x),

(1.1)

where the unknowns ρ = ρ(x, t), u = (u1(x, t), u2(x, t)) and b = b(x, t) stand for the density, velocity
of the fluid and the spherical part of the elastic strain, respectively. P is a scalar pressure function,
which guarantees the divergence-free condition of the velocity field. The coefficients ν and σ are two
positive constants. In addition, we suppose that e(·) is a smooth convex function about b and e(0) ≤ 0,
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e′(0) = 0, e′′(b) ≤ C0, where C0 is a positive constant depending on the initial data. The class of
fluids is the elastic response described by a spherical strain [3]. Compared with [3], we have added the
divergence-free condition to investigate the effect of density on viscoelastic rate-type fluids, while the
divergence-free condition is for computational convenience.

It is easy to observe that for σ = 0, the system (1.1) degenerates two distinct systems involving
the inhomogeneous Navier-Stokes equation for the fluid and a transport equation with damped
e′(b). Numerous researchers have extensively studied the well-posedness concern regarding the
inhomogeneous Navier-Stokes equations; see [1, 7–9, 11, 14] and elsewhere. However, the transport
equation has a greater effect on the regularity of density than on that of velocity. Additionally, due to
the presence of the damped term e′(b), the initial elasticity in system (1.1) exhibits higher regularity
compared to the initial velocity.

In the case where σ > 0, system (1.1) resembles the inhomogeneous magnetohydrodynamic
(MHD) equations, with b as a scalar function in (1.1) that does not satisfy the divergence condition
found in MHD equations. It is essential to highlight that the system (1.1) represents a simplified
model, deviating from standard viscoelastic rate-type fluid models with stress-diffusion to facilitate
mathematical calculations. Related studies on system (1.1) can be found in [3, 4, 15]. In
particular, Bulı́ček, Málek, and Rodriguez in [5] established the well-posedness of a 2D homogeneous
system (1.1) in Sobolev space. Our contribution lies in incorporating the density equation into this
established framework.

Inspired by [11, 18], we initially establish a priori estimates for the system (1.1). Subsequently, by
using a Friedrich’s method and the compactness argument, we obtain the existence and uniqueness of
the solutions. Our main result is as follows:

Theorem 1.1. Let the initial data (ρ0, u0, b0) satisfy

0 < m < ρ0(x) < M < ∞, (u0, b0) ∈ H1(R2) × H2(R2), e(b0) ∈ L1(R2), (1.2)

where m,M are two given positive constants with m < M. Then system (1.1) has a global solution
(ρ, u, b) such that, for any given T > 0, (t, x) ∈ [0,T ) × R2,

m < ρ(t, x) < M,

u ∈ L∞(0,T ; H1(R2)) ∩ L2(0,T ; H2(R2)), ∂tu ∈ L∞(0,T ; L2(R2)) ∩ L2(0,T ; H1(R2)),
b ∈ L∞(0,T ; H2(R2)) ∩ L2(0,T ; H3(R2)), ∂tb ∈ L∞(0,T ; H1(R2)) ∩ L2(0,T ; H2(R2)).

Moreover, if ∇ρ0 ∈ L4(R2), then the solution is unique.

Remark 1.1. Compared to the non-homogeneous MHD equations, handling the damping term e′(b)
poses a challenge, so that we cannot obtain the time-weighted energy of the velocity field. To explore
the uniqueness of the solution, it is necessary to improve the regularity of the initial density data.

The key issue to prove the global existence part of Theorem 1.1 is establishing the a priori
L∞(0,T ; H1(R2)) estimate on (u,∇b) for any positive time T . We cannot directly estimate the L2

estimate of (u, b), which mainly occurs in the velocity term div (∇b ⊗ ∇b − 1
2 |∇b|2 I). Therefore,

we need to estimate the L2 of the ∇b equation. Afterwards, the L2 estimation of equation b was
affected by a damping term e′(b), so we made an L2 estimation of equation e′(b). Finally, to show the
L∞(0,T ; H1(R2)) of u, we also need an estimate of the second derivative of b. In summary, we found
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that the initial value of the b equation needs to be one derivative higher than the initial value of the u
equation.

Concerning the uniqueness of the strong solutions, a common approach is to consider the difference
equations between two solutions and subsequently derive some energy estimates for the resulting
system differences based on the fundamental natural energy of the system. However, for system (1.1),
the presence of a damping term e′(b) of the equation b and density equation prevents the calculation
of the time-weighted energy of the velocity field. To research the solution’s uniqueness, we need to
enhance the regularity of the initial density data.

The paper is structured as follows: Section 2 presents prior estimates for system (1.1). In Section 3,
we establish the existence and uniqueness of Theorem 1.1.

2. A priori estimates

Proposition 2.1. Assume that m,M are two given positive constants and 0 < m ≤ M < ∞, the initial
data ρ0 satisfies 0 < m ≤ ρ0 ≤ M < +∞, and the initial data (

√
ρ0u0,∇b0) ∈ L2(R2) × L2(R2). Let

(ρ, u, b) be a smooth solution of system (1.1), then there holds for any t > 0,

0 < m ≤ ρ(t) ≤ M < +∞, (2.1)

‖(
√
ρu,∇b, u)(t)‖2L2 +

∫ t

0
‖(∇u,∇2b)‖2L2dτ ≤ C‖(

√
ρ0u0,∇b0)‖2L2 , (2.2)

where C is a constant depending only on σ,ν.

Proof. First, any Lebesgue norm of ρ0 is preserved through the evolution, and 0 < m ≤ ρ(t) ≤ M <

+∞.
To prove (2.2), taking the L2 inner product of the second equation of (1.1) with u and integrating by
parts, then we obtain

1
2

d
dt
‖
√
ρu‖2L2 + ‖∇u‖2L2 = −σ

∫
R2

∆b∇b · udx, (2.3)

where we used the fact that

div (∇b ⊗ ∇b −
1
2
|∇b|2 I) = ∆b∇b.

Multiplying the third equation of (1.1) by −σ∆b and integrating by parts, we obtain

σ

2
d
dt
‖∇b‖2L2 +

σ2

ν
‖∆b‖2L2 −

σ2

ν

∫
R2

e′(b)∆bdx = σ

∫
R2

u · ∇b∆bdx. (2.4)

Thanks to the convexity of e(b), we know

−
σ2

ν

∫
R2

e′(b)∆bdx =
σ2

ν

∫
R2
∇(e′(b))∇bdx =

σ2

ν

∫
R2

e′′(b)|∇b|2dx ≥ 0. (2.5)
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By inserting (2.5) into (2.4), combining the result with (2.3), one yields

d
dt
‖(
√
ρu,∇b)‖2L2 + ‖∇u‖2L2 + C‖∆b‖2L2 ≤ 0.

Integrating it with respect to time, we have

‖(
√
ρu,∇b)(t)‖2L2 +

∫ t

0
‖(∇u,∇2b)‖2L2dτ ≤ C‖(

√
ρ0u0,∇b0)‖2L2 . (2.6)

On the other hand, applying 0 < m ≤ ρ ≤ M < +∞, which together with (2.6) implies

‖u‖2L∞(L2) ≤ m−1‖
√
ρu‖2L∞(L2) ≤ C‖(

√
ρ0u0,∇b0)‖2L2 ,

which, along with inequality (2.6), yields (2.2). �

Proposition 2.2. Under the assumptions of Proposition 2.1, the corresponding solution (ρ,u,b) of the
system (1.1) admits the following bound for any t > 0:

‖(∇u,∇2b,∇b, b)‖2L2 +

∫ t

0
‖(∇2u,∇3b,

√
ρuτ, bτ, uτ)‖2L2dτ ≤ C, (2.7)

where C is a positive constant depending on m, M, u0, ρ0, and ∇b0.

Proof. First, we obtain by taking L2 inner product of (1.1)3 with e′(b) that

d
dt

∫
R2

e(b)dx +
1
ν
‖e′(b)‖2L2

≤ ‖u · ∇b‖L2‖e′(b)‖L2 +
1
4ν
‖e′(b)‖2L2 + C‖∆b‖2L2

≤
1
2ν
‖e′(b)‖2L2 + C‖u‖2L4‖∇b‖2L4 + C‖∆b‖2L2

≤
1
2ν
‖e′(b)‖2L2 + C‖u‖L2‖∇u‖L2‖∇b‖L2‖∇2b‖L2 + C‖∆b‖2L2

≤
1
2ν
‖e′(b)‖2L2 + C(‖∇u‖2L2 + ‖∇2b‖2L2).

Integrating with respect to time, we obtain

‖e(b)‖L∞(L1) + ‖e′(b)‖2L2(L2) ≤ ‖(
√
ρ0u0,∇b0)‖2L2 + ‖e(b0)‖L1 . (2.8)

Similarly, multiplying (1.1)3 by b, we have

1
2

d
dt
‖b‖2L2 + ‖∇b‖2L2 ≤ C(‖b‖2L2 + ‖e′(b)‖2L2),

after using (2.8) and Grönwall’s inequality, we obtain

b ∈ L∞(0, t; L2(R2)) ∩ L2(0, t; H1(R2)). (2.9)
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In the following, applying Laplace operator ∆ to (1.1)3 and multiplying the resulting equation by ∆b;
additionally, multiplying (1.1)2 by ut and (1.1)3 by bt, respectively, then integrating them on R2 and
adding up all these results together, we obtain

1
2

d
dt

∫
R2

(|∆b|2 + |∇u|2 +
σ

ν
|∇b|2)dx +

∫
R2

(ρ|ut|
2 + |bt|

2 +
σ

ν
|∇3b|2)dx

= −

∫
R2
ρu · ∇u · utdx − σ

∫
R2

∆b∇b · utdx −
∫
R2

u · ∇bbtdx

−
1
ν

∫
R2

e′(b)btdx −
∫
R2

∆(u · ∇b) · ∆bdx −
1
ν

∫
R2

∆e′(b) · ∆bdx

,
6∑

j=1

I j. (2.10)

Utilizing Gagliardo-Nirenberg’s, Hölder’s, Young’s inequalities (2.2), we estimate the first term as
follows:

I1 ≤ ‖
√
ρ‖L∞‖

√
ρut‖L2‖u‖L4‖∇u‖L4

≤
1

16
‖
√
ρut‖

2
L2 + C‖u‖2L4‖∇u‖2L4

≤
1

16
‖
√
ρut‖

2
L2 + C‖u‖L2‖∇u‖2L2‖∇

2u‖L2

≤
1

16
‖
√
ρut‖

2
L2 +

1
16
‖∇2u‖2L2 + C‖∇u‖4L2 .

Similarly, by direct calculations, the other terms can be bounded as

I2 ≤
1

16
‖
√
ρut‖

2
L2 +

σ

8ν
‖∇3b‖2L2 + C‖∇2b‖4L2 ,

I3 ≤
1
4
‖bt‖

2
L2 + C‖∇u‖2L2 + C‖∇b‖2L2‖∆b‖2L2 ,

I4 ≤
1
4
‖bt‖

2
L2 + C‖e′(b)‖2L2 ,

I5 ≤
3σ
16ν
‖∇3b‖2L2 +

1
16
‖∇2u‖2L2 + C‖∇u‖4L2 + C‖∇2b‖4L2 ,

I6 ≤
3σ
16ν
‖∇3b‖2L2 + C‖∇b‖2L2 .

Next, according to the regularity theory of the Stokes system in Eq (1.1)2, it follows that

‖∇2u‖2L2 ≤ ‖ρut‖
2
L2 + ‖ρu · ∇u‖2L2 + σ‖∇b∆b‖2L2

≤ ‖
√
ρut‖

2
L2 + C‖∇u‖2L2‖∇

2u‖L2 + C‖∇2b‖2L2‖∇
3b‖L2

≤ ‖
√
ρut‖

2
L2 +

1
2
‖∇2u‖2L2 +

σ

2ν
‖∇3b‖2L2 + C(‖∇u‖4L2 + ‖∇2b‖4L2),

after multiplying by 1
8 , we arrive at

1
16
‖∇2u‖2L2 ≤

1
8
‖ρut‖

2
L2 +

σ

16ν
‖∇3b‖2L2 + C(‖∇u‖4L2 + ‖∇2b‖4L2). (2.11)
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Substituting the estimates I1 − I6 into (2.10) and combining inequality (2.11), we have

d
dt

(‖(∇u,∇b,∇2b)‖2L2 + 1) + ‖(
√
ρut, bt,∇

3b,∇2u)‖2L2

≤ C(‖(∇u,∇b,∇2b)‖2L2 + 1)‖(∇u,∇b,∇2b)‖2L2 + C‖e′(b)‖2L2 ,

which, along with Grönwall’s inequality (2.2), (2.8), and (2.9), leads to

‖(∇u,∇b,∇2b)‖2L2 +

∫ t

0
‖(
√
ρuτ, bτ,∇3b,∇2u)‖2L2dτ ≤ C, (2.12)

which completes the proof of Proposition 2.2. �

Proposition 2.3. Under the assumptions of Proposition 2.2, there holds

‖(
√
ρut, bt,∇bt, ut)‖2L2 +

∫ t

0
‖(∇uτ,∇bτ,∆bτ)‖2L2dτ ≤ C, (2.13)

where C is a positive constant depending on m, M, u0, ρ0 and b0.

Proof. Taking the derivative of Eq (1.1)2 with respect to time t, then multiplying ut on both sides of the
resulting equation and integrating by parts gives

1
2

d
dt
‖
√
ρut‖

2
L2 + ‖∇ut‖

2
L2 = −

∫
R2
ρtut · utdx −

∫
R2
ρtu · ∇u · utdx −

∫
R2
ρut · ∇u · utdx

−

∫
R2
σ∆bt∇b · utdx − σ

∫
R2

∆b∇bt · utdx. (2.14)

Next, we compute each term on the right-hand side of the equation above one by one using
estimates (2.2) and (2.7). The bound of the first term has been estimated as

−

∫
R2
ρtut · utdx =

∫
R2

div (ρu)ut · utdx = −

∫
R2

2ρuut · ∇utdx

≤ C‖ρ‖L∞‖u‖L4‖ut‖L4‖∇ut‖L2

≤ C‖u‖
1
2
L2‖∇u‖

1
2
L2‖∇ut‖

3
2
L2‖ut‖

1
2
L2

≤
1

10
‖∇ut‖

2
L2 + C‖∇u‖2L2‖ut‖

2
L2 .

By using Gagliardo-Nirenberg’s, Hölder’s, and Young’s inequalities and (2.2), we have

−

∫
R2
ρtu · ∇u · utdx =

∫
R2
∇ · (ρu)u · ∇u · utdx

= −

∫
R2
ρu · ∇u · ∇u · utdx −

∫
R2
ρu · u · ∇2u · utdx −

∫
R2

u · ∇u · ρu · ∇utdx

≤ ‖ρ‖L∞
(
‖u‖L6‖∇u‖2L3‖ut‖L6 + ‖u‖2L6‖∇

2u‖L2‖ut‖L6 + ‖u‖2L6‖∇u‖L6‖∇ut‖L2
)

≤ C‖u‖
1
3

L2‖∇u‖2L2‖∇
2u‖

2
3

L2‖ut‖
1
3

L2‖∇ut‖
2
3

L2 + C‖u‖
2
3

L2‖∇u‖
4
3

L2‖∇
2u‖L2‖ut‖

1
3

L2‖∇ut‖
2
3

L2

+ C‖u‖
2
3

L2‖∇u‖
5
3

L2‖∇
2u‖

2
3

L2‖∇ut‖L2
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≤
1

10
‖∇ut‖

2
L2 + C‖∇2u‖2L2 + C‖∇u‖2L2‖ut‖

2
L2 .

Similarly,

−

∫
R2
ρut · ∇u · utdx ≤ C‖ρ‖L∞‖∇u‖L2‖ut‖

2
L4 ≤

1
10
‖∇ut‖

2
L2 + C‖∇u‖2L2‖ut‖

2
L2

and

−

∫
R2
σ∆bt∇b · utdx − σ

∫
R2

∆b∇bt · utdx

≤ C‖∆bt‖L2‖∇b‖L4‖ut‖L4 + C‖∆b‖L4‖∇bt‖L2‖ut‖L4

≤ C‖∆bt‖L2‖∇b‖
1
2
L2‖∆b‖

1
2
L2‖ut‖

1
2
L2‖∇ut‖

1
2
L2 + C‖∆b‖

1
2
L2‖∇

3b‖
1
2
L2‖∇bt‖L2‖ut‖

1
2
L2‖∇ut‖

1
2
L2

≤
σ

16ν
‖∇bt‖

2
L2 +

σ

16ν
‖∆bt‖

2
L2 +

1
10
‖∇ut‖

2
L2 + C(‖∇b‖2L2 + ‖∇3b‖2L2)‖∇2b‖2L2‖ut‖

2
L2 .

Inserting these estimates into (2.14), we have

d
dt
‖
√
ρut‖

2
L2+

8
5
‖∇ut‖

2
L2 ≤

σ

8ν
‖(∇bt,∆bt)‖2L2 + C‖∇2u‖2L2

+ C‖(∇u,∇2b,∇3b)‖2L2‖ut‖
2
L2 . (2.15)

Now we turn to the b equation of (1.1). Differentiating (1.1)3 with respect to t, we obtain

btt + ut · ∇b + u · ∇bt +
1
ν

(e′′(b)bt − σ∆bt) = 0.

Multiplying it by bt and −∆bt, integrating the resulting equation, and summing up these results, due to
the divergence-free condition div u = 0, we obtain

1
2

d
dt
‖(bt,∇bt)‖2L2 +

σ

ν
‖(∇bt,∆bt)‖2L2 +

1
ν

∫
R2

e′′(b)(bt)2dx

=

∫
R2

ut · b · ∇btdx +

∫
R2

ut · ∇b · ∆btdx +

∫
R2

u · ∇bt · ∆btdx +
1
ν

∫
R2

e′′(b)bt · ∆btdx

≤ ‖ut‖L4‖b‖L4‖∇bt‖L2 + ‖ut‖L4‖∇b‖L4‖∆bt‖L2 + ‖u‖L4‖∇bt‖L4‖∆bt‖L2 + C‖bt‖L2‖∆bt‖L2

≤
σ

4ν
‖∇bt‖

2
L2 + ‖ut‖L2‖∇ut‖L2‖b‖L2‖∇b‖L2 +

σ

8ν
‖∆bt‖

2
L2 + ‖ut‖L2‖∇ut‖L2‖∇b‖L2‖∆b‖L2

+
σ

8ν
‖∆bt‖

2
L2 + C‖u‖L2‖∇u‖L2‖∇bt‖L2‖∇2bt‖L2 +

σ

8ν
‖∆bt‖

2
L2 + C‖bt‖

2
L2

≤
σ

4ν
‖∇bt‖

2
L2 +

σ

2ν
‖∆bt‖

2
L2 +

1
2
‖∇ut‖

2
L2 + C(‖∇b‖2L2 + ‖∆b‖2L2)‖ut‖

2
L2 + C‖bt‖

2
L2

+ C‖∇u‖2L2‖∇bt‖
2
L2 .

(2.16)

Summing up (2.15) and (2.16) yields that

d
dt
‖(
√
ρut, bt,∇bt)‖2L2 + ‖(∇ut,∇bt,∆bt)‖2L2 ≤ C‖∇2u‖2L2 + C‖bt‖

2
L2
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+ C‖(∇u,∇2b,∇3b,∇b)‖2L2‖(
√
ρut, bt,∇bt)‖2L2 .

Applying (2.7) and Grönwall’s inequality to the above inequality, we obtain

‖(
√
ρut, bt,∇bt)‖2L2 +

∫ t

0
‖(∇uτ,∇bτ,∆bτ)‖2L2dτ ≤ C.

What’s more, by the same argument of ‖u‖L∞(L2) in Proposition 2.1, we have

‖ut‖L∞(L2) ≤ C,

which completes the proof of Proposition 2.3. �

Proposition 2.4. Under the assumption of Proposition 2.3, it holds that for any t > 0:∫ t

0
‖∇u‖L∞dτ ≤ Ct

2
3 (2.17)

and
sup
t>0
‖∇ρ(t)‖Lp ≤ C(t). (2.18)

Proof. Again, it follows from the regularity of the Stokes system

‖∇2u‖L4 + ‖∇P‖L4

≤ ‖ρut‖L4 + ‖ρu · ∇u‖L4 + ‖∆b∇b‖L4

≤ C(‖ut‖L4 + ‖u‖L∞‖∇u‖L4 + ‖∆b‖L4‖∇b‖L∞)

≤ C(‖ut‖
1
2
L2‖∇ut‖

1
2
L2 + ‖u‖

1
2
L2‖∇

2u‖L2‖∇u‖
1
2
L2 + ‖∇2b‖

1
2
L2‖∇

3b‖L2‖∇b‖
1
2
L2).

By Propositions 2.1–2.3, we obtain∫ t

0
‖∇2u‖L4dτ+

∫ t

0
‖∇P‖L4dτ ≤ C(

∫ t

0
‖∇2u‖2L4dτ)

1
2 t

1
2 + C(

∫ t

0
‖∇P‖2L4dτ)

1
2 t

1
2

≤ C
(
‖ut‖L2(L2) + ‖∇ut‖L2(L2) + ‖u‖

1
2
L∞(L2)‖∇u‖

1
2
L∞(L2)‖∇

2u‖L2(L2)

+ ‖∇b‖
1
2
L∞(L2)‖∇

2b‖
1
2
L∞(L2)‖∇

3b‖L2(L2)
)
t

1
2

≤ Ct
1
2 ,

and∫ t

0
‖∇u‖L∞dτ ≤

∫ t

0
‖∇u‖

1
3

L2‖∇
2u‖

2
3

L4dτ ≤ C(
∫ t

0
‖∇2u‖2L4dτ)

1
3 t

2
3

≤
(
‖ut‖

2
3

L2(L2) + ‖∇ut‖
2
3

L2(L2) + ‖u‖
2
3

L∞(L2)‖∇u‖
2
3

L∞(L2)‖∇
2u‖

2
3

L2(L2)

+ ‖∇b‖
2
3

L∞(L2)‖∇
2b‖

2
3

L∞(L2)‖∇
3b‖

2
3

L2(L2)

)
t

2
3

≤ Ct
2
3 ,
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which leads to (2.17). Finally, we recall that the density ρ satisfies

∂tρ + u · ∇ρ = 0.

Applying the operator ∇ to both sides of the above equation yields

∂t∇ρ + u · ∇(∇ρ) = −∇u · ∇ρ.

By applying the Lp estimate to the above equation, combined with the divergence free condition implies

d
dt
‖∇ρ‖Lp ≤ ‖∇u‖L∞‖∇ρ‖Lp .

The Grönwall’s inequality implies

‖∇ρ‖Lp ≤ ‖∇ρ0‖Lp exp
∫ t

0
‖∇u‖L∞dτ ≤ C(t).

We thus complete the proof of Proposition 2.4. �

3. Proof of Theorem 1.1

The section is to prove Theorem 1.1. For any given ρ0 and (u0, b0) ∈ H s(R2) × H s+1(R2), we define
the initial data

ρε0 = ρ0 ∗ ηε , uε0 = u0 ∗ ηε , bε = b0 ∗ ηε ,

where ηε is the standard Friedrich’s mollifier with ε > 0. With the initial data (ρε0, u
ε
0, b

ε
0), the

system (1.1) has a unique global smooth solution (ρε , uε , bε). From Propositions 2.1 and 2.2, we obtain

m ≤ ρε(x, t) ≤ M,

‖(uε , bε ,∇uε ,∇bε ,∇2bε)‖2L2 +

∫ t

0
‖(
√
ρuετ, b

ε
τ,∇

3bε ,∇2uε)‖2L2dτ ≤ C.

By standard compactness arguments and Lions-Aubin’s Lemma, we can obtain a subsequence denoted
again by (uε , bε), that (uε , bε) converges strongly to (u, b) in L2(R+; H s1) × L2(R+; H s2), as ε → 0, for
s1 < 2 and s2 < 3. By the definition of ρε0 and let ε → 0, we find that the limit ρ of ρε satisfies
m ≤ ρ ≤ M.

Next, we shall prove the uniqueness of the solutions. Assume that (ρi, ui, bi) (i = 1, 2) be two
solutions of system (1.1), which satisfy the regularity propositions listed in Theorem 1.1. We denote

(ρ̃, ũ, b̃, P̃)
de f
= (ρ2 − ρ1, u2 − u1, b2 − b1, P2 − P1).

Then the system for (ρ̃, ũ, b̃, P̃) reads

ρ̃t + u2 · ∇ρ̃ = −ũ · ∇ρ1,

ρ2ũt + ρ2u2 · ∇ũ − ∆ũ + ∇P̃ = F̃,

b̃t + u2 · ∇b̃ + 1
ν
(e′(b2) − e′(b1) − σ∆b̃) = −ũ · ∇b1,

div ũ = 0,
(ρ̃, ũ, b̃)(t, x)|t=0 = (0, 0, 0),

(3.1)
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where
F̃ = −σ∆b̃∇b2 − σ∆b2∇b̃ − ρ̃∂tu1 − ρ̃u1 · ∇u1 − ρ2ũ · ∇u1.

Setting ν = σ = 1 in what follows.
Step 1: Taking L2 inner product to the second equation of (3.1) with ũ, we have

1
2

d
dt
‖
√
ρ2ũ‖2L2 + ‖∇ũ‖2L2 = −

∫
R2

∆b̃∇b2 · ũdx −
∫
R2

∆b2∇b̃ · ũdx −
∫
R2
ρ̃∂tu1 · ũdx

−

∫
R2
ρ̃u1 · ∇u1 · ũdx −

∫
R2
ρ2ũ · ∇u1 · ũdx. (3.2)

By Hölder’s and interpolation inequalities, we have

−

∫
R2

∆b̃∇b2 · ũdx −
∫
R2

∆b1∇b̃ · ũdx

≤ C‖∆b̃‖L2‖∇b2‖L4‖ũ‖L4 + C‖∆b1‖L4‖∇b̃‖L2‖ũ‖L4

≤ C‖∆b̃‖L2‖∇b2‖
1
2
L2‖∇

2b2‖
1
2
L2‖ũ‖

1
2
L2‖∇ũ‖

1
2
L2

+ C‖∆b1‖
1
2
L2‖∇

3b1‖
1
2
L2‖∇b̃‖L2‖ũ‖

1
2
L2‖∇ũ‖

1
2
L2

≤
1
8
‖(∆b̃,∇b̃)‖2L2 +

1
8
‖∇ũ‖2L2 + C(‖∇b2‖

2
L2‖∇

2b2‖
2
L2 + ‖∇3b1‖

2
L2‖∇

2b1‖
2
L2)‖ũ‖2L2 .

(3.3)

Similarly,

−

∫
R2
ρ̃∂tu1 · ũdx −

∫
R2
ρ̃u1 · ∇u1 · ũdx

≤ ‖ρ̃‖L2(‖∂tu1‖L4 + ‖u1 · ∇u1‖L4)‖ũ‖L4

≤ ‖ρ̃‖L2
(
‖∂tu1‖L2 + ‖∇∂tu1‖L2 + ‖u1‖L∞‖∆u1‖L2 + ‖u1‖L∞‖∇u1‖L2

)
× (‖ũ‖L2 + ‖∇ũ‖L2)

≤
1
8
‖∇ũ‖2L2 + F1(t)‖ρ̃‖2L2 + C‖ũ‖2L2 ,

(3.4)

where
F1(t) = ‖∂tu1‖

2
L2 + ‖∇∂tu1‖

2
L2 + ‖u1‖

2
L∞‖∆u1‖

2
L2 + ‖u1‖

2
L∞‖∇u1‖

2
L2 .

Hölder’s inequality implies

−

∫
R2
ρ2ũ · ∇u1 · ũdx ≤ ‖∇u1‖L∞‖

√
ρ2ũ‖2L2 . (3.5)

By substituting above estimates (3.3)–(3.5) into (3.2), we have

d
dt
‖
√
ρ2ũ‖2L2 + ‖∇ũ‖2L2 ≤

1
4
‖∆b̃‖2L2 +

1
4
‖∇b̃‖2L2 + CF2(t)‖ũ‖2L2 + F1(t)‖ρ̃‖2L2 , (3.6)

where
F2(t) = ‖∇b2‖

2
L2‖∇

2b2‖
2
L2 + ‖∇3b1‖

2
L2‖∇

2b1‖
2
L2 + ‖∇u1‖L∞ + 1.
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Step 2: Taking L2 inner product to the third equation of (3.1) with b̃ − ∆b̃, we obtain

1
2

d
dt
‖(b̃,∇b̃)‖2L2 + ‖(∇b̃,∆b̃)‖2L2 +

∫
R2

[e′(b2) − e′(b1)]b̃dx

=

∫
R2

u2 · ∇b̃ · ∆b̃dx −
∫
R2

ũ · ∇b1 · (b̃ − ∆b̃)dx +

∫
R2

[e′(b2) − e′(b1)]∆b̃dx. (3.7)

We shall estimate each term on the right-hand side of (3.7). For the first term of (3.7), using Hölder’s
inequality, we have∫

R2
u2 · ∇b̃ · ∆b̃dx ≤ ‖u2‖L∞‖∇b̃‖L2‖∆b̃‖L2 ≤

1
8
‖∆b̃‖2L2 + C‖u2‖

2
L∞‖∇b̃‖2L2 . (3.8)

Meanwhile, we have ∫
R2

[e′(b2) − e′(b1)]b̃dx =

∫
R2

e′′(ξ)b̃2dx > 0, (3.9)

where ξ is a function between b2 and b1.
Moreover,

−

∫
R2

ũ · ∇b1 · (b̃ − ∆b̃)dx ≤ C‖ũ‖L4‖∇b1‖L4(‖b̃‖L2 + ‖∆b̃‖L2)

≤
1
8
‖∆b̃‖2L2 + C‖b̃‖2L2 + C‖ũ‖L2‖∇ũ‖L2‖∇b1‖L2‖∆b1‖L2

≤
1
8
‖∆b̃‖2L2 + C‖b̃‖2L2 +

1
8
‖∇ũ‖2L2 + C‖ũ‖2L2‖∇b1‖

2
L2‖∆b1‖

2
L2 , (3.10)

and ∫
R2

[e′(b2) − e′(b1)]∆b̃dx =

∫
R2

e′′(ξ)b̃∆b̃dx

≤ C0‖b̃‖L2‖∆b̃‖L2 ≤
1
4
‖∆b̃‖2L2 + C‖b̃‖2L2 . (3.11)

By inserting (3.8)–(3.11) into (3.7), one yields

1
2

d
dt
‖(b̃,∇b̃)‖2L2 +

1
2
‖(∇b̃,∆b̃)‖2L2

≤ C‖u2‖
2
L∞‖∇b̃‖2L2 + C‖b̃‖2L2 +

1
8
‖∇ũ‖2L2 + C‖ũ‖2L2‖∇b1‖

2
L2‖∆b1‖

2
L2 .

(3.12)

Step 3: We will derive the estimate of ‖ρ̃‖L2 as follows:

1
2

d
dt
‖ρ̃‖2L2 ≤ ‖ũ · ∇ρ1‖L2‖ρ̃‖L2

≤ ‖ũ‖L4‖∇ρ1‖L4‖ρ̃‖L2

≤ ‖∇ũ‖
1
2
L2‖ũ‖

1
2
L2‖∇ρ1‖L4‖ρ̃‖L2

≤
1
4
‖∇ũ‖2L2 + C‖∇ρ1‖

4
3

L4(‖ρ̃‖
2
L2 + ‖ũ‖2L2). (3.13)
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Step 4: Summing up the above estimates, that is, (3.6), (3.12), and (3.13), we obtain

1
2

d
dt
‖(ρ̃,
√
ρ2ũ, b̃,∇b̃)‖2L2 + ‖(∇ũ,∇b̃,∆b̃)‖2L2

≤ CF5(t)‖∇b̃‖2L2 + C‖b̃‖2L2 + CF4(t)‖ũ‖2L2 + F3(t)‖ρ̃‖2L2

≤ C(1 + F3(t) + F4(t) + F5(t))‖(ρ̃,
√
ρ2ũ, b̃,∇b̃)‖2L2 , (3.14)

where

F3(t) = ‖∂tu1‖
2
L2 + ‖∇∂tu1‖

2
L2 + ‖u1‖

2
L∞‖∆u1‖

2
L2 + ‖u1‖

2
L∞‖∇u1‖

2
L2 + ‖∇ρ1‖

4
3

L4 ,

F4(t) = ‖∇b2‖
2
L2‖∇

2b2‖
2
L2 + ‖∇3b1‖

2
L2‖∇

2b1‖
2
L2 + ‖∇u1‖L∞ + ‖∇b1‖

2
L2‖∆b1‖

2
L2

+ ‖∇ρ1‖
4
3

L4 + 1,

F5(t) = ‖u2‖
2
L∞ .

Noticing the fact that
∫ t

0

(
1 +F3(τ) +F4(τ) +F5(τ)

)
dτ ≤ Ct + C and that ‖ f ‖2L∞ ≤ ‖ f ‖L2‖∇2 f ‖L2 , we can

obtain that there exists a small ε0 such that

‖(ρ̃,
√
ρ2ũ, b̃,∇b̃)‖L∞(L2) = 0,

for t ∈ [0, ε0]. Therefore, we obtain ρ̃(t) = ũ(t) = b̃(t) ≡ 0 for any t ∈ [0, ε0]. The uniqueness of such
strong solutions on the whole time interval [0,+∞) then follows by a bootstrap argument.

Moreover, the continuity with respect to the initial data may also be obtained by the same argument
in the proof of the uniqueness, which ends the proof of Theorem 1.1.

4. Conclusions

This paper focuses on two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids
with stress-diffusion. We have established its global solution, and the uniqueness of the solution in
specific situations is also proved in this paper.
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