AIMS Mathematics, 9(11): 29806-29819.
DOI: 10.3934/math.20241443
ATMS Mathematics Received: 07 September 2024

Revised: 13 October 2024

Accepted: 15 October 2024
https://www.aimspress.com/journal/Math Published: 21 October 2024

Research article

Global unique solutions for the 2-D inhomogeneous incompressible
viscoelastic rate-type fluids with stress-diffusion

Xi Wang' and Xueli Ke>*

' School of Mathematics, Northwest University, Xi’an, 710127, China

2 School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000,
China

* Correspondence: Email: kexuelil23@126.com.

Abstract: We establish the global unique solution for the 2-D inhomogeneous incompressible
viscoelastic rate-type fluids with stress-diffusion by employing the standard energy method and the
standard compactness arguments.

Keywords: viscoelastic rate-type fluids; energy method; global unique solutions; Friedrich’s method;
compactness argument
Mathematics Subject Classification: 76A15, 35Q35, 35D30

1. Introduction

In this paper, we consider the Cauchy problem for the following two-dimensional inhomogeneous
incompressible viscoelastic rate-type fluids with stress-diffusion:

o +u-Vp =0, (t,x) e R* xR?,

Py + u - Vu) — Au+ VP + odiv (Vb ® Vb — 1|VbIT) = 0,

by +u-Vb+1(e(b)— oAb) =0, (L.1)
divu =0,

(0, u, b)(1, X)li=0 = (00, U0, bo)(x),

where the unknowns p = p(x, 1), u = (u'(x,1),u*(x,t)) and b = b(x, 1) stand for the density, velocity
of the fluid and the spherical part of the elastic strain, respectively. P is a scalar pressure function,
which guarantees the divergence-free condition of the velocity field. The coefficients v and o are two
positive constants. In addition, we suppose that e(-) is a smooth convex function about b and ¢(0) < 0,
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e’'(0) = 0, ¢’(b) < Cy, where Cj is a positive constant depending on the initial data. The class of
fluids is the elastic response described by a spherical strain [3]. Compared with [3], we have added the
divergence-free condition to investigate the effect of density on viscoelastic rate-type fluids, while the
divergence-free condition is for computational convenience.

It is easy to observe that for o = 0, the system (1.1) degenerates two distinct systems involving
the inhomogeneous Navier-Stokes equation for the fluid and a transport equation with damped
e’(b). Numerous researchers have extensively studied the well-posedness concern regarding the
inhomogeneous Navier-Stokes equations; see [1,7-9, 11, 14] and elsewhere. However, the transport
equation has a greater effect on the regularity of density than on that of velocity. Additionally, due to
the presence of the damped term €’(b), the initial elasticity in system (1.1) exhibits higher regularity
compared to the initial velocity.

In the case where oo > 0, system (1.1) resembles the inhomogeneous magnetohydrodynamic
(MHD) equations, with b as a scalar function in (1.1) that does not satisfy the divergence condition
found in MHD equations. It is essential to highlight that the system (1.1) represents a simplified
model, deviating from standard viscoelastic rate-type fluid models with stress-diffusion to facilitate
mathematical calculations. Related studies on system (1.1) can be found in [3, 4, 15]. In
particular, Bulicek, Mélek, and Rodriguez in [5] established the well-posedness of a 2D homogeneous
system (1.1) in Sobolev space. Our contribution lies in incorporating the density equation into this
established framework.

Inspired by [11, 18], we initially establish a priori estimates for the system (1.1). Subsequently, by
using a Friedrich’s method and the compactness argument, we obtain the existence and uniqueness of
the solutions. Our main result is as follows:

Theorem 1.1. Let the initial data (po, ug, bo) satisfy
0<m<py(x) <M< oo, (uy,bo) € H (R?) x H*(R?), e(by) € L'(R?), (1.2)

where m, M are two given positive constants with m < M. Then system (1.1) has a global solution
(0, u, b) such that, for any given T > 0, (t,x) € [0,T) X R?,

m < p(t,x) < M,
ue L=0,T; H'(R*) N L*0,T; H*(R?), du e L¥0,T;L*R*) N L*0,T; H (R?)),
b e L™(0,T; H*(R») N L*(0,T; H*(R?)), ;b € L™(0,T; H'(R*) N L*(0, T; H*(R?)).

Moreover, if Vpy € L*(R?), then the solution is unique.

Remark 1.1. Compared to the non-homogeneous MHD equations, handling the damping term e’(b)
poses a challenge, so that we cannot obtain the time-weighted energy of the velocity field. To explore
the uniqueness of the solution, it is necessary to improve the regularity of the initial density data.

The key issue to prove the global existence part of Theorem 1.1 is establishing the a priori
L>(0,T; H'(R?)) estimate on (u, Vb) for any positive time 7. We cannot directly estimate the L2
estimate of (u,b), which mainly occurs in the velocity term div (Vb ® Vb — %lVbl2 I). Therefore,
we need to estimate the L? of the Vb equation. Afterwards, the L? estimation of equation b was
affected by a damping term ¢’(b), so we made an L? estimation of equation ¢’(b). Finally, to show the
L>(0,T; H'(R?)) of u, we also need an estimate of the second derivative of . In summary, we found

AIMS Mathematics Volume 9, Issue 11, 29806-29819.



29808

that the initial value of the b equation needs to be one derivative higher than the initial value of the u
equation.

Concerning the uniqueness of the strong solutions, a common approach is to consider the difference
equations between two solutions and subsequently derive some energy estimates for the resulting
system differences based on the fundamental natural energy of the system. However, for system (1.1),
the presence of a damping term e’(b) of the equation b and density equation prevents the calculation
of the time-weighted energy of the velocity field. To research the solution’s uniqueness, we need to
enhance the regularity of the initial density data.

The paper is structured as follows: Section 2 presents prior estimates for system (1.1). In Section 3,
we establish the existence and uniqueness of Theorem 1.1.

2. A priori estimates

Proposition 2.1. Assume that m, M are two given positive constants and 0 < m < M < oo, the initial
data py satisfies 0 < m < pg < M < +oo, and the initial data (~Jpouo, Vby) € L*(R?) x L>(R?). Let
(0, u, b) be a smooth solution of system (1.1), then there holds for any t > 0,

O<m<p(t) <M < 400, 2.1

t
ICVou, Vb, u)()ll7, + f 1(Vu, V2b)|I7.d7 < CII( Voo, Vbo)I7. (2.2)
0

where C is a constant depending only on o, v.

Proof. First, any Lebesgue norm of p is preserved through the evolution, and 0 < m < p(f) < M <
+00.

To prove (2.2), taking the L? inner product of the second equation of (1.1) with u and integrating by
parts, then we obtain

1d
L Bl + VUl = —o f ABVb - udx, 2.3)
2 dt RZ
where we used the fact that
1
div(Vb @ Vb — 3 [VbI>T) = AbVb.

Multiplying the third equation of (1.1) by —o-Ab and integrating by parts, we obtain

d 2 2
T wnle, + Ziabi, - & f ¢ (b)Abdx = o f - VbAbdL, (2.4)
2 dt v v 2 2

R R
Thanks to the convexity of e(b), we know

0-2 ’ 0-2 ’” 2
— V(e'(b))Vbdx = e”(b)|Vb|"dx > 0. (2.5
4 R2 R2

4

2
T f ¢ (b)Abdx =
4 R2
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By inserting (2.5) into (2.4), combining the result with (2.3), one yields

d
3 Vou, Vh)II7, + IVull}, + ClIABbI7, < 0.

Integrating it with respect to time, we have

t
ICviou, VOYDII7, + f (Y, V2D)I7.d7 < CII(Vpouo, VboII7.- (2.6)
0
On the other hand, applying 0 < m < p < M < 400, which together with (2.6) implies

||u||i°°(L2) < m_lll \//_)u”%oo(LZ) < C”( \/,O_OMO’ VbO)”%Z;
which, along with inequality (2.6), yields (2.2). O

Proposition 2.2. Under the assumptions of Proposition 2.1, the corresponding solution (p,u,b) of the
system (1.1) admits the following bound for any t > 0:

t
||(Vu’ Vzb’ Vb’ b)”iZ + f ||(V2u7 Vsb’ VEMT’ b‘l’7 MT)”iZdT S C’ (2'7)
0

where C is a positive constant depending on m, M, uy, po, and Vb,.

Proof. First, we obtain by taking L? inner product of (1.1); with ¢’(b) that

3 [ e Siewi

<l Vbllalle Gl: + -1 B + CIADIE,

< zivlle’(b)lliz + Cllull7.IIVDII7. + ClABI,

< ool B + IVl VBBl + CIADIE,
< B + CAIVul + IVHIEL).

Integrating with respect to time, we obtain
lle®)llz=1y + e’ D172y < I Voo, VOO + lle(bo)llL- (2.8)
Similarly, multiplying (1.1); by b, we have
1d 2 2 NI
S Pl + VDIl < CAIBlI, + e’ D)),
after using (2.8) and Gronwall’s inequality, we obtain
b € L*(0,1; L*(R*) N L*(0,1; H'(R?)). (2.9)
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In the following, applying Laplace operator A to (1.1); and multiplying the resulting equation by Ab;
additionally, multiplying (1.1), by u, and (1.1); by b,, respectively, then integrating them on R? and
adding up all these results together, we obtain

1d
2dt R2

= —f pu-Vu'u,dx—O'f Abe'u,dx—f u-Vbb,dx
R2 R2 R2

1 1
- - f e'(b)b,dx — f A(u - Vb) - Abdx — — f Aé’'(b) - Abdx
4 RZ RZ 4 RZ

. Zﬁl I, (2.10)

Utilizing Gagliardo-Nirenberg’s, Holder’s, Young’s inequalities (2.2), we estimate the first term as
follows:

(AP + [Vul? + Z|VbP)dx + f Ol + 16, + ZIV3bI2)dx
4 R2 4

Iy < |IVpllz=ll Vioull 2 lluell ] Vel
1
ST Voull7, + Cllully IVull,

1

= 16! Voudllg, + Cllull 2 IVul 2,1V ull 2
1 1

ST Voullz, + E”Vzulliz + ClIVul},.

Similarly, by direct calculations, the other terms can be bounded as

1 2 T 312 2714
I < 1_6” voull7, + gIIV bll7, + ClIV7DI[;»,
1
I; < Z”bt”iz + C”V””iz + C”Vb”izllAb”%z’

1
L < ZlIbAI7 + Clle' (B)II

12

30 o3 1 o2 4 27114
Is < 7Vl + e IV7ull, + ClIVall + CIVEDIL.,
30 o3 2
Is < 7 IV7DIIL + CIVOITL,.
Next, according to the regularity theory of the Stokes system in Eq (1.1),, it follows that

IV2ully, < llowll7, + llou - Vull}, + olIVbABIZ,
< Ivpudlz, + CIVUllLIVull2 + CIVBIL VDIl 2

1 o
< I voull7, + Ellvzu”iz + levsblliz + C([Vully, + IV2I[}.),
after multiplying by §, we arrive at

1 1 o
E”Vzu”iz < gllpuzlliz + 1—6V||V3blliz + C(IVull;, + IV?BI[,). (2.11)
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Substituting the estimates /; — I into (2.10) and combining inequality (2.11), we have

d
g;I(Vue. VD, V2D)I7, + 1) + I(vpus, by, Vb, Vw7,
< C(I(Vu, Vb, VD)7, + DII(Vut, Vb, V2b)I7, + Clle’ (DI

122

which, along with Gronwall’s inequality (2.2), (2.8), and (2.9), leads to
t
195 F60E, + [ 1B b, T, Pl < €.
0

which completes the proof of Proposition 2.2.

Proposition 2.3. Under the assumptions of Proposition 2.2, there holds

t
I(Vious, by, Vb, ut)”iz + f I(Vu, Vb, Abr)”isz <C,
0

where C is a positive constant depending on m, M, uy, py and by.

(2.12)

(2.13)

Proof. Taking the derivative of Eq (1.1), with respect to time ¢, then multiplying u, on both sides of the

resulting equation and integrating by parts gives

1d
Sl VPl + IV, = - f pat; - ydlx - f pa - V- uydx — f puy - Vi - u,dx
2dt R2 R2 R2

—f oAb Vb - udx — 0'[ AbVb; - u,dx.
R2 2

R

(2.14)

Next, we compute each term on the right-hand side of the equation above one by one using

estimates (2.2) and (2.7). The bound of the first term has been estimated as

- f oy - udx = f div (ow)u, - u,dx = — f 2puu, - Vu,dx
R2 R2 R2
< Cllollze loell ot || 2 V| 2

1 1 3 1
< Cllall LN9ull L1 e

1
< E”Vut”iz + ClIVul 7l

By using Gagliardo-Nirenberg’s, Holder’s, and Young’s inequalities and (2.2), we have

—fptu-Vu-utdx:fV-(pu)u-Vu-u,dx
R2 R2

:—fpu-Vu~Vu-u,dx—fpu~u-V2u-utdx—fu-Vu~pu-Vu,dx
R2 R? R2

2 2 2 2
< Mol (el oIVl otz + Wl 219l 2 el + el o1 V,12)
T AT A t ot g2 T
< Clll IVl 2192l et V2], + Clled Vel 9%l e [V

2 5 2
2 s, 2
+ Cllull LIVull LIV ull Va2
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1 2 2112 2 2
< 1o!Veulliz + ClIV7ully, + ClVallp, [l

Similarly,

1
- fRz pitg - Vit - udx < Clloll | Vall 2l |17, < E”Vl/lt”iz + ClIVul[7, a1

and

- f oAb Vb - udx — 0'f AbVb; - u,dx
R2 R?
< CllAb [ 2IVD 4l 2+ + CNADI 4l VDAl 2]l 4
1 1 1 1 1 1 1 1
< ClAD I NIVDIL AL, Neadl 2,1Vl 2, + CIABIL IV DI LIV 2l Va1

o 2 o 2 1 2 2 32012 20112 2
< 1—6vllVbtlle + K/IIAbzlle + EIIVuzlle + C(IVDIlL, + IV DIIHIVDI ol -
Inserting these estimates into (2.14), we have
d 2 VR < (T, Ab)IEs + CIV2ul?
Ellx/ﬁuzllLﬁgll ull, < gll( 0> Ab)|I> + ClIVoull,
+ Cll(Vu, V2B, VB[ llul7».- (2.15)

Now we turn to the b equation of (1.1). Differentiating (1.1); with respect to #, we obtain
1
bll + I/t, * Vb +u- Vb[ + _(e,,(b)b[ - O-Ab[) = O.
14

Multiplying it by b, and —Ab;,, integrating the resulting equation, and summing up these results, due to
the divergence-free condition div u# = 0, we obtain

1d o 1,
Ea”(bta Vo)lly, + ;II(Vbz, Ab)II7, + " fz ¢’ (b)(b,)*dx

R

1
= f u;-b-Vbdx + f u; - Vb - Ab,dx + f u-Vb; - Abdx + — f e”(b)b, - Ab,dx
R2 R2 R2 V JRr2
< Nl DN IV D 2 + el 4 IV DI | ADA 2 + Nutl |4V Ol 4| ADll 22 + CllbA| 21| AD | 2

(o g
< Enw,n; + et 2Vt || 2161 2|V D2+ gnAb,niz + ety 21Vt || 2 VBl 2 || AD | 2 (2.16)
(on (on
+ gnAb,niz + Cllull 2 IV ull 211V Bl 211V 2Dyl + 8—v||Ab,||iz + Clib 12,
o o 1
< @nwtniz + ZnAb,uiz + Enwtniz + CIVBIE, + IABIP )l 2, + ClibAR

+ ClIVul[2,IVBI7,.

L

Summing up (2.15) and (2.16) yields that
d
(Vs b, VOO + 11(Vaws, Vi, AbDII, < CIVZul + Clibil
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+ ClI(Vu, Vb, Vb, VD)I[2. | Vous, by VDI
Applying (2.7) and Gronwall’s inequality to the above inequality, we obtain
!
(Vs by VDI, + j; I(Vitr, Vb, Ab:)|17.d7 < C.
What’s more, by the same argument of ||ul|;~(;2) in Proposition 2.1, we have

et |l 22y < C,

which completes the proof of Proposition 2.3.

Proposition 2.4. Under the assumption of Proposition 2.3, it holds that for any t > 0:

!
f IVull ~dr < Ct3
0

and
sup [[Vo@)llz» < C(1).

>0

Proof. Again, it follows from the regularity of the Stokes system

IV2ulls + IV P2
< llpuilles + llow - Vullps + [[AbVD|| 4
< Cllludlps + Mlellz=Vullzs + [|AbI 4] VDIl )

1 1 1 1 1 1
2 2 2 2 2 21112 3 2
< Ul IV, + Nl V2l 2196l + V2RIV Bl IVEIL,).

By Propositions 2.1-2.3, we obtain

! ! ! !
f V2ul|«dr+ f IVP||,+dr < C( f IV2ull2,d7)2 12 + C( f IVP|2,dr)2s3
0 0 0 0

1 1
b 3 2
< Cllleell 22y + IVl 22y + ||M||zoo(Lz)||VM||ZM(L2)||V ullp2z2)

1 1
2 21112 3 )
VDI o VDI o) IV Bl 212 )12

=

< Cr2,

and

t t 1 , 2 t ) s
fIIVulledTSflqullzzllV u||24dTSC(f IV2ull?,d7)515
0 0 0

2 2 2 2 2
2 2 2 2 5 2
< (Ml ) + IVl o, + Ml o IV o 92
5 2013 3.3 2
VB g IV o IV )
< Ct%,

(2.17)

(2.18)
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which leads to (2.17). Finally, we recall that the density p satisfies
o +u-Vp=0.

Applying the operator V to both sides of the above equation yields

0,Vo+u-V(Vp)=-Vu-Vp.

By applying the L? estimate to the above equation, combined with the divergence free condition implies

d
g VPl = IVull=[IVollz.

The Gronwall’s inequality implies

!
wmmswmmme\wwmmscw.
0

We thus complete the proof of Proposition 2.4. O
3. Proof of Theorem 1.1

The section is to prove Theorem 1.1. For any given py and (ug, by) € H*(R?) x H*"'(R?), we define
the initial data

Po = Po*Mes Uy =t *Ne, D =bo*1,
where 7. is the standard Friedrich’s mollifier with € > 0. With the initial data (o, ug, by), the
system (1.1) has a unique global smooth solution (o€, u¢, b€). From Propositions 2.1 and 2.2, we obtain

m < p(x, 1) < M,

t
(s, b°, Vus, Vb, V27, + f I(Vpus, by, V2be, V2uo)|[.dr < C.
0

By standard compactness arguments and Lions-Aubin’s Lemma, we can obtain a subsequence denoted
again by (u€, b), that (u€, b€) converges strongly to (u, b) in L*(R™; H*') x L>(R*; H*®?), as € — 0, for
s; < 2 and s, < 3. By the definition of pf and let € — 0, we find that the limit p of p° satisfies
m<p<M.

Next, we shall prove the uniqueness of the solutions. Assume that (o;, u;, b;) (i = 1,2) be two
solutions of system (1.1), which satisfy the regularity propositions listed in Theorem 1.1. We denote

- .~ ~_de
(0, it, b, P) :f (P2 — p1,us — Uy, by — by, P, — Py).
Then the system for (3, ii, b, P) reads
Pr+uy-Vp=—it-Vpy,
pzﬁt+p2M2'Vﬁ—Aﬁ+VP:F,
bi +uy - Vb + 1(e'(by) — €' (b)) — oAD) = —ii - Vby, 3.1)
divii =0,

B, it, b)(t, x)li=0 = (0,0,0),

AIMS Mathematics Volume 9, Issue 11, 29806-29819.



29815

where
F = —0AbVby — cAb,Vb — pouy — puy - Vuy — pait - V.

Setting v = o = 1 in what follows.
Step 1: Taking L? inner product to the second equation of (3.1) with ii, we have

1d - .
——IIvp2illy, + IVall;, = — f AbVb, - iidx — f Ab,Vb - fidx — f POy - fidx
2dt R2 R2

R2

—f puy - Vuy -ﬁdx—f 020 - Vuy - itdx.
R2 R?

By Holder’s and interpolation inequalities, we have

—f ABVb2~ﬁdx—f Ab,Vb - iidx
R2 R2

< ClIABIIA IV Dl lllls + ClIAL 11952 ]
~ 1 1 1 1
< ClIABlIVBAILE Vbl N1 VAl
1 1 ~ 1 1
+ ClAB LIV b1V 2 V&),

o 1 3
< —[(AB, VB)II7, + gIIVulliz + CUIVDaLIIV?hal 2 + IV By IV byl )l

oo =—

Similarly,

—fﬁﬁ,ul-ﬁdx—fﬁul-Vul-ﬁdx
R? R2

< 1Pz (0suerllzs + lleay - Voy [l olliell s
<Pl 10unllzz + IVOuanllzz + eIl Aunllz2 + N[l [Vl 2)
X (llall2 + [IVil2)

1o < _
< gIIVuIIiz + FOpII7. + Cllal,

S l(t) ||atul||22 ||Vat“l||22 ||ltl||219°||All1||22 ||lt1||2l°"||vul||22‘

Holder’s inequality implies
—fzpzft -V - iidx < ||V |l Vioadll}».
R
By substituting above estimates (3.3)—(3.5) into (3.2), we have

d - - I - 1 - - .
3 Vo2l + IVil7, < ZIIAbIIiz + ZIIVbIIiz + CH O, + F I,

where
Fa(t) = IVhal[3IIV2bal 2, + IV Bil[L NIV D1l2, + [Vl + 1.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Step 2: Taking L? inner product to the third equation of (3.1) with b — Ab, we obtain
1d, - _- - , -
S lIB, VBT, + (VD Ab)II7, + f [e'(b2) — €'(b)]bdx
2dt R2
= f u - Vb - Abdx — f it - Vby - (b — Ab)dx + f [¢'(by) — €' (b))]Abdx. 3.7
R2 R2 R2

We shall estimate each term on the right-hand side of (3.7). For the first term of (3.7), using Holder’s
inequality, we have

U - - 1 - -
f2 Uy - Vb - Abdx < |lu|l=|IVDIl2l|ABl 2 < g”Ab”iz + Clluali7< VDI, (3.8)
R

Meanwhile, we have

f [¢/(by) — €' (by)]bdx = f ¢’ (&)b*dx > 0, (3.9)
R2 R?
where £ is a function between b, and b;.
Moreover,
- f it - Vby - (b — Ab)dx < Cllitll+[1VD: [l (1Bl 2 + 1AB]|12)
R2
Lo = = - -
< gIIAbIIiZ + C”b”iz + Cllaall 2Vl 2 VD1 || 21| Aby |l 2
[ - 1. 5
< gIIAbIIiZ + Cllblliz + gIIVulliz + CllullizllVblIIizllAbllliz, (3.10)
and
f [¢(by) — €' (by)]Abdx = f e”(€)bAbdx
R2 R2
. . 1 . -
< Collbllz2[|AD]|2 < ZIIAbIIiZ + C”b”iz- (3.11)

By inserting (3.8)—(3.11) into (3.7), one yields

1d, - _- I, -~ -
EPPLGE Vh)IIy, + S ICVD, AD)II7.
3.12
2 7112 7112 1 ~112 ~112 2 2 ( )
< Clluallz=MIVBllz + ClIPIL + SlIViElly. + Clal 1V oIz 1Ab I

Step 3: We will derive the estimate of ||p]|;2 as follows:

1d, . - ~
Egllplliz < |l - Voullalioll 2

< @l IVorll+l1pl] 2
1 1
< IVall Llal 1V erllslipll
< Lwale, + Vol sl + 1l 3.13
< le il + CliVell APl + llall;»)- (3.13)
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Step 4: Summing up the above estimates, that is, (3.6), (3.12), and (3.13), we obtain

1d

73,1 Voait, b, VD)7, + (Viz, Vb, Ab)II7,

< CF5(IIVDIZ, + ClBIL, + CFallill> + FIIpll3
< C(1 + F3(t) + Falt) + FsO)(P, Vp2it, b, VD)7, (3.14)
where

2 2 2 2 2 2 3
F3() = 10l + VOl + Nzl Aur iy, + lerllz= 11Vl + 1IVoull s

Folt) = VBRIV Bal s + IV BZIVD1 IR, + [IVrllie + VD11 114D I
4
FIVoll, + 1,
F5(t) = sl

Noticing the fact that fot (1 + F3(1) + Fa(r) + F5(1))dr < Ct+ C and that || f|* < |If1l2lIV2f]l12, we can
obtain that there exists a small g, such that

@, Vp2it, b, VB)”L""(LZ) =0,

for t € [0, ]. Therefore, we obtain p(t) = i(t) = b(t) = 0 for any ¢ € [0, &]. The uniqueness of such
strong solutions on the whole time interval [0, +c0) then follows by a bootstrap argument.

Moreover, the continuity with respect to the initial data may also be obtained by the same argument
in the proof of the uniqueness, which ends the proof of Theorem 1.1.
4. Conclusions

This paper focuses on two-dimensional inhomogeneous incompressible viscoelastic rate-type fluids
with stress-diffusion. We have established its global solution, and the uniqueness of the solution in
specific situations is also proved in this paper.
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