Research article

Convergence of distributed approximate subgradient method for minimizing convex function with convex functional constraints

  • Received: 12 April 2024 Revised: 20 May 2024 Accepted: 27 May 2024 Published: 07 June 2024
  • MSC : 65K05, 65K10, 90C25

  • In this paper, we investigate the distributed approximate subgradient-type method for minimizing a sum of differentiable and non-differentiable convex functions subject to nondifferentiable convex functional constraints in a Euclidean space. We establish the convergence of the sequence generated by our method to an optimal solution of the problem under consideration. Moreover, we derive a convergence rate of order $ \mathcal{O}(N^{1-a}) $ for the objective function values, where $ a\in (0.5, 1) $. Finally, we provide a numerical example illustrating the effectiveness of the proposed method.

    Citation: Jedsadapong Pioon, Narin Petrot, Nimit Nimana. Convergence of distributed approximate subgradient method for minimizing convex function with convex functional constraints[J]. AIMS Mathematics, 2024, 9(7): 19154-19175. doi: 10.3934/math.2024934

    Related Papers:

  • In this paper, we investigate the distributed approximate subgradient-type method for minimizing a sum of differentiable and non-differentiable convex functions subject to nondifferentiable convex functional constraints in a Euclidean space. We establish the convergence of the sequence generated by our method to an optimal solution of the problem under consideration. Moreover, we derive a convergence rate of order $ \mathcal{O}(N^{1-a}) $ for the objective function values, where $ a\in (0.5, 1) $. Finally, we provide a numerical example illustrating the effectiveness of the proposed method.



    加载中


    [1] M. A. T. Figueiredo, R. D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE T. Image Process., 12 (2003), 906–916. http://dx.doi.org/10.1109/TIP.2003.814255 doi: 10.1109/TIP.2003.814255
    [2] M. A. T. Figueiredo, J. M. Bioucas-Dias, R. D. Nowak, Majorization-minimization algorithms for wavelet-based image restoration, IEEE T. Image Process., 16 (2007), 2980–2991. http://dx.doi.org/10.1109/TIP.2007.909318 doi: 10.1109/TIP.2007.909318
    [3] A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE T. Image Process., 18 (2009), 2419–2434. http://dx.doi.org/10.1109/TIP.2009.2028250 doi: 10.1109/TIP.2009.2028250
    [4] A. Beck, M. Teboulle, 2-Gradient-based algorithms with applications to signal-recovery problems, Cambridge: Cambridge University Press, 2009, 42–88. https://doi.org/10.1017/CBO9780511804458.003
    [5] P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
    [6] I. Necoara, General convergence analysis of stochastic first-order methods for composite optimization, J. Optim. Theory Appl., 189 (2021), 66–95. https://doi.org/10.1007/s10957-021-01821-2 doi: 10.1007/s10957-021-01821-2
    [7] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140 (2013), 125–161. https://doi.org/10.1007/s10107-012-0629-5 doi: 10.1007/s10107-012-0629-5
    [8] V. N. Vapnik, Statistical learning theory, New York: John Wiley & Sons, 1998.
    [9] D. P. Bertsekas, Convex optimization algorithms, Belmont: Athena Scientific, 2015.
    [10] A. Nedić, I. Necoara, Random minibatch subgradient algorithms for convex problems with functional constraints, Appl. Math. Optim., 80 (2019), 801–833. https://doi.org/10.1007/s00245-019-09609-7 doi: 10.1007/s00245-019-09609-7
    [11] D. P. Bertsekas, Nonlinear programming, J. Oper. Res. Soc., 48 (1997), 334. https://doi.org/10.1057/palgrave.jors.2600425
    [12] A. Nedić, D. P. Bertsekas, The effect of deterministic noise in subgradient methods, Math. Program., 125 (2010), 75–99. https://doi.org/10.1007/s10107-008-0262-5 doi: 10.1007/s10107-008-0262-5
    [13] S. Bonettini, A. Benfenati, V. Ruggiero, Scaling techniques for $\epsilon$-Subgradient methods, SIAM J. Optimiz., 26 (2016), 1741–1772. https://doi.org/10.1137/14097642X doi: 10.1137/14097642X
    [14] E. S. Helou, L. E. A. Simões, $\epsilon$-subgradient algorithms for bilevel convex optimization, Inverse Probl., 33 (2017), 055020. https://doi.org/10.1088/1361-6420/aa6136 doi: 10.1088/1361-6420/aa6136
    [15] R. D. Millán, M. P. Machado, Inexact proximal $\epsilon$-subgradient methods for composite convex optimization problems, J. Global Optim., 75 (2019), 1029–1060. https://doi.org/10.1007/s10898-019-00808-8 doi: 10.1007/s10898-019-00808-8
    [16] Y. I. Alber, A. N. Iusem, M. V. Solodov, On the projected subgradient method for nonsmooth convex optimization in a Hilbert space, Math. Program., 81 (1998), 23–35. https://doi.org/10.1007/BF01584842 doi: 10.1007/BF01584842
    [17] K. C. Kiwiel, Convergence of approximate and incremental subgradient methods for convex optimization, SIAM J. Optimiz., 14 (2004), 807–840. https://doi.org/10.1137/S1052623400376366 doi: 10.1137/S1052623400376366
    [18] R. S. Burachik, J. E. Martínez-Legaz, M. Rezaie, M. Théra, An additive subfamily of enlargements of a maximally monotone operator, Set-Valued Var. Anal., 23 (2015), 643–665. https://doi.org/10.1007/s11228-015-0340-9 doi: 10.1007/s11228-015-0340-9
    [19] X. L. Guo, C. J. Zhao, Z. W. Li, On generalized $\epsilon$-subdifferential and radial epiderivative of set-valued mappings, Optim. Lett., 8 (2014), 1707–1720. https://doi.org/10.1007/s11590-013-0691-9 doi: 10.1007/s11590-013-0691-9
    [20] A. Simonetto, H. Jamali-Rad, Primal recovery from consensus-based dual decomposition for distributed convex optimization, J. Optim. Theory Appl., 168 (2016), 172–197. https://doi.org/10.1007/s10957-015-0758-0 doi: 10.1007/s10957-015-0758-0
    [21] M. V. Solodov, B. F. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-Valued Var. Anal., 7 (1999), 323–345. https://doi.org/10.1023/A:1008777829180 doi: 10.1023/A:1008777829180
    [22] A. Beck, First-ordered methods in optimization, Philadelphia: SIAM, 2017. https://doi.org/10.1137/1.9781611974997
    [23] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2017. https://doi.org/10.1007/978-3-319-48311-5
    [24] C. Zalinescu, Convex analysis in general vector spaces, Singapore: World Scientific, 2002. https://doi.org/10.1142/5021
    [25] A. Nedić, Random algorithms for convex minimization problems, Math. Program., 129 (2011), 225–273. https://doi.org/10.1007/s10107-011-0468-9 doi: 10.1007/s10107-011-0468-9
    [26] B. T. Polyak, Introduction to optimization, New York: Optimization Software, 1987.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(756) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog