In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $:
$ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $
where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi) $ is subcritical and odd in $ \psi $. Without assuming the Ambrosetti-Rabinowitz condition, we prove the existence of infinitely many geometrically distinct solutions for this equation, and the existence of ground state solutions is established as well.
Citation: Dengfeng Lu, Shuwei Dai. On existence results for a class of biharmonic elliptic problems without (AR) condition[J]. AIMS Mathematics, 2024, 9(7): 18897-18909. doi: 10.3934/math.2024919
In this paper, we study the following biharmonic elliptic equation in $ \mathbb{R}^{N} $:
$ \Delta^{2}\psi-\Delta \psi+P(x)\psi = g(x, \psi), \ \ x\in\mathbb{R}^{N}, $
where $ g $ and $ P $ are periodic in $ x_{1}, \cdots, x_{N} $, $ g(x, \psi) $ is subcritical and odd in $ \psi $. Without assuming the Ambrosetti-Rabinowitz condition, we prove the existence of infinitely many geometrically distinct solutions for this equation, and the existence of ground state solutions is established as well.
[1] | Y. K. An, R. Y. Liu, Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation, Nonlinear Anal., 68 (2008), 3325–3331. https://doi.org/10.1016/j.na.2007.03.028 doi: 10.1016/j.na.2007.03.028 |
[2] | Y. Chen, P. J. McKenna, Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations, J. Differ. Equations, 136 (1997), 325–355. https://doi.org/10.1006/jdeq.1996.3155 doi: 10.1006/jdeq.1996.3155 |
[3] | S. Ciani, I. I. Skrypnik, V. Vespri, On the local behavior of local weak solutions to some singular anisotropic elliptic equations, Adv. Nonlinear Anal., 12 (2023), 237–265. https://doi.org/10.1515/anona-2022-0275 doi: 10.1515/anona-2022-0275 |
[4] | L. D'Ambrosio, E. Mitidieri, Entire solutions of certain fourth order elliptic problems and related inequalities, Adv. Nonlinear Anal., 11 (2022), 785–829. https://doi.org/10.1515/anona-2021-0217 doi: 10.1515/anona-2021-0217 |
[5] | W. Guan, D. B. Wang, X. N. Hao, Infinitely many solutions for a class of biharmonic equations with indefinite potentials, AIMS Math., 5 (2020), 3634–3645. https://doi.org/10.3934/math.2020235 doi: 10.3934/math.2020235 |
[6] | Q. H. He, Z. Y. Lv, Existence and nonexistence of nontrivial solutions for critical biharmonic equations, J. Math. Anal. Appl., 495 (2021), 124713. https://doi.org/10.1016/j.jmaa.2020.124713 doi: 10.1016/j.jmaa.2020.124713 |
[7] | K. Kefi, N. Irzi, M. M. Al-Shomrani, Existence of three weak solutions for fourth-order Leray-Lions problem with indefinite weights, Complex Var. Elliptic Equ., 68 (2023), 1473–1484. https://doi.org/10.1080/17476933.2022.2056887 doi: 10.1080/17476933.2022.2056887 |
[8] | I. Kossowski, Radial solutions for nonlinear elliptic equation with nonlinear nonlocal boundary conditions, Opusc. Math., 43 (2023), 675–687. https://doi.org/10.7494/OpMath.2023.43.5.675 doi: 10.7494/OpMath.2023.43.5.675 |
[9] | A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120 |
[10] | J. Liu, S. X. Chen, X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $R^{N}$, J. Math. Anal. Appl., 395 (2012), 608–615. https://doi.org/10.1016/j.jmaa.2012.05.063 doi: 10.1016/j.jmaa.2012.05.063 |
[11] | J. Liu, Z. Q. Zhao, Leray-Lions type $p(x)$-biharmonic equations involving Hardy potentials, Appl. Math. Lett., 149 (2024), 108907. https://doi.org/10.1016/j.aml.2023.108907 doi: 10.1016/j.aml.2023.108907 |
[12] | X. Q. Liu, Y. S. Huang, On sign-changing solution for a fourth-order asymptotically linear elliptic problem, Nonlinear Anal., 72 (2010), 2271–2276. https://doi.org/10.1016/j.na.2009.11.001 doi: 10.1016/j.na.2009.11.001 |
[13] | D. Lü, Multiple solutions for a class of biharmonic elliptic system with Sobolev critical exponent, Nonlinear Anal., 74 (2011), 6371–6382. https://doi.org/10.1016/j.na.2011.06.018 doi: 10.1016/j.na.2011.06.018 |
[14] | D. Lü, Existence and multiplicity results for critical growth polyharmonic elliptic systems, Math. Method. Appl. Sci., 37 (2014), 581–596. https://doi.org/10.1002/mma.2816 doi: 10.1002/mma.2816 |
[15] | P. J. McKenna, W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry, Electron. J. Differ. Eq., 37 (2003), 1–13. |
[16] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1986. |
[17] | M. Struwe, Variational methods, New York: Springer-Verlag, 2000. |
[18] | A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. https://doi.org/10.1016/j.jfa.2009.09.013 doi: 10.1016/j.jfa.2009.09.013 |
[19] | A. Szulkin, T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Boston: Handbook of nonconvex analysis and applications, 2010. |
[20] | M. Willem, Minimax theorems, Boston: Birkhäuser, 2012. |
[21] | Y. W. Ye, C. L. Tang, Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 394 (2012), 841–854. https://doi.org/10.1016/j.jmaa.2012.04.041 doi: 10.1016/j.jmaa.2012.04.041 |
[22] | Y. L. Yin, X. Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 375 (2011), 699–705. https://doi.org/10.1016/j.jmaa.2010.10.019 doi: 10.1016/j.jmaa.2010.10.019 |
[23] | J. Zhang, Z. L. Wei, Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin, J. Math. Anal. Appl., 383 (2011), 291–306. https://doi.org/10.1016/j.jmaa.2011.05.030 doi: 10.1016/j.jmaa.2011.05.030 |
[24] | W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials, J. Math. Anal. Appl., 407 (2013), 359–368. https://doi.org/10.1016/j.jmaa.2013.05.044 doi: 10.1016/j.jmaa.2013.05.044 |
[25] | W. Zhang, J. Zhang, Z. M. Luo, Multiple solutions for the fourth-order elliptic equation with vanishing potential, Appl. Math. Lett., 73 (2017), 98–105. https://doi.org/10.1016/j.aml.2017.04.030 doi: 10.1016/j.aml.2017.04.030 |