The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.
Citation: Xintao Li, Lianbing She, Rongrui Lin. Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space[J]. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918
[1] | Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083 |
[2] | Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150 |
[3] | Canhong Long, Zuozhi Liu, Can Ma . Synchronization dynamics in fractional-order FitzHugh–Nagumo neural networks with time-delayed coupling. AIMS Mathematics, 2025, 10(4): 8673-8687. doi: 10.3934/math.2025397 |
[4] | Shang Wu, Pengfei Xu, Jianhua Huang . Invariant measure of stochastic damped Ostrovsky equation driven by pure jump noise. AIMS Mathematics, 2020, 5(6): 7145-7160. doi: 10.3934/math.2020457 |
[5] | Feifei Cheng, Ji Li, Qing Yu . The existence of solitary wave solutions for the neuron model with conductance-resistance symmetry. AIMS Mathematics, 2023, 8(2): 3322-3337. doi: 10.3934/math.2023171 |
[6] | Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057 |
[7] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[8] | Zongning Zhang, Chunguang Li, Jianqiang Dong . A class of lattice Boltzmann models for the Burgers equation with variable coefficient in space and time. AIMS Mathematics, 2022, 7(3): 4502-4516. doi: 10.3934/math.2022251 |
[9] | Soo-Oh Yang, Jea-Hyun Park . Analysis for the hierarchical architecture of the heterogeneous FitzHugh-Nagumo network inducing synchronization. AIMS Mathematics, 2023, 8(9): 22385-22410. doi: 10.3934/math.20231142 |
[10] | Yameng Duan, Wieslaw Krawcewicz, Huafeng Xiao . Periodic solutions in reversible systems in second order systems with distributed delays. AIMS Mathematics, 2024, 9(4): 8461-8475. doi: 10.3934/math.2024411 |
The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.
The objective of this paper is to investigate the existence and uniqueness of invariant measures for the stochastic FitzHugh-Nagumo delay lattice system with long-range interactions on the integer set Z:
{dun(t)=(∑m∈ZJ(n−m)um(t)−αvn(t)+fn(un(t))+an)dt+∞∑j=1(gj,n(un(t),un(t−ρ))+bj,n)dWj(t),dvn(t)=(βun(t)−λvn(t)+cn)dt+∞∑j=1(hj,n(vn(t),vn(t−ρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s∈[−ρ,0], | (1.1) |
where un,vn∈R, t>0, α,ρ,β,λ>0, the coupling parameters J(m) are real numbers satisfying J(m)=J(−m) for all positive integer m, a=(an)n∈Z, c=(cn)n∈Z, b=(bj,n)j∈N,n∈Z, and l=(lj,n)j∈N,n∈Z are given deterministic sequences in ℓ2η, fn,gj,n,hj,n are Lipschitz continuous functions for all j∈N,n∈Z, and (Wj(t))j∈N is a sequence of independent two-sided real-valued Wiener processes defined on a complete filtered probability space (Ω,F,{F}t∈R,P).
The subsequent changes should be observed while considering the transformation of J(m),
J(m)=2k∑j=0(2kj)(−1)jδm,j−k, |
where k is any positive integer and δm,n is the Kronecker's delta. Then, lattice system (1.1) can be changed into
{dun(t)=(△kun(t)−αvn(t)+fn(un(t))+an)dt+∞∑j=1(gj,n(un(t),un(t−ρ))+bj,n)dWj(t),dvn(t)=(βun(t)−λvn(t)+cn)dt+∞∑j=1(hj,n(vn(t),vn(t−ρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s∈[−ρ,0], |
where t>0,n∈Z, △k=△∘⋯∘△,k times, and △ is defined by △un=un+1+un−1−2un.
The emergence of lattice equations from spatial discretization of partial differential equations is widely acknowledged. Lattice systems exhibiting long-range interactions have garnered significant attention in the literature. Of those, the dynamics of the DNA molecule were described by Schrödinger lattice systems in [1]. Subsequently, Pereira investigated the asymptotic behavior of Schrödinger lattice systems in [2] and delay lattice systems in [3], respectively. Recently, Chen et al. considered the long-term dynamics of stochastic complex Ginzburg-Landau systems in their study [4], and Wong-Zakai approximations of stochastic lattice systems in another study [5].
The FitzHugh-Nagumo systems were used to describe the transmission of signals across axons in neurobiology in [6]. The asymptotic behavior of FitzHugh-Nagumo systems were studied in both deterministic [7] and stochastic scenarios [8,9,10,11,12]. The FitzHugh-Nagumo lattice systems were employed to stimulate the propagation of action potentials in myelinated nerve axons in [13]. The attractors of FitzHugh-Nagumo lattice systems were investigated in the deterministic case by [7,14], and in the stochastic case by [11,12,15,16,17,18]. Among these studies, Wang et al. [11] derived the existence and upper semi-continuity of random attractors for FitzHugh-Nagumo lattice systems in ℓ2×ℓ2, while Chen et al. [15] obtained the existence and uniqueness of weak pullback mean random attractors for FitzHugh-Nagumo lattice systems with nonlinear noises in weighted spaces ℓ2σ×ℓ2σ.
Furthermore, time delays are a common occurrence in various systems, and can lead to instability, oscillation, and other changes in dynamical systems. Due to their practical and theoretical significance, there has been an increasing emphasis on the study of time-delay systems. Recent studies have delved into the exploration of random attractors for stochastic lattice systems featuring fixed delays in [18,19,20,21,22]. Additionally, investigations have also been carried out concerning systems with varying delays over time as documented in [3,12,23,24,25].
Currently, there has been a significant amount of research conducted on the dynamical behavior of differential equations driven by linear noise. In order to effectively handle stochastic systems with nonlinear noise, Kloeden[26] and Wang[27,28] introduced the concept of weak pullback mean random attractors. The work described above has subsequently been widely applied in numerous studies on stochastic systems by a multitude of scholars in [15,16,17,19,20,21,25,27,28,29,30,31,32,33,34,35,36,37,38]. Among them, Wang et al [25] studied the stochastic delay modified Swift-Hohenberg lattice systems, as well as Chen et al.[19] and Li et al.[20] considered the stochastic delay lattice systems. However, to the best of our knowledge, the current state of literature on the invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions driven by nonlinear noise in weighted space is regrettably scarce.
The lattice system (1.1) is defined on Z, which represents a spatially discrete analogue to stochastic partial differential equations (PDEs) defined on R. Proving the existence of invariant measures for PDEs on unbounded domains poses a major challenge, primarily due to establishing the tightness of distribution laws of solutions caused by non-compactness in usual Sobolev embeddings on unbounded domains. Various approaches have been developed in literature to address the tightness of solution distributions for PDEs on unbounded domains, such as using weighted spaces in [39,40], weak Feller property of solutions in [41,42], and cut-off techniques in [43,44]. In this paper, the cut-off method will be employed to establish the existence of invariant measures for the stochastic lattice system (1.1) in C([−ρ,0],ℓ2η×ℓ2η). Specifically, we will demonstrate that when time is sufficiently large, the mean square of solution tails in C([−ρ,0],ℓ2η×ℓ2η) becomes uniformly small; based on this result, we can establish tightness in distribution laws for solutions in C([−ρ,0],ℓ2η×ℓ2η). The tail-estimates method has previously been used to prove existence of global attractors for deterministic PDEs [45,46] and stochastic PDEs with additive or linear multiplicative noise in [47,48]. In this paper, we will apply the tail-estimates approach to handle nonlinear noise involved in (1.1) in C([−ρ,0],ℓ2η×ℓ2η). For further information regarding existence of invariant measures for stochastic PDEs defined within bounded domains, please refer to [49] and its references.
The structure of this paper is organized as follows: Section 2 introduces the notations and discusses the well-posedness of lattice system (1.1). The subsequent section establishes necessary uniform estimates of solutions, which play a crucial role in demonstrating the main results in the following section. Sections 4 and 5 focus on establishing the existence and uniqueness of invariant measures for lattice system (1.1). Finally, we provide a summary and closing remarks in the last section.
In this section, we will investigate the well-posedness of the stochastic Fitzhugh-Nagumo delay lattice system (1.1) in weighted space ℓ2η×ℓ2η, where ℓ2η is defined by
ℓ2η={u=(un)n∈Z|un∈R,∑n∈Zηn|un|2<∞}. |
ℓ2η is a Hilbert space with the inner product and norm given by
(u,v)η=∑n∈Zηnunvn,‖u‖2η=(u,u)η,u,v∈ℓ2η. |
We further assume that weights η=(ηn)n∈Z satisfy the conditions
ηn>0,∀n∈Z,∑n∈Zηn<∞, | (2.1) |
and
αm:=supn∈Zηn+m+ηnη1/2n+mη1/2n<∞,∀m∈N. | (2.2) |
To get the existence of invariant measures for lattice system (1.1) in ℓ2η, the interaction J(m) should decrease at a sufficiently rapid rate such that
˜α:=∞∑m=0αm|J(m)|<∞. | (2.3) |
For sequences a=(an)n∈Z, c=(cn)n∈Z, b=(bj,n)j∈N,n∈Z, and l=(lj,n)j∈N,n∈Z in lattice system (1.1), we assume
‖a‖2η=∑n∈Zηn|an|2<∞,‖b‖2η=∑j∈N∑n∈Zηn|bj,n|2<∞,‖c‖2η=∑n∈Zηn|cn|2<∞,‖l‖2η=∑j∈N∑n∈Zηn|lj,n|2<∞. | (2.4) |
For the nonlinear term fn in lattice system (1.1), we assume that fn is a smooth function satisfying that there exists κ∈R such that for all z∈R and n∈Z,
fn(0)=0,f′n(z)≤κ. | (2.5) |
Moreover, for each n∈Z and z∈R, we assume that there are positive constants ιn and δ such that
fn(z)z≤−δ|z|2+ιn, | (2.6) |
where ι=(ιn)n∈Z belongs to ℓ1η and its norm is denoted by ‖ι‖1,η.
For every j∈N and n∈Z, we assume that gj,n,hj,n:R→R is globally Lipschitz continuous; that is, there is a constant L>0 such that for all z1,z2,z∗1,z∗2∈R,
|gj,n(z1,z2)−gj,n(z∗1,z∗2)|⋁|hj,n(z1,z2)−hj,n(z∗1,z∗2)|≤L(|z1−z∗1|+|z2−z∗2|). | (2.7) |
We further assume that for each z,z∗∈R, j∈N, and n∈Z,
|gj,n(z,z∗)|⋁|hj,n(z,z∗)|≤γj,n(1+|z|+|z∗|), | (2.8) |
where γj,n>0, ‖γ‖2=∑j∈N∑n∈Z|γj,n|2<∞, and ‖γ‖2η=∑j∈N∑n∈Zηn|γj,n|2<∞.
For any u=(un)n∈Z∈ℓ2η and v=(vn)n∈Z∈ℓ2η, denote by f(u)=(fn(un))n∈Z and f(v)=(fn(vn))n∈Z. By (2.5), we get
(f(u)−f(v),u−v)η=∑n∈Zηn(fn(un)−fn(vn))(un−vn)=∑n∈Zηnf′n(ξn)|un−vn|2≤κ‖u−v‖2η, | (2.9) |
where ξn=θnun+(1−θn)vn for some θn∈(0,1). Moreover, we can obtain that f is locally Lipschitz continuous from ℓ2η to ℓ2η; that is, there exists LC>0 such that for any u,v∈ℓ2η with ‖u‖2η≤C and ‖v‖2η≤C,
‖f(u)−f(v)‖2η≤L2C‖u−v‖2η. | (2.10) |
For each u1=(u1n)n∈Z,u2=(u2n)n∈Z,v1=(v1n)n∈Z,v2=(v2n)n∈Z∈ℓ2η, and j∈N, denote by gj(u1,v1)=(gj,n(u1n,v1n))n∈Z and hj(u1,v1)=(hj,n(u1n,v1n))n∈Z. It follows from (2.7) and (2.8) that
∑j∈N‖gj(u1,v1)‖2η⋁∑j∈N‖hj(u1,v1)‖2η≤2‖γ‖2η+4‖γ‖2(‖u1‖2η+‖v1‖2η) | (2.11) |
and
∑j∈N‖gj(u1,v1)−gj(u2,v2)‖2η⋁∑j∈N‖hj(u1,v1)−gj(u2,v2)‖2η≤2L2(‖u1−u2‖2η+‖v1−v2‖2η). | (2.12) |
The system (1.1) can be reformulated as an abstract system in ℓ2, for u=(un)n∈Z∈ℓ2, and we set
(Au)n=∑m∈ZJ(n−m)um. | (2.13) |
By Lemma 3.1 of [4], we have
‖Au‖2≤2|J(0)|2‖u‖2+8(∞∑m=1|J(m)|)2‖u‖2. | (2.14) |
By the above notation, system (1.1) can be rewritten as follows: For all t>0,
{du(t)=(Au(t)−αv(t)+f(u(t))+a)dt+∞∑j=1(gj(u(t),u(t−ρ))+bj)dWj(t),dv(t)=(βu(t)−λv(t)+c)dt+∞∑j=1(hj(v(t),v(t−ρ))+lj)dWj(t),u(s)=ϕ(s),v(s)=φ(s),s∈[−ρ,0]. | (2.15) |
Let (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be F0 -measurable. Then, a continuous ℓ2η×ℓ2η -valued Ft -adapted stochastic process (u(t),v(t)) is called a solution of stochastic lattice system (2.15) if (u0,v0)=(ϕ,φ), (u(t),v(t))∈L2(Ω,C([−ρ,T],ℓ2η×ℓ2η)) for all T>−ρ, t≥0 and for almost all ω∈Ω,
{u(t)=ϕ(0)+∫t0(Au(r)−αv(r)+f(u(r))+a)dr+∞∑j=1∫t0(gj(u(r),u(r−ρ))+bj)dWj(r),v(t)=φ(0)+∫t0(βu(r)−λv(r)+c)dr+∞∑j=1∫t0(hj(v(r),v(r−ρ))+lj)dWj(r). |
By (2.1)–(2.8) and the theory of the functional differential equation, we can get that for any (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), stochastic lattice system (2.15) has a solution (u(t),v(t))∈L2(Ω,C([−ρ,T],ℓ2η×ℓ2η)) for every T≥−ρ. Moreover, this solution is unique if (u∗(t),v∗(t)) is any other solution of system (2.15), then
P({(u(t),v(t))=(u∗(t),v∗(t))for allt≥−ρ})=1. |
Actually, the stochastic lattice system (2.15) has a unique solution defined for t∈[t0−ρ,∞), regardless of any initial time t0≥0 and any Ft0 -measurable (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)).
Hereafter, for t∈R, (ut,vt) is defined by
(ut,vt)(s)=(un,t(s),vn,t(s))n∈Z=(un(t+s),vn(t+s))n∈Z=(u(t+s),v(t+s)),s∈[−ρ,0], |
and let Cρ,η=C([−ρ,0],ℓ2η) with the norm ‖χ‖ρ,η=sup−ρ≤s≤0‖χ(s)‖η, χ∈Cρ,η.
The establishment of Lipschitz continuity for solutions to stochastic lattice system (2.15) in relation to initial data will now be undertaken, which shall subsequently be employed.
Lemma 2.1. Suppose (2.1)–(2.8) hold and (ϕ1,φ1),(ϕ2,φ2)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of stochastic lattice system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t≥0,
E[sup−ρ≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+sup−ρ≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤M1(1+eM1t)E[‖ϕ1−ϕ2‖2Cρ,η+‖φ1−φ2‖2Cρ,η], |
where M1 is a positive constant independent of (ϕ1,φ1), (ϕ2,φ2), and t.
Proof. By (2.15), we get that for all t≥0,
d(u(t,ϕ1)−u(t,ϕ2))=A(u(t,ϕ1)−u(t,ϕ2))dt−α(v(t,φ1)−v(t,φ2))dt+(f(u(t,ϕ1))−f(u(t,ϕ2)))dt+∞∑j=1(gj(u(t,ϕ1),u(t−ρ,ϕ1))−gj(u(t,ϕ2),u(t−ρ,ϕ2)))dWj(t), | (2.16) |
and
d(v(t,φ1)−v(t,φ2))=β(u(t,ϕ1)−u(t,ϕ2))dt−λ(v(t,φ1)−v(t,φ2))dt+∞∑j=1(hj(v(t,φ1),v(t−ρ,φ1))−hj(v(t,φ2),v(t−ρ,φ2)))dWj(t), |
which along with (2.16) and Itô's formula shows that for all t≥0,
12(β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η)=12(β‖ϕ1(0)−ϕ2(0)‖2η+α‖φ1(0)−φ2(0)‖2η)−λα∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+β∫t0(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+β∫t0(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+β2∞∑j=1∫t0‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds+α2∞∑j=1∫t0‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds+β∞∑j=1∫t0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)+α∞∑j=1∫t0(hj,v(s,φ1)−v(s,φ2))ηdWj(s), | (2.17) |
where
gj=gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2)) |
and
hj=hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2)). |
By (2.13) and the fact of J(m)=J(−m), we have
(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Zηn∞∑m=1J(m)(un(s,ϕ1)−un(s,ϕ2))×(un−m(s,ϕ1)−un−m(s,ϕ2)+un+m(s,ϕ1)−un+m(s,ϕ2))=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Z∞∑m=1J(m)ηn+m(un+m(s,ϕ1)−un+m(s,ϕ2))(un(s,ϕ1)−un(s,ϕ2))+∑n∈Z∞∑m=1J(m)ηn(un(s,ϕ1)−un(s,ϕ2))(un+m(s,ϕ1)−un+m(s,ϕ2))=J(0)‖u(s,ϕ1)−u(s,ϕ2)‖2η+∑n∈Z∞∑m=1J(m)(ηn+ηn+m)(un(s,ϕ1)−un(s,ϕ2))(un+m(s,ϕ1)−un+m(s,ϕ2)), | (2.18) |
which along with (2.2) and (2.3) implies that
β∫t0(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds≤βJ(0)∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+β∫t0∑n∈Z∞∑m=1|J(m)|αmη12nη12n+m|un(s,ϕ1)−un(s,ϕ2)||un+m(s,ϕ1)−un+m(s,ϕ2)|ds≤β˜α∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds. | (2.19) |
By (2.9), we obtain
β∫t0(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds≤βκ∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds. | (2.20) |
By (2.12), we get
β2∞∑j=1∫t0‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds+α2∞∑j=1∫t0‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds≤2βL2∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+βL2∫0−ρ‖ϕ1(s)−ϕ2(s)‖2ηds+2αL2∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+αL2∫0−ρ‖φ1(s)−φ2(s)‖2ηds. | (2.21) |
It follows from (2.17)–(2.21) that for all t≥0,
β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η≤β‖ϕ1(0)−ϕ2(0)‖2η+α‖φ1(0)−φ2(0)‖2η+2βL2∫0−ρ‖ϕ1(s)−ϕ2(s)‖2ηds+2αL2∫0−ρ‖φ1(s)−φ2(s)‖2ηds+4αL2∫t0‖v(s,φ1)−v(s,φ2)‖2ηds+2β(˜α+|κ|+2L2)∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds+2β|∞∑j=1∫t0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|+2α|∞∑j=1∫t0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|, |
which implies that for all t≥0,
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤(1+2ρL2)(E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η])+2β(˜α+|κ|+2L2)∫t0E[sup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η]ds+4αL2∫t0E[sup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds+2βE[sup0≤r≤t|∞∑j=1∫r0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]+2αE[sup0≤r≤t|∞∑j=1∫r0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]. | (2.22) |
For the last two terms of (2.22), by (2.12), the Burkholder-Davis-Gundy (BDG) inequality, and the Minkowski inequality, we have
2βE[sup0≤r≤t|∞∑j=1∫r0(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]≤βC1√2E[(∫t0∞∑j=1‖gj‖2η‖u(s,ϕ1)−u(s,ϕ2)‖2ηds)12]≤βC1√2E[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η×(∫t0∞∑j=1‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds)12]≤βC1LE[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η(∫t0‖u(s,ϕ1)−u(s,ϕ2)‖2ηds)12]+βC1LE[sup0≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η(∫t0‖u(s−ρ,ϕ1)−u(s−ρ,ϕ2)‖2ηds)12]≤β2E[sup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η]+2βC21L2∫t0E[sup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η]ds+ρβC21L2E[‖ϕ1−ϕ2‖2Cρ,η], | (2.23) |
and
2αE[sup0≤r≤t|∞∑j=1∫r0(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]≤α2E[sup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]+2αC21L2∫t0E[sup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds+ραC21L2E[‖φ1−φ2‖2Cρ,η], |
which along with (2.22) and (2.23) shows that
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤C2E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]+C3∫t0E[βsup0≤r≤s‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤s‖v(r,φ1)−v(r,φ2)‖2η]ds, | (2.24) |
where C2=2(1+2ρL2+ρC21L2), C3=4(˜α+2L2+|κ|+C21L2). It follows from (2.24) and the Gronwall inequality that for all t≥0,
E[βsup0≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsup0≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤C2eC3tE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]. |
This completes the proof.
The existence of invariant measures of the stochastic lattice system (2.15) in the subsequent analysis necessitates the fulfillment of the following inequality.
‖γ‖2<196eρνmax{2δ−4˜α−27β4λ3−8,2λ−27α4δ3−6}, | (2.25) |
where ν>0,2δ−4˜α−27β4λ3−8>0,2λ−27α4δ3−6>0.
In this section, we obtain uniform estimates of the solutions to stochastic lattice system (2.15), which play a pivotal role in proving the existence of invariant measures. More specifically, we will showcase the compactness of a family of probability distributions pertaining to (ut,vt) in C([−ρ,0],ℓ2η×ℓ2η). Initially, our focus lies on discussing uniform estimates of solutions to stochastic lattice system (2.15) in C([−ρ,0],ℓ2η×ℓ2η) for all t≥0.
Lemma 3.1. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies
supt≥−ρE[‖u(t)‖2η+‖v(t)‖2η]≤M2(1+E[‖ϕ‖2Cρ,η+‖φ‖2Cρ,η]), |
where M2 is a positive constant independent of (ϕ,φ).
Proof. By (2.15) and Itô's formula, we get that for all t≥0,
{d‖u(t)‖2η=2((Au(t),u(t))η−α(v(t),u(t))η+(f(u(t)),u(t))η+(a,u(t))η)dt+∞∑j=1‖gj(u(t),u(t−ρ))+bj‖2ηdt+2∞∑j=1(gj(u(t),u(t−ρ))+bj,u(t))ηdWj(t),d‖v(t)‖2η=2(β(u(t),v(t))η−λ‖v(t)‖2η+(c,v(t))η)dt+∞∑j=1‖hj(v(t),v(t−ρ))+lj‖2ηdt+2∞∑j=1(hj(v(t),v(t−ρ))+lj,v(t))ηdWj(t). | (3.1) |
Let ν be a positive constant which will be specified later. We get from (3.1) that for all t≥0,
eνt(β‖u(t)‖2η+α‖v(t)‖2η)−νβ∫t0eνs‖u(s)‖2ηds−(ν−2λ)α∫t0eνs‖v(s)‖2ηds=β‖ϕ(0)‖2η+α‖φ(0)‖2η+2β∫t0eνs(Au(s),u(s))ηds+2β∫t0eνs(a,u(s))ηds+2β∫t0eνs(f(u(s)),u(s))ηds+β∞∑j=1∫t0eνs‖gj(u(s),u(s−ρ))+bj‖2ηds+2α∫t0eνs(c,v(s))ηds+α∞∑j=1∫t0eνs‖hj(v(s),v(s−ρ))+lj‖2ηds+2β∞∑j=1∫t0eνs(gj(u(s),u(s−ρ))+bj,u(s))ηdWj(s)+2α∞∑j=1∫t0eνs(hj(v(s),v(s−ρ))+lj,v(s))ηdWj(s). | (3.2) |
Taking the expectation, we obtain that for t≥0,
eνtE[β‖u(t)‖2η+α‖v(t)‖2η]−νβ∫t0eνsE[‖u(s)‖2η]ds−(ν−2λ)α∫t0eνsE[‖v(s)‖2η]ds=E[β‖ϕ(0)‖2η+α‖φ(0)‖2η]+2β∫t0eνsE[(Au(s),u(s))η]ds+2β∫t0eνsE[(a,u(s))η]ds+2β∫t0eνsE[(f(u(s)),u(s))η]ds+2α∫t0eνsE[(c,v(s))η]ds+β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))+bj‖2η]ds+α∞∑j=1∫t0eνsE[‖hj(v(s),v(s−ρ))+lj‖2η]ds. | (3.3) |
Similar to (2.18) and (2.19), we get
2β∫t0eνsE[(Au(s),u(s))η]ds≤2β˜α∫t0eνsE[‖u(s)‖2η]ds. | (3.4) |
By (2.6), we have
2β∫t0eνsE[(f(u(s)),u(s))η]ds≤−2βδ∫t0eνsE[‖u(s)‖2η]ds+2β‖ι‖1,ηνeνt. | (3.5) |
Note that
2β∫t0eνsE[(a,u(s))η]ds+2α∫t0eνsE[(c,v(s))η]ds≤βδ∫t0eνsE[‖u(s)‖2η]ds+λα∫t0eνsE[‖v(s)‖2η]ds+βδν‖a‖2ηeνt+αλν‖c‖2ηeνt. | (3.6) |
By (2.11), we obtain
β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))+bj‖2η]ds≤2β∞∑j=1∫t0eνsE[‖gj(u(s),u(s−ρ))‖2η]ds+2β∞∑j=1∫t0eνsE[‖bj‖2η]ds≤8β‖γ‖2∫t0eνsE[‖u(s)‖2η+‖u(s−ρ)‖2η]ds+4βν‖γ‖2ηeνt+2βν‖b‖2ηeνt≤8βρeρν‖γ‖2E[‖ϕ‖2Cρ,η]+16βeρν‖γ‖2∫t0eνsE[‖u(s)‖2η]ds+4βν‖γ‖2ηeνt+2βν‖b‖2ηeνt, | (3.7) |
and
α∞∑j=1∫t0eνsE[‖hj(v(s),v(s−ρ))+lj‖2η]ds≤8αρeρν‖γ‖2E[‖φ‖2Cρ,η]+16αeρν‖γ‖2∫t0eνsE[‖v(s)‖2η]ds+4αν‖γ‖2ηeνt+2αν‖l‖2ηeνt. | (3.8) |
For t≥0, it follows from (3.3)–(3.8) that
eνtE[β‖u(t)‖2η+α‖v(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η]+eνtν(4(β+α)‖γ‖2η+βδ‖a‖2η+αλ‖c‖2η+2β‖b‖2η+2α‖l‖2η+2β‖ι‖1,η)+β(ν−δ+2˜α+16eρν‖γ‖2)∫t0eνsE[‖u(s)‖2η]ds+α(ν−λ+16eρν‖γ‖2)∫t0eνsE[‖v(s)‖2η]ds. | (3.9) |
For t≥0, by (2.25) and (3.9), we get that there exists ν1>0 such that for all ν∈(0,ν1),
E[β‖u(t)‖2η+α‖v(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η]e−νt+1ν(4(β+α)‖γ‖2η+βδ‖a‖2η+αλ‖c‖2η+2β‖b‖2η+2α‖l‖2η+2β‖ι‖1,η). | (3.10) |
Note that
sup−ρ≤t≤0E[β‖u(t)‖2η+α‖v(t)‖2η]≤E[β‖ϕ‖2Cρ,η+α‖φ‖2Cρ,η], |
which along with (3.10) implies the desired result.
Lemma 3.2. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L4(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies
supt≥−ρE[‖u(t)‖4η+‖v(t)‖4η]≤M3(1+E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]), |
where M3 is a positive constant independent of (ϕ,φ).
Proof. Given n∈N, define τn by
τn=inf{t≥0:‖u(t)‖η+‖v(t)‖η>n}, |
and τn=∞ if the set {t≥0:‖u(t)‖η+‖v(t)‖η>n}=∅. By (3.1) and Itô's formula, we get for all t≥0,
d(‖u(t)‖4η+‖v(t)‖4η)+4λ‖v(t)‖4ηdt−4(β‖v(t)‖2η−α‖u(t)‖2η)(u(t),v(t))ηdt=4‖u(t)‖2η(Au(t),u(t))ηdt+4‖u(t)‖2η(f(u(t)),u(t))ηdt+4‖u(t)‖2η(a,u(t))ηdt+2‖u(t)‖2η∞∑j=1‖gj(u(t),u(t−ρ))+bj‖2ηdt+4∞∑j=1|(gj(u(t),u(t−ρ))+bj,u(t))η|2dt+4‖u(t)‖2η∞∑j=1(gj(u(t),u(t−ρ))+bj,u(t))ηdWj(t)+4‖v(t)‖2η(c,v(t))ηdt+2‖v(t)‖2η∞∑j=1‖hj(v(t),v(t−ρ))+lj‖2ηdt+4∞∑j=1|(hj(v(t),v(t−ρ))+lj,v(t))η|2dt+4‖v(t)‖2η∞∑j=1(hj(v(t),v(t−ρ))+lj,v(t))ηdWj(t). | (3.11) |
Let ν be a positive constant which will be specified later, and we get from (3.11) that for all t≥0,
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]+4λE[∫t∧τn0eνs‖v(s)‖4ηds]=E[‖ϕ(0)‖4η+‖φ(0)‖4η]+νE[∫t∧τn0eνs(‖u(s)‖4η+‖v(s)‖4η)ds]+4E[∫t∧τn0eνs(β‖v(s)‖2η−α‖u(s)‖2η)(u(s),v(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(A(u(s)),u(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(a,u(s))ηds]+4E[∫t∧τn0eνs‖u(s)‖2η(f(u(s)),u(s))ηds]+4E[∫t∧τn0eνs‖v(s)‖2η(c,v(s))ηds]+2E[∫t∧τn0eνs‖u(s)‖2η∞∑j=1‖gj(u(s),u(s−ρ))+bj‖2ηds]+4E[∫t∧τn0eνs∞∑j=1|(gj(u(s),u(s−ρ))+bj,u(s))η|2ds]+2E[∫t∧τn0eνs‖v(s)‖2η∞∑j=1‖hj(v(s),v(s−ρ))+lj‖2ηds]+4E[∫t∧τn0eνs∞∑j=1|(hj(v(s),v(s−ρ))+lj,v(s))η|2ds]. | (3.12) |
Similar to (2.18) and (2.19), we get
4∫t∧τn0eνsE[‖u(s)‖2η(Au(s),u(s))η]ds≤4˜α∫t∧τn0eνsE[‖u(s)‖4η]ds. | (3.13) |
By (2.6) and Young's inequality, we have
4E[∫t∧τn0eνs‖u(s)‖2η(f(u(s)),u(s))ηds]≤4E[∫t∧τn0eνs‖u(s)‖2η(−δ‖u(s)‖2η+‖ι‖1,η)ds]≤2(1−2δ)E[∫t∧τn0eνs‖u(s)‖4ηds]+2‖ι‖21,ηνeνt. | (3.14) |
Note that
4E[∫t∧τn0eνs‖u(s)‖2η(a,u(s))ηds]+4E[∫t∧τn0eνs‖v(s)‖2η(c,v(s))ηds]≤δE[∫t∧τn0eνs‖u(s)‖4ηds]+λE[∫t∧τn0eνs‖v(s)‖4ηds]+27δ3ν‖a‖4ηeνt+27λ3ν‖c‖4ηeνt, | (3.15) |
and
4E[∫t∧τn0eνs(β‖v(s)‖2η−α‖u(s)‖2η)(u(s),v(s))ηds]≤4βE[∫t∧τn0eνs‖v(s)‖3η‖u(s)‖ηds]+4αE[∫t∧τn0eνs‖u(s)‖3η‖v(s)‖ηds]≤(λ+27α4δ3)E[∫t∧τn0eνs‖v(s)‖4ηds]+(δ+27β4λ3)E[∫t∧τn0eνs‖u(s)‖4ηds]. | (3.16) |
By (2.8), we get
2E[∞∑j=1∫t∧τn0eνs‖u(s)‖2η‖gj(u(s),u(s−ρ))+bj‖2ηds]+4E[∞∑j=1∫t∧τn0eνs|(gj(u(s),u(s−ρ))+bj,u(s))η|2ds]≤6E[∞∑j=1∫t∧τn0eνs‖u(s)‖2η‖gj(u(s),u(s−ρ))+bj‖2ηds]≤12E[∫t∧τn0eνs‖u(s)‖2η(∞∑j=1‖bj‖2η+2‖γ‖2η)ds]+72‖γ‖2E[∫t∧τn0eνs‖u(s)‖4ηds]+24‖γ‖2E[∫t∧τn0eνs‖u(s−ρ)‖4ηds]≤(96eρν‖γ‖2+6)E[∫t∧τn0eνs‖u(s)‖4ηds]+6(‖b‖2η+2‖γ‖2η)2eνtν+24ρeρν‖γ‖2E[‖ϕ‖4Cρ,η], | (3.17) |
and
2E[∞∑j=1∫t∧τn0eνs‖v(s)‖2η‖hj(v(s),v(s−ρ))+lj‖2ηds]+4E[∞∑j=1∫t∧τn0eνs|(hj(v(s),v(s−ρ))+lj,v(s))η|2ds]≤(96eρν‖γ‖2+6)E[∫t∧τn0eνs‖v(s)‖4ηds]+6(‖l‖2η+2‖γ‖2η)2eνtν+24ρeρν‖γ‖2E[‖φ‖4Cρ,η]. | (3.18) |
For t≥0, it follows from (3.12)–(3.18) that
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]+(ν−2δ+4˜α+96eρν‖γ‖2+27β4λ3+8)E[∫t∧τn0eνs‖u(s)‖4ηds]+(ν−2λ+96eρν‖γ‖2+27α4δ3+6)E[∫t∧τn0eνs‖v(s)‖4ηds]+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)eνtν, |
which along with (2.25) implies that there exists ν2>0 such that for all ν∈(0,ν2),
E[eν(t∧τn)(‖u(t∧τn)‖4η+‖v(t∧τn)‖4η)]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)eνtν. |
Letting n→∞, we obtain from the above inequality that for all t≥0,
E[‖u(t)‖4η+‖v(t)‖4η]≤(1+24ρeρν‖γ‖2)E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η]e−νt+(2‖ι‖21,η+6(‖b‖2η+2‖γ‖2η)2+6(‖l‖2η+2‖γ‖2η)2+27δ3‖a‖4η+27λ3‖c‖4η)1ν. | (3.19) |
Note that for all t∈[−ρ,0],
E[‖u(t)‖4η+‖v(t)‖4η]≤E[‖ϕ‖4Cρ,η+‖φ‖4Cρ,η], |
which along with (3.19) concludes the proof.
Lemma 3.3. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)∈L4(Ω,C([−ρ,0],ℓ2η×ℓ2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies, for any t>r≥0,
E[‖u(t)−u(r)‖4η+‖v(t)−v(r)‖4η]≤M4(|t−r|2+|t−r|4), |
where M4 is a positive constant depending on (ϕ,φ), but is independent of t and r.
Proof. For t>r≥0, by (2.15), we get
{u(t)−u(r)=∫tr(Au(s)−αv(s)+f(u(s))+a)ds+∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s),v(t)−v(r)=∫tr(βu(s)−λv(s)+c)dt+∞∑j=1∫tr(hj(v(s),v(t−ρ))+lj)dWj(s), |
which together with (2.5), (2.10), and (2.14) implies that, for t>r≥0,
{‖u(t)−u(r)‖η≤∫tr(C4‖u(s)‖η+α‖v(s)‖η)ds+‖a‖η|t−r|+‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖η,‖v(t)−v(r)‖η≤∫tr(β‖u(s)‖η+λ‖v(s)‖η)ds+‖c‖η‖|t−r|+‖∞∑j=1∫tr(hj(v(s),v(t−ρ))+lj)dWj(s)‖η, | (3.20) |
where C4=√2|J(0)|2+8(∞∑m=1|J(m)|)2+LC. By (3.20), we get
E[‖u(t)−u(r)‖4η+‖v(t)−v(r)‖4η]≤64(C44+β4)E[(∫tr‖u(s)‖ηds)4]+64(α4+λ4)E[(∫tr‖v(s)‖ηds)4]+64(‖a‖4η+‖c‖4η)|t−r|4+64E[‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖4η]+64E[‖∞∑j=1∫tr(hj(v(s),v(s−ρ))+lj)dWj(s)‖4η]. | (3.21) |
By Schwarz's inequality and Lemma 3.2, we have
64(C44+β4)E[(∫tr‖u(s)‖ηds)4]+64(α4+λ4)E[(∫tr‖v(s)‖ηds)4]≤64(C44+β4+α4+λ4)|t−r|3∫trE[‖u(s)‖4η+‖v(s)‖4η]ds≤C5|t−r|4. | (3.22) |
For the last two terms of (3.21), by (2.11), Lemma 3.2, and the BDG inequality, we get
64E[‖∞∑j=1∫tr(gj(u(s),u(s−ρ))+bj)dWj(s)‖4η]≤C6E[(∫tr∞∑j=1‖gj(u(s),u(s−ρ))+bj‖2ηds)2]≤8C6(2‖γ‖2η+‖b‖2η)2|t−r|2+128C6‖γ‖4E[(∫tr(‖u(s)‖2η+‖u(s−ρ)‖2η)ds)2]≤C7|t−r|2, | (3.23) |
and
64E[‖∞∑j=1∫tr(hj(v(s),v(s−ρ))+lj)dWj(s)‖4η]≤C7|t−r|2, |
which along with (3.21)–(3.23) implies the desired result.
The subsequent step entails acquiring uniform estimates on the tails of solutions to stochastic lattice system (2.15), which play a pivotal role in proving the tightness of a family of solution distributions.
Lemma 3.4. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset E⊂L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies
lim supk→∞sup(ϕ,φ)∈Esupt≥−ρ∑|n|≥kE[ηn(|un(t,ϕ)|2+|vn(t,φ)|2)]=0. |
Proof. Let ϑ be a smooth function which is defined on R+ such that 0≤ϑ(z)≤1 for all z∈R+, and
ϑ(z)={0,0≤z≤1;1,z≥2. |
For k∈N, set ϑk=(ϑ(|n|k))n∈Z, ϑku=(ϑ(|n|k)un)n∈Z, and ϑkv=(ϑ(|n|k)vn)n∈Z. By (2.15), we have
{d(ϑku(t))=(ϑkAu(t)−αϑkv(t)+ϑkf(u(t))+ϑka)dt+∞∑j=1(ϑkgj(u(t),u(t−ρ))+ϑkbj)dWj(t),d(ϑkv(t))=(βϑku(t)−λϑkv(t)+ϑkc)dt+∞∑j=1(ϑkhj(v(t),v(t−ρ))+ϑklj)dWj(t), |
which along with Itô's formula implies that
d(β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η)=2β(ϑkAu(t),ϑku(t))ηdt+2β(ϑkf(u(t)),ϑku(t))ηdt+2β(ϑka,ϑku(t))ηdt+β∞∑j=1‖ϑkgj(u(t),u(t−ρ))+ϑkbj‖2ηdt−2λα‖ϑkv(t)‖2ηdt+2α(ϑkc,ϑkv(t))ηdt+α∞∑j=1‖ϑkhj(v(t),v(t−ρ))+ϑklj‖2ηdt+2β∞∑j=1(ϑkgj(u(t),u(t−ρ))+ϑkbj,ϑku(t))ηdWj(t)+2α∞∑j=1(ϑkhj(v(t),v(t−ρ))+ϑklj,ϑkv(t))ηdWj(t). | (3.24) |
Then, we get that for all t≥0,
eνtE[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]+(2λ−ν)α∫t0eνsE[‖ϑkv(s)‖2η]ds=E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]+νβ∫t0eνsE[‖ϑku(s)‖2η]ds+2β∫t0eνsE[(ϑkAu(s),ϑku(s))η]ds+2β∫t0eνsE[(ϑkf(u(s)),ϑku(s))η]ds+2β∫t0eνsE[(ϑka,ϑku(s))η]ds+2α∫t0eνsE[(ϑkc,ϑkv(s))η]ds+β∞∑j=1∫t0eνsE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫t0eνsE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds, | (3.25) |
where ν is a positive constant which will be specified later. Furthermore, we find that
(ϑkAu,ϑku)η=∑n∈Zηn∑m∈ZJ(m)ϑ2(|n|k)un−mun=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+∑n∈Z∞∑m=1J(m)ϑ2(|n|k)ηnun+mun+∑n∈Z∞∑m=1J(m)ϑ2(|n+m|k)ηn+munun+m=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+∑n∈Z∞∑m=1J(m)(ϑ2(|n+m|k)ηn+m+ϑ2(|n|k)ηn)unun+m=J(0)∑n∈Zϑ2(|n|k)ηn|un|2+J1+J2, | (3.26) |
where
J1=∑n∈Z∞∑m=1J(m)(ϑ2(|n+m|k)−ϑ2(|n|k))ηn+munun+m, |
and
J2=∑n∈Z∞∑m=1J(m)ϑ2(|n|k)(ηn+m+ηn)unun+m. |
For any n∈Z and m∈N+, by the definition of ϑ(z) we can get that there exists a constant C8>0 such that
|ϑ(|n+m|k)−ϑ(|n|k)|≤mkC8. | (3.27) |
By (2.2), we have
η1/2n+m≤αmη1/2n,∀n∈Z,m≥1, |
which together with (3.27) implies that for any p>1,
|J1|≤∑n∈Z∞∑m=1|J(m)||ϑ2(|n+m|k)−ϑ2(|n|k)|ηn+m|un+m||un|≤2C8kp∑m=1mαm|J(m)|∑n∈Zη1/2n+mη1/2n|un+m||un|+∞∑m=p+1αm|J(m)|∑n∈Zη1/2n+mη1/2n|un+m||un|≤2C8kp∑m=1mαm|J(m)|‖u‖2η+∞∑m=p+1αm|J(m)|‖u‖2η. | (3.28) |
By (2.2), we obtain
|J2|≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)η1/2n+mη1/2n|un+m||un|≤12∞∑m=1αm|J(m)|(∑n∈Zϑ2(|n|k)ηn+m|un+m|2+∑n∈Zϑ2(|n|k)ηn|un|2), |
which together with (3.27) and (2.3) implies that for any p>1,
|J2|≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)ηn|un|2+12p∑m=1αm|J(m)|∑n∈Zηn+m|ϑ2(|n+m|k)−ϑ2(|n|k)||un+m|2+12∞∑m=p+1αm|J(m)|∑n∈Zηn+m|ϑ2(|n+m|k)−ϑ2(|n|k)||un+m|2≤∞∑m=1αm|J(m)|∑n∈Zϑ2(|n|k)ηn|un|2+C8kp∑m=1mαm|J(m)|‖u‖2η+∞∑m=p+1αm|J(m)|‖u‖2η. | (3.29) |
For any p>1, it follows from (3.26), (3.28), and (3.29) that
2β|(ϑkAu,ϑku)η|≤2β˜α∑n∈Zϑ2(|n|k)ηn|un|2+6βC8kp∑m=1mαm|J(m)|‖u‖2η+4β∞∑m=p+1αm|J(m)|‖u‖2η. | (3.30) |
By (2.6) and Young's inequality, we have
2β∫t0eνsE[(ϑkf(u(s)),ϑku(s))η]ds≤−2βδ∫t0eνsE[‖ϑku(s)‖2η]ds+2βeνtν∑|n|≥kηn|ιn|. | (3.31) |
Note that
2β∫t0eνsE[(ϑka,ϑku(s))η]ds+2α∫t0eνsE[(ϑkc,ϑkv(s))η]ds≤βδ∫t0eνsE[‖ϑku(s)‖2η]ds+βeνtδν∑|n|≥kηn|an|2+λα∫t0eνsE[‖ϑkv(s)‖2η]ds+αeνtλν∑|n|≥kηn|cn|2. | (3.32) |
For the last two terms of (3.25), by (2.8), we get
β∞∑j=1∫t0eνsE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫t0eνsE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤2βνeνt∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+8β‖γ‖2∫t0eνsE[‖ϑku(s)‖2η+‖ϑku(s−ρ)‖2η]ds+2ανeνt∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+8α‖γ‖2∫t0eνsE[‖ϑkv(s)‖2η+‖ϑkv(s−ρ)‖2η]ds≤2βνeνt∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+16βeρν‖γ‖2∫t0eνsE[‖ϑku(s)‖2η]ds+2ανeνt∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+16αeρν‖γ‖2∫t0eνsE[‖ϑkv(s)‖2η]ds+8βeρν‖γ‖2∫0−ρeνsE[‖ϑkϕ(s)‖2η]ds+8αeρν‖γ‖2∫0−ρeνsE[‖ϑkφ(s)‖2η]ds. | (3.33) |
Then, it follows from (3.25) and (3.30)–(3.33) that for p>1,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]e−νt+β(ν−δ+16eρν‖γ‖2+2˜α+6C8kp∑m=1mαm|J(m)|+4+∞∑m=p+1αm|J(m)|)∫t0eν(s−t)E[‖u(s)‖2η]ds+α(ν−λ+16eρν‖γ‖2)∫t0eν(s−t)E[‖v(s)‖2η]ds+βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|. | (3.34) |
Furthermore, it follows from (2.3) that there is a K1=K1(ν)>0 such that for all k≥K1,
6C8kp∑m=1mαm|J(m)|≤ν2. | (3.35) |
By (2.3) again, we can choose p=p(ν) large enough such that
4∞∑m=p+1αm|J(m)|≤ν2, |
which along with (3.35) and (2.25) implies that there exists ν3>0 such that for all ν∈(0,ν3),
ν−δ+16eρν‖γ‖2+2˜α+6C8kp∑m=1mαm|J(m)|+4+∞∑m=p+1αm|J(m)|≤2ν−δ+16eρν‖γ‖2≤0, |
which together with (3.34) and (2.25) shows that for all t≥0 and k≥K1,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]e−νt+βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|. | (3.36) |
Note that (ϕ,φ)∈E and E is a compact subset in L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). Then, for each ε>0, there exists K2=K2(ε,ϕ,φ)≥1 such that for all k≥K2,
∑|n|≥kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]≤ε. | (3.37) |
It follows from (3.37) that for all k≥K2,
(1+8ρeρν‖γ‖2)E[β‖ϑkϕ(0)‖2η+α‖ϑkφ(0)‖2η]=(1+8ρeρν‖γ‖2)∑n∈ZE[ηn(β|ϑ(|n|k)ϕn(0)|2+α|ϑ(|n|k)φn(0)|2)]≤(1+8ρeρν‖γ‖2)∑|n|≥kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]≤(1+8ρeρν‖γ‖2)ε. | (3.38) |
Since a=(an)n∈Z, c=(cn)n∈Z,b=(bj,n)j∈N,n∈Z,l=(lj,n)j∈N,n∈Z,γ=(γj,n)j∈N,n∈Z∈ℓ2η and ι=(ιn)n∈Z∈ℓ1η, we get that there exists K3=K3(ε)≥1 such that for all t≥0 and k≥K3,
βδν∑|n|≥kηn|an|2+αλν∑|n|≥kηn|cn|2+2βν∑|n|≥k∞∑j=1ηn(b2j,n+2γ2j,n)+2αν∑|n|≥k∞∑j=1ηn(l2j,n+2γ2j,n)+2βν∑|n|≥kηn|ιn|≤ε, |
which along with (3.36) and (3.38) implies that for all t≥0, k≥max{K1,K2,K3}, and (ϕ,φ)∈E,
∑|n|≥2kE[ηn(β|un(t)|2η+α|vn(t)|2η)]≤E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]≤(2+8ρeρν‖γ‖2)ε. | (3.39) |
Observe that {(ϕ(s),φ(s))∈L2(Ω,ℓ2η×ℓ2η):s∈[−ρ,0]} is a compact subset in L2(Ω,ℓ2η×ℓ2η). Then, for each ε>0, there are s1,s2,⋯sm∈[−ρ,0] such that
{(ϕ(s),φ(s))∈L2(Ω,ℓ2η×ℓ2η):s∈[−ρ,0]}⊆m⋃j=1B((ϕ(sj),φ(sj)),12√ε), | (3.40) |
where B((ϕ(sj),φ(sj)),12√ε) is an open ball in L2(Ω,ℓ2η×ℓ2η) centered at (ϕ(sj),φ(sj)) with radius 12√ε. Since (ϕ(sj),φ(sj))∈L2(Ω,ℓ2η×ℓ2η), for j=1,⋯,m, there exists K4=K4(ε,ϕ,φ)≥1, such that for all k≥K4,
∑|n|≥kE[ηn(|ϕn(sj)|2+|φn(sj)|2)]≤14ε,j=1,2,⋯,m. | (3.41) |
It follows from (3.40) and (3.41) that for all k≥K4 and s∈[−ρ,0],
∑|n|≥kE[ηn(|ϕn(s)|2+|φn(s)|2)]≤ε, |
which along with (3.39) implies the desired result.
The tail estimates given by Lemma 3.4 have been enhanced to obtain uniform estimates on the tails of solutions, which are crucial for achieving tightness in the probability distributions of solution segments in the space C([−ρ,0],ℓ2η×ℓ2η).
Lemma 3.5. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset E⊂L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies
lim supn→∞sup(ϕ,φ)∈Esupt≥ρE[supt−ρ≤r≤t∑|n|≥kηn(|un(r,ϕ)|2+|vn(r,φ)|2)]=0. |
Proof. Let ϑ be the function defined in Lemma 3.4. For all t≥ρ and t−ρ≤r≤t, it follows from (3.24) that
β‖ϑku(r)‖2η+α‖ϑkv(r)‖2η+2λα∫rt−ρ‖ϑkv(s)‖2ηds=β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η+2β∫rt−ρ(ϑkAu(s),ϑku(s))ηds+2β∫rt−ρ(ϑkf(u(s)),ϑku(s))ηds+2β∫rt−ρ(ϑka,ϑku(s))ηds+2α∫rt−ρ(ϑkc,ϑkv(s))ηds+β∞∑j=1∫rt−ρ‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds+2β∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)+α∞∑j=1∫rt−ρ‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds+2α∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s), |
which shows that for all t≥ρ,
E[supt−ρ≤r≤t(β‖ϑku(r)‖2η+α‖ϑkv(r)‖2η)]+2λαE[∫tt−ρ‖ϑkv(s)‖2ηds]≤E[β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η]+2βE[∫tt−ρ|(ϑkAu(s),ϑku(s))η|ds]+2βE[∫tt−ρ|(ϑkf(u(s)),ϑku(s))η|ds]+2βE[∫tt−ρ‖ϑka‖η‖ϑku(s)‖ηds]+2αE[∫tt−ρ‖ϑkc‖‖ϑkv(s)‖ηds]+βE[∞∑j=1∫tt−ρ‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds]+αE[∞∑j=1∫tt−ρ‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds]+2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s)|]. | (3.42) |
For any ε>0, by Lemma 3.4, we get that there is a K5=K5(ε,E)≥1 such that for all k≥K5 and t≥−ρ,
∑|n|≥kE[ηn(β|un(t)|2+α|vn(t)|2)]≤ε, |
which shows that for all k≥K5 and t≥−ρ,
E[β‖ϑku(t)‖2η+α‖ϑkv(t)‖2η]=∑|n|≥kE[ηn(β|ϑkun(t)|2+α|ϑkvn(t)|2)]≤∑|n|≥kE[ηn(β|un(t)|2+α|vn(t)|2)]≤ε. | (3.43) |
Then, for all k≥K5 and t≥ρ,
E[β‖ϑku(t−ρ)‖2η+α‖ϑkv(t−ρ)‖2η]≤ε. | (3.44) |
Proceeding as in (3.30), we have
2βE[∫tt−ρ|(ϑkAu(s),ϑku(s))η|ds]≤2β˜α∫tt−ρE[‖ϑku(s)‖2η]ds+6βC8kp∑m=1mαm|J(m)|∫tt−ρE[‖u(s)‖2η]ds+4β∞∑m=p+1αm|J(m)|∫tt−ρE[‖u(s)‖2η]ds. | (3.45) |
Then, by (3.43), we get that for all k≥K5 and t≥−ρ,
2β˜α∫tt−ρE[‖ϑku(s)‖2η]ds≤2˜αρε. | (3.46) |
Furthermore, it follows from (2.3) and Lemma 3.1 that there is a K6=K6(ε,E)≥K5, such that for all k≥K6 and t≥ρ,
6βC8kp∑m=1mαm|J(m)|∫tt−ρE[‖u(s)‖2η]ds≤ρε. | (3.47) |
By (2.3) and Lemma 3.1 again, we can choose p=p(ε) large enough such that for all t≥ρ,
4β∞∑m=p+1αm|J(m)|∫tt−ρE[‖u(s)‖2η]ds≤ρε. | (3.48) |
Since ι=(ιn)n∈Z∈ℓ1η, we get that there exists K7=K7(ε,E)≥K6 such that for all k≥K7,
2β∫tt−ρE[|(ϑkf(u(s)),ϑku(s))η|]ds≤−2βδ∫tt−ρE[‖ϑku(s)‖2]ds+2βρ∑|n|>kηn|ιn|≤ρε. | (3.49) |
By (3.43), we get for all k≥K5 and t≥ρ,
2βE[∫tt−ρ‖ϑka‖‖ϑku(s)‖ηds]+2αE[∫tt−ρ‖ϑkc‖‖ϑkv(s)‖ηds]≤∫tt−ρE[β‖ϑku(s)‖2η+α‖ϑkv(s)‖2η]ds+∫tt−ρE[β‖ϑka‖2η+α‖ϑkc‖2η]ds≤ρε+ρ∑|n|≥kηn(β|an|2+α|cn|2). | (3.50) |
Since a=(an)n∈Z,c=(cn)n∈Z∈ℓ2η, it follows from (3.50) that there exists K8=K8(ε,E)≥K7 such that for all k≥K8 and t≥ρ,
2βE[∫tt−ρ(ϑka,ϑku(s))ηds]+2αE[∫tt−ρ(ϑkc,ϑkv(s))ηds]≤2ρε. | (3.51) |
By (2.8), (3.43), and Lemma 3.4, we get for all t≥ρ and k≥K5,
β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds≤2β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))‖2η]ds+2β∞∑j=1∫tt−ρE[‖ϑkbj‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+8β‖γ‖2∫tt−ρE[‖ϑku(s)‖2η+‖ϑku(s−ρ)‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+8β‖γ‖2∫tt−ρE[‖ϑku(s)‖2η]ds+8β‖γ‖2∫t−ρt−2ρE[‖ϑku(s)‖2η]ds≤2ρβ∞∑j=1∑|n|≥kηn(b2j,n+2γ2j,n)+16β‖γ‖2ρε, | (3.52) |
and
α∞∑j=1∫tt−ρE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤2ρα∞∑j=1∑|n|≥kηn(l2j,n+2γ2j,n)+16α‖γ‖2ρε. | (3.53) |
Since b=(bj,n)j∈N,n∈Z, l=(lj,n)j∈N,n∈Z, and γ=(γj,n)j∈N,n∈Z belong to ℓ2η, we infer from (3.52) and (3.53) that there exists K9=K9(ε,E)≥K8 such that for all k≥K9 and t≥ρ,
β∞∑j=1∫tt−ρE[‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2η]ds+α∞∑j=1∫tt−ρE[‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2η]ds≤ρ(β+α)(2+16‖γ‖2)ε. | (3.54) |
For the last two terms of (3.42), by the BDG inequality, (2.8), and (3.54), we have for all k≥K9 and t≥ρ,
2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(ϑkhj(v(s),v(s−ρ))+ϑklj,ϑkv(s))ηdWj(s)|]≤2βC9E[(∫tt−ρ∞∑j=1|(ϑkgj(u(s),u(s−ρ))+ϑkbj,ϑku(s))η|2ds)12]+2αC9E[(∫tt−ρ∞∑j=1|(ϑkhj(v(s),v(s−ρ))+ϑkcj,ϑkv(s))η|2ds)12]≤β2E[supt−ρ≤r≤t‖ϑku(r)‖2η]+2βC29E[∫tt−ρ∞∑j=1‖ϑkgj(u(s),u(s−ρ))+ϑkbj‖2ηds]+α2E[supt−ρ≤r≤t‖ϑkv(r)‖2η]+2αC29E[∫tt−ρ∞∑j=1‖ϑkhj(v(s),v(s−ρ))+ϑklj‖2ηds]≤β2E[supt−ρ≤r≤t‖ϑku(r)‖2η]+α2E[supt−ρ≤r≤t‖ϑkv(r)‖2η]+2C29ρ(β+α)(2+16‖γ‖2)ε. | (3.55) |
By (3.42)–(3.55), we get that for all t≥ρ and k≥K9,
E[supt−ρ≤r≤t∑|n|≥2kηn(β|un(r)|2+α|vn(r)|2)]≤E[supt−ρ≤r≤t(β‖ϑku(r)‖2+α‖ϑkv(r)‖2)]≤C10ε, |
where C10=2(1+2˜αρ+5ρ+ρ(β+α)(2+16‖γ‖2)(1+2C29))ε. This completes the proof.
The focus of this section is to establish the existence of invariant measures for lattice system (2.15) in C([−ρ,0],ℓ2η×ℓ2η). Initially, we introduce the transition operators of the lattice system and subsequently demonstrate the tightness of a family of probability distributions for solutions of the lattice system.
Given every t0≥0 and Ft0 -measurable (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), lattice system (2.15) possesses a distinct solution that is valid for all t≥t0−ρ. Given t≥t0 and (ϕ,φ)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), we use (ut(t0,ϕ),vt(t0,ϕ)) to represent the segment of the solution (u(t,t0,ϕ),v(t,t0,φ)) which is given by
(ut(t0,ϕ),vt(t0,φ))(s)=(u(s+t,t0,ϕ),v(s+t,t0,φ)),∀s∈[−ρ,0]. |
Then, we have (ut(t0,ϕ),vt(t0,φ))∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)) for all t≥t0.
Suppose ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is a bounded Borel function. For 0≤r≤t, we set
(pr,tψ)(ϕ,φ)=E[ψ((ut(r,ϕ),vt(r,φ)))],∀(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η). |
In addition, for G∈B(C([−ρ,0],ℓ2η×ℓ2η)), 0≤r≤t, and (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), we set
p(r,ϕ,φ;t,G)=(pr,t1G)(ϕ,φ)=P{ω∈Ω:(ut(r,ϕ),vt(r,φ))∈G}, |
where 1G is the characteristic function of G. Then, we can get that p(r,ϕ,φ;t,⋅) is the probability distribution of (ut(r,ϕ),vt(r,φ)) in C([−ρ,0],ℓ2η×ℓ2η). Furthermore, the transition operator p0,t is denoted as pt for the sake of convenience.
Definition 4.1. A probability measure μ on C([−ρ,0],ℓ2η×ℓ2η) is called an invariant measure of lattice system (2.15) if
∫C([−ρ,0],ℓ2η×ℓ2η)(ptψ)(ϕ,φ)dμ(ϕ,φ)=∫C([−ρ,0],ℓ2η×ℓ2η)ψ(ϕ,φ)dμ(ϕ,φ),∀t≥0. |
Now, we show the properties of transition operators {pr,t}0≤r≤t as follows.
Lemma 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, we have
(i) The family {pr,t}0≤r≤t is Feller; that is, if ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is bounded and continuous, then pr,tψ:C([−ρ,0],ℓ2η×ℓ2η)→R is bounded and continuous.
(ii) The family {pr,t}0≤r≤t is homogeneous; that is,
p(r,ϕ,φ;t,⋅)=p(0,ϕ,φ;t−r,⋅),∀r∈[0,t],(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η). |
(iii) Given r≥0 and (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), the process {(ut(r,ϕ),vt(r,φ))}t≥r is a C([−ρ,0],ℓ2η×ℓ2η) -value Markov process. Consequently, if ψ:C([−ρ,0],ℓ2η×ℓ2η)→R is a bounded Borel function, then for any 0≤s≤r≤t, P-a.s.
(ps,tψ)(ϕ,φ)=(ps,t(pr,tψ))(ϕ,φ),∀(ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η), |
for all (ϕ,φ)∈C([−ρ,0],ℓ2η×ℓ2η) and G∈B(C([−ρ,0],ℓ2η×ℓ2η)), the Chapman-Kolmogorov equation is valid:
p(s,ϕ,φ;t,G)=∫C([−ρ,0],ℓ2η×ℓ2η)p(s,ϕ,φ;r,dy)p(r,y;t,G). |
Proof. By Lemma 2.1 and the standard arguments as in [49], we can get the Feller property (ⅰ)–(ⅲ).
Lemma 4.2. Suppose (2.1)–(2.8) and (2.25) hold. Then, the distribution laws of the process {(ut(0,0),vt(0,0))}t≥0 is tight on C([−ρ,0],ℓ2η×ℓ2η).
Proof. For all t≥0, by Lemma 3.1 and Chebyshev's inequality, we have
P{‖ut(0)‖η+‖vt(0)‖η≥R}≤2R2E[‖ut(0)‖2η+‖vt(0)‖2η]≤C11R2→0,asR→∞. |
Then, for each ε>0, there exists a constant R1=R1(ε)>0 such that
P{‖ut(0)‖η+‖vt(0)‖η≥R1}≤ε3,∀t≥0. | (4.1) |
By Lemma 3.3, we get that for all r,s∈[−ρ,0] and t≥ρ,
E[‖u(t+r)−u(t+s)‖4η+‖v(t+r)−v(t+s)‖4η]≤C12(1+|t−s|2)|r−s|2≤C12(1+ρ2)|r−s|2 | (4.2) |
for some C12>0. Given ε>0, it follows from the usual technique of diadic division and (4.2) that there exists a constant R2=R2(ε)>0 such that for all t≥0,
P({sup−ρ≤s<r≤0‖ut(r)−ut(s)‖η+‖vt(r)−vt(s)‖η|r−s|18≤R2})>1−13ε. | (4.3) |
By Lemma 3.5, we obtain that for every ε>0 and m∈N, there exists an integer km=km(ε,m)≥1 such that for all t≥0,
E[supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)]≤ε22m+2. | (4.4) |
Then, for all t≥0 and m∈N,
P(∞⋃m=1{supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)≥12m})≤∞∑m=12mE[supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)]≤ε4, |
which shows that for all t≥0,
P({supt−ρ≤r≤t∑|n|≥kmηn(|un(r)|2+|vn(r)|2)≤12m,∀m∈N})>1−13ε. | (4.5) |
For ε>0, set Zε=Z1,ε⋂Z2,ε⋂Z3,ε, where
Z1,ε={(u,v)∈C([−ρ,0],ℓ2η×ℓ2η):‖u(0)‖η+‖v(0)‖η≤R1(ε)}, | (4.6) |
Z2,ε={(u,v)∈C([−ρ,0],ℓ2η×ℓ2η):sup−ρ≤s<r≤0‖u(r)−u(s)‖η+‖v(r)−v(s)‖η|r−s|18≤R2(ε)}, | (4.7) |
Z3,ε={(u,v)∈C([−ρ,0],ℓ2η×ℓ2η):sup−ρ≤r≤0∑|n|≥kmηn(|un(r)|2+|vn(r)|2)≤12m,∀m∈N}. | (4.8) |
It follows from (4.1), (4.3), and (4.5)–(4.8) that for all t≥0,
P({(ut,vt)∈Zε})>1−ε. | (4.9) |
By Arzela-Ascoli theorem, we can establish the pre-compactness of Zε in C([−ρ,0],ℓ2η×ℓ2η). Specifically, by (4.7), we get that Zε is equi-continuous in C([−ρ,0],ℓ2η×ℓ2η). On the other hand, by (4.6) and (4.7), we have for every r∈[−ρ,0],
‖u(r)‖η+‖v(r)‖η≤‖u(r)−u(0)‖η+‖u(0)‖η+‖v(r)−v(0)‖η+‖v(0)‖η≤R2(ε)|r|18+R1(ε)≤ρ18R2(ε)+R1(ε), |
which along with (4.8) shows that {(u(r),v(r)),(u,v)∈Zε} is pre-compact in ℓ2η×ℓ2η. This completes the proof.
Now, the main outcome of this paper has been showed: The existence of invariant measures for lattice system (2.15) on C([−ρ,0],ℓ2η×ℓ2η).
Theorem 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, lattice system (2.15) has an invariant measure on C([−ρ,0],ℓ2η×ℓ2η).
Proof. By using Krylov-Bogolyubov's method, for each n∈N, the probability measure μn is defined by
μn=1n∫n0p(0,0;t,⋅)dt. | (4.10) |
It follows from Lemma 4.2 that the sequence (μn)∞n=1 is tight on C([−ρ,0],ℓ2η×ℓ2η). Consequently, there exists a probability measure μ on C([−ρ,0],ℓ2η×ℓ2η) and a subsequence (still denoted by (μn)∞n=1) such that
μn→μ,asn→∞. | (4.11) |
By (4.10)–(4.11) and Lemma 4.1, we can get for every t≥0 and every bounded and continuous function ψ:C([−ρ,0],ℓ2η×ℓ2η)→R,
∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)dμ(y)=limn→∞1n∫n0(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(0,0;s,dy))ds=limn→∞1n∫n−t−t(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(0,0;s+t,dy))ds=limn→∞1n∫n0(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(0,0;s+t,dy))ds=limn→∞1n∫n0(∫C([−ρ,0],ℓ2η×ℓ2η)(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(s,ϕ,φ;s+t,dy))p(0,0;s,d(ϕ,φ)))ds |
=limn→∞1n∫n0(∫C([−ρ,0],ℓ2η×ℓ2η)(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(0,ϕ,φ;t,dy))p(0,0;s,d(ϕ,φ)))ds=∫C([−ρ,0],ℓ2η×ℓ2η)(∫C([−ρ,0],ℓ2η×ℓ2η)ψ(y)p(0,ϕ,φ;t,dy))dμ(ϕ,φ)=∫C([−ρ,0],ℓ2η×ℓ2η)(p0,tψ)(ϕ,φ)dμ(ϕ,φ), |
which implies that μ is an invariant measure of lattice system (2.15). This completes the proof.
In this section, we examine the uniqueness of invariant measures for system (2.15) under additional constraints on the diffusion and drift terms. Specifically, we impose the following assumption:
2L2<max{λ,−˜α−κ}, | (5.1) |
which implies that there exists a small number ς>0 such that
max{4L2+2˜α+2κ+ς,4L2−2λ+ς}≤0. | (5.2) |
From now on, we fix such a ς>0 satisfying (5.2). We will demonstrate that, subject to condition (5.2), any two solutions of Eq (2.15) converge toward each other at an exponential rate, which immediately implies the uniqueness of invariant measures. To begin with, we establish uniform estimates in C([−ρ,0],ℓ2η×ℓ2η).
Lemma 5.1. Suppose (2.1)–(2.8) and (5.1) hold, and (ϕ1,φ1),(ϕ2,φ2)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t≥−ρ,
E[‖u(t,ϕ1)−u(t,ϕ2)‖2η+‖v(t,φ1)−v(t,φ2)‖2η]≤M5E[‖ϕ1−ϕ2‖2Cρ,η+‖φ1−φ2‖2Cρ,η]e−ςt, |
where M5 is a positive constant depending on (ϕ,φ).
Proof. By (2.17), we get that for t≥0,
E[β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η]≤E[β‖ϕ1(0)−ϕ2(0)‖2η+α‖φ1(0)−φ2(0)‖2η]−2λα∫t0E[‖v(s,φ1)−v(s,φ2)‖2η]ds+2β∫t0E[(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η]ds+2β∫t0E[(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η]ds+β∞∑j=1∫t0E[‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2η]ds+α∞∑j=1∫t0E[‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2η]ds. | (5.3) |
Similar to (2.18) and (2.19), we obtain
2β∫t0E[(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η]ds≤2β˜α∫t0E[‖u(s,ϕ1)−u(s,ϕ2)‖2η]ds. | (5.4) |
By (2.9), we have
2β∫t0E[(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η]ds≤2βκ∫t0E[‖u(s,ϕ1)−u(s,ϕ2)‖2η]ds. | (5.5) |
By (2.12), we get
β∞∑j=1∫t0[‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2η]ds+α∞∑j=1∫t0[‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2η]ds≤4βL2∫t0[‖u(s,ϕ1)−u(s,ϕ2)‖2η]ds+2βL2∫0−ρ[‖ϕ1(s)−ϕ2(s)‖2η]ds+4αL2∫t0[‖v(s,φ1)−v(s,φ2)‖2η]ds+2αL2∫0−ρ[‖φ1(s)−φ2(s)‖2η]ds. | (5.6) |
It follows from (5.2)–(5.6) that for all t≥0,
E[β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η]≤(1+2ρL2)E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]−ς∫t0E[β‖u(s,ϕ1)−u(s,ϕ2)‖2η+α‖v(s,φ1)−v(s,φ2)‖2η]ds, |
which implies that for all t≥0,
E[β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η]≤(1+2ρL2)E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ςt. | (5.7) |
On the other hand, for t∈[−ρ,0], we have
E[β‖u(t,ϕ1)−u(t,ϕ2)‖2η+α‖v(t,φ1)−v(t,φ2)‖2η]=E[β‖ϕ1(t)−ϕ2(t)‖2η+α‖φ1(t)−φ2(t)‖2η]≤E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ςt, |
which along with (5.7) concludes the proof.
Lemma 5.2. Suppose (2.1)–(2.8) and (5.1) hold, and (ϕ1,φ1),(ϕ2,φ2)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t≥ρ,
E[supt−ρ≤r≤t(‖u(r,ϕ1)−u(r,ϕ2)‖2+‖v(r,φ1)−u(r,φ2)‖2)]≤M6E[‖ϕ1−ϕ2‖2Cρ,η+‖φ1−φ2‖2Cρ,η]e−ςt, |
where M6 is a positive constant independent of (ϕ1,φ1) and (ϕ2,φ2).
Proof. By (2.17), we get that for t≥ρ and r≥t−ρ,
β‖u(r,ϕ1)−u(r,ϕ2)‖2η+α‖v(r,φ1)−v(r,φ2)‖2η+2λα∫rt−ρ‖v(s,φ1)−v(s,φ2)‖2ηds=β‖u(t−ρ,ϕ1)−u(t−ρ,ϕ2)‖2η+α‖v(t−ρ,φ1)−v(t−ρ,φ2)‖2η+2β∫rt−ρ(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+2β∫rt−ρ(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds+β∞∑j=1∫rt−ρ‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds+α∞∑j=1∫rt−ρ‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds+2β∞∑j=1∫rt−ρ(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)+2α∞∑j=1∫rt−ρ(hj,v(s,φ1)−v(s,φ2))ηdWj(s), | (5.8) |
where
gj=gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2)), |
and
hj=hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2)). |
By (5.8), we get that for all t≥ρ,
E[βsupt−ρ≤r≤t‖u(r,ϕ1)−u(r,ϕ2)‖2η+αsupt−ρ≤r≤t‖v(r,φ1)−v(r,φ2)‖2η]≤E[β‖u(t−ρ,ϕ1)−u(t−ρ,ϕ2)‖2η+α‖v(t−ρ,φ1)−v(t−ρ,φ2)‖2η]+2βE[∫tt−ρ|(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η|ds]+2βE[supt−ρ≤r≤t∫rt−ρ(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds]+βE[∞∑j=1∫tt−ρ‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2ηds]+αE[∞∑j=1∫tt−ρ‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2ηds]+2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]. | (5.9) |
By Lemma 5.1, we see that for all t≥ρ,
E[β‖u(t−ρ,ϕ1)−u(t−ρ,ϕ2)‖2η+α‖v(t−ρ,φ1)−v(t−ρ,φ2)‖2η]≤(1+2ρL2)E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−ρ). | (5.10) |
Similar to (2.18) and (2.19), we obtain
2βE[∫tt−ρ|(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η|ds]≤2β˜α∫tt−ρ‖u(s,ϕ1)−u(s,ϕ2)‖2ηds, |
which along with Lemma 5.1 implies that
2βE[∫tt−ρ|(A(u(s,ϕ1)−u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))η|ds]≤2˜α(1+2ρL2)ςE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−ρ). | (5.11) |
By (2.9) and (5.1), we have
2βE[supt−ρ≤r≤t∫rt−ρ(f(u(s,ϕ1))−f(u(s,ϕ2)),u(s,ϕ1)−u(s,ϕ2))ηds]≤0. | (5.12) |
By (2.12) and Lemma 5.1 we get
βE[∞∑j=1∫tt−ρ‖gj(u(s,ϕ1),u(s−ρ,ϕ1))−gj(u(s,ϕ2),u(s−ρ,ϕ2))‖2η]ds+αE[∞∑j=1∫tt−ρ‖hj(v(s,φ1),v(s−ρ,φ1))−hj(v(s,φ2),v(s−ρ,φ2))‖2η]ds≤4βL2∫tt−ρE[‖u(s,ϕ1)−u(s,ϕ2)‖2η]ds+2βL2∫t−ρt−2ρE[‖u(s,ϕ1)−u(s,ϕ2)‖2η]ds+4αL2∫tt−ρE[‖v(s,φ1)−v(s,φ2)‖2η]ds+2αL2∫t−ρt−2ρE[‖v(s,φ1)−v(s,φ2)‖2η]ds≤4L2(1+2ρL2)ςE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−ρ)+2L2(1+2ρL2)ςE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−2ρ)≤6L2(1+2ρL2)ςE[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−ρ). | (5.13) |
For the last two terms of (5.9), by the BDG inequality and (5.13), we get
2βE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(gj,u(s,ϕ1)−u(s,ϕ2))ηdWj(s)|]+2αE[supt−ρ≤r≤t|∞∑j=1∫rt−ρ(hj,v(s,φ1)−v(s,φ2))ηdWj(s)|]≤C13βE[(∫tt−ρ∞∑j=1|(gj,u(s,ϕ1)−u(s,ϕ2))η|2ds)12]+C13αE[(∫tt−ρ∞∑j=1|(hj,v(s,φ1)−v(s,φ2))η|2ds)12]≤C13βE[supt−ρ≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖η(∫tt−ρ∞∑j=1‖gj‖2ηds)12]+C13αE[supt−ρ≤s≤t‖v(s,φ1)−v(s,φ2)‖η(∫tt−ρ∞∑j=1‖hj‖2ηds)12]≤β2E[supt−ρ≤s≤t‖u(s,ϕ1)−u(s,ϕ2)‖2η]+β2C213E[∫tt−ρ∞∑j=1‖gj‖2ηds]+α2E[supt−ρ≤s≤t‖v(s,φ1)−v(s,φ2)‖2η+α2C213E[∫tt−ρ∞∑j=1‖hj‖2ηds]≤12E[supt−ρ≤s≤t(β‖u(s,ϕ1)−u(s,ϕ2)‖2η+α‖v(s,φ1)−v(s,φ2)‖2η)]+C14E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ς(t−ρ), | (5.14) |
where C14=3C213L2(1+2ρL2)ς. It follows from (5.9)–(5.14) that for all t≥0,
E[supt−ρ≤r≤t(β‖u(r,ϕ1)−u(r,ϕ2)‖2η+α‖v(r,φ1)−v(r,φ2)‖2η)]≤C15E[β‖ϕ1−ϕ2‖2Cρ,η+α‖φ1−φ2‖2Cρ,η]e−ςt, |
where C15=2((1+2ρL2)(1+2˜α+6L2ς)+C14). This completes the proof.
Theorem 5.1. Suppose (2.1)–(2.8) and (5.1) hold. Then, stochastic lattice system (2.15) has a unique invariant measure in C([−ρ,0],ℓ2η×ℓ2η).
Proof. For any (ϕ1,φ1),(ϕ2,φ2)∈L2(Ω,C([−ρ,0],ℓ2η×ℓ2η)), by Lemma 5.2, we see that the segments of the solutions (ut(ϕ1),vt(φ1)) and (ut(ϕ2),vt(φ2)) of (2.15) satisfy, for all t≥ρ,
E[‖ut(ϕ1)−ut(ϕ2)‖2Cρ,η+‖vt(φ1)−vt(φ2)‖2Cρ,η]≤M7E[‖ϕ1−ϕ2‖2Cρ,η+‖φ1−φ2‖2Cρ,η]e−ςt, |
which along with the standard arguments (see, e.g., [50]) implies the uniqueness of invariant measures for the lattice system (2.15). This completes the proof.
The current focus lies in the theoretical proof of the well-posedness of solutions and the existence and uniqueness of invariant measures for these stochastic delay lattice systems. In the future, our research group will investigate the convergence and approximation of invariant measures for the systems under noise perturbation, as well as explore large deviation principles for the systems. Additionally, we will employ finite-dimensional numerical approximation methods to address both the existence of numerical solutions and numerical invariant measures.
Xintao Li and Lianbing She: Conceptualization, Writing original draft and writing-review and editing; Rongrui Lin: Writing original draft and writing-review and editing. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the Scientific Research and Cultivation Project of Liupanshui Normal University (LPSSY2023KJYBPY14).
The authors declare no conflict of interest.
[1] |
S. F. Mingaleev, P. L. Christiansen, Y. B. Gaidideiet, M. Johansson, K. Ø. Rasmussen, Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25 (1999), 41–63. https://doi.org/10.1023/A:1005152704984 doi: 10.1023/A:1005152704984
![]() |
[2] |
J. M. Pereira, Global attractor for a generalized discrete nonlinear Schrödinger Equation, Acta. Appl. Math., 134 (2014), 173–183. https://doi.org/10.1007/s10440-014-9877-0 doi: 10.1007/s10440-014-9877-0
![]() |
[3] |
J. M. Pereira, Pullback attractor for a nonlocal discrete nonlinear Schrödinger equation with delays, Electron. J. Qual. Theo., 93 (2021), 1–18. https://doi.org/10.14232/ejqtde.2021.1.93 doi: 10.14232/ejqtde.2021.1.93
![]() |
[4] |
Y. Chen, X. Wang, Random attractors for stochastic discrete complex Ginzburg-Landau equations with long-range interactions, J. Math. Phys., 63 (2022), 032701. https://doi.org/10.1063/5.0077971 doi: 10.1063/5.0077971
![]() |
[5] |
Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1092–1115. https://doi.org/10.3934/dcdsb.2022113 doi: 10.3934/dcdsb.2022113
![]() |
[6] |
C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 286 (1984), 431–469. https://doi.org/10.2307/1999806 doi: 10.2307/1999806
![]() |
[7] |
B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal-Theor., 70 (2009), 3799–3815. https://doi.org/10.1016/j.na.2008.07.011 doi: 10.1016/j.na.2008.07.011
![]() |
[8] | A. Adili, B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. Special, (2013), 1–10. https://doi.org/10.3934/proc.2013.2013.1 |
[9] |
A. Adili, B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin, Dyn. Syst. Ser. B, 18 (2013), 643–666. https://doi.org/10.3934/dcdsb.2013.18.643 doi: 10.3934/dcdsb.2013.18.643
![]() |
[10] |
A. Gu, B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689–1720. https://doi.org/10.3934/dcdsb.2018072 doi: 10.3934/dcdsb.2018072
![]() |
[11] |
Z. Wang, S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwan. J. Math., 20 (2016), 589–616. https://doi.org/10.11650/tjm.20.2016.6699 doi: 10.11650/tjm.20.2016.6699
![]() |
[12] |
S. Yang, Y. Li, T. Caraballo, Dynamical stability of random delayed FitzHugh-Nagumo lattice systems driven by nonlinear Wong-Zakai noise, J. Math. Phys., 63 (2022), 111512. https://doi.org/10.1063/5.0125383 doi: 10.1063/5.0125383
![]() |
[13] |
C. E. Elmer, E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153–1174. https://doi.org/10.1137/S003613990343687 doi: 10.1137/S003613990343687
![]() |
[14] |
E. Van Vleck, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317–336. https://doi.org/10.1016/j.physd.2005.10.006 doi: 10.1016/j.physd.2005.10.006
![]() |
[15] | Z. Chen, D. Yang, S. Zhong, Limiting dynamics for stochastic FitzHugh-Nagumo lattice systems in weighted spaces, J. Dyn. Diff. Equ., 2022, 1–32. https://doi.org/10.1007/s10884-022-10145-2 |
[16] |
A. Gu, Y. R. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. https://doi.org/10.1016/j.cnsns.2014.04.005 doi: 10.1016/j.cnsns.2014.04.005
![]() |
[17] |
A. Gu, Y. Li, J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by α-stable Lévy noises, Int. J. Bifurcat. Chaos, 24 (2014), 1450123. https://doi.org/10.1142/S0218127414501235 doi: 10.1142/S0218127414501235
![]() |
[18] |
L. Xu, W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079–1103. https://doi.org/10.11650/twjm/1500406680 doi: 10.11650/twjm/1500406680
![]() |
[19] |
Z. Chen, X. Li, B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3235–3269. https://doi.org/10.3934/dcdsb.2020226 doi: 10.3934/dcdsb.2020226
![]() |
[20] |
D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equ., 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
![]() |
[21] |
Y. Lin, D. Li, Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems, Discrete Contin. Dynam. Syst. Ser. B, 27 (2022), 7561–7590. https://doi.org/10.3934/dcdsb.2022054 doi: 10.3934/dcdsb.2022054
![]() |
[22] |
W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702. https://doi.org/10.1063/1.3319566 doi: 10.1063/1.3319566
![]() |
[23] |
D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 24 (2018), 872–897. https://doi.org/10.1080/10236198.2018.1437913 doi: 10.1080/10236198.2018.1437913
![]() |
[24] |
D. Li, L. Shi, X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5121–5148. https://doi.org/10.3934/dcdsb.2019046 doi: 10.3934/dcdsb.2019046
![]() |
[25] |
F. Wang, T. Caraballo, Y. Li, R. Wang, Periodic measures for the stochastic delay modified Swift-Hohenberg lattice systems, Commun. Nonlinear Sci., 125 (2023), 107341. https://doi.org/10.1016/j.cnsns.2023.107341 doi: 10.1016/j.cnsns.2023.107341
![]() |
[26] |
P. E. Kloeden, T. Lorenz, Mean-quare random dynamical systems, J. Differ. Equations, 253 (2012), 1422–1438. https://doi.org/10.1016/j.jde.2012.05.016 doi: 10.1016/j.jde.2012.05.016
![]() |
[27] |
B. Wang, Dynamics of stochastic reaction difusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104–132. https://doi.org/10.1016/j.jmaa.2019.04.015 doi: 10.1016/j.jmaa.2019.04.015
![]() |
[28] |
B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spacs, J. Dyn. Differ. Equ., 31 (2019), 277–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
![]() |
[29] |
S. Yang, Y. Li, Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise, J. Math. Phys., 62 (2021), 051510. https://doi.org/10.1063/5.0037929 doi: 10.1063/5.0037929
![]() |
[30] |
A. Gu, Weak pullback mean random attractors for stochastic evolution equations and applications, Stoch. Dynam., 22 (2022), 1–6. https://doi.org/10.1142/S0219493722400019 doi: 10.1142/S0219493722400019
![]() |
[31] |
A. Gu, Weak pullback mean random attractors for non-autonomous p-Laplacian equations, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3863–3878. https://doi.org/10.3934/dcdsb.2020266 doi: 10.3934/dcdsb.2020266
![]() |
[32] |
R. Liang, P. Chen, Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 28 (2023), 4993–5011. https://doi.org/10.3934/dcdsb.2023050 doi: 10.3934/dcdsb.2023050
![]() |
[33] |
B. Wang, R. Wang, Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213–237. https://doi.org/10.1080/07362994.2019.1679646 doi: 10.1080/07362994.2019.1679646
![]() |
[34] |
J. Shu, L. Zhang, X. Huang, J. Zhang, Dynamics of stochastic Ginzburg-Landau equations driven by nonlinear noise, Dynam. Syst., 37 (2022), 382–402. https://doi.org/10.1080/14689367.2022.2060066 doi: 10.1080/14689367.2022.2060066
![]() |
[35] |
R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
![]() |
[36] |
R. Wang, B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 25 (2020), 2461–2493. https://doi.org/10.3934/dcdsb.2020019 doi: 10.3934/dcdsb.2020019
![]() |
[37] |
R. Wang, Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping, J. Dynam. Differ. Equ., 33 (2021), 767–803. https://doi.org/10.1007/s10884-020-09830-x doi: 10.1007/s10884-020-09830-x
![]() |
[38] |
X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 1–31. https://doi.org/10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
![]() |
[39] |
J. Kim, On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 835–866. https://doi.org/10.3934/dcdsb.2006.6.835 doi: 10.3934/dcdsb.2006.6.835
![]() |
[40] |
J. Kim, On the stochastic Benjamin-Ono equation, J. Differ. Equations, 228 (2006), 737–768. https://doi.org/10.1016/j.jde.2005.11.005 doi: 10.1016/j.jde.2005.11.005
![]() |
[41] |
Z. Brzeźniak, E. Motyl, M. Ondrejat, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Probab., 45 (2017), 3145–3201. https://doi.org/10.1214/16-AOP1133 doi: 10.1214/16-AOP1133
![]() |
[42] |
Z. Brzeźniak, M. Ondrejat, J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equations, 260 (2016), 4157–4179. https://doi.org/10.1016/j.jde.2015.11.007 doi: 10.1016/j.jde.2015.11.007
![]() |
[43] |
J. Kim, Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55 (2006), 687–717. https://doi.org/10.1512/iumj.2006.55.2701 doi: 10.1512/iumj.2006.55.2701
![]() |
[44] |
J. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differ. Eq., 5 (2004), 1–30. https://doi.org/10.1023/B:DISC.0000005011.93152.d8 doi: 10.1023/B:DISC.0000005011.93152.d8
![]() |
[45] |
C. Sun, C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal-Theor., 63 (2005), 49–65. https://doi.org/10.1016/j.na.2005.04.034 doi: 10.1016/j.na.2005.04.034
![]() |
[46] |
B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
![]() |
[47] |
P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. https://doi.org/10.1016/j.jde.2008.05.017 doi: 10.1016/j.jde.2008.05.017
![]() |
[48] |
H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 39 (2019), 683–706. https://doi.org/10.3934/dcds.2019028 doi: 10.3934/dcds.2019028
![]() |
[49] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511666223 |
[50] |
F. Wu, G. Yin, H. Mei, Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differ. Equations, 262 (2017), 1226–1252. https://doi.org/10.1016/j.jde.2016.10.006 doi: 10.1016/j.jde.2016.10.006
![]() |