Processing math: 100%
Research article Special Issues

Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space

  • The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.

    Citation: Xintao Li, Lianbing She, Rongrui Lin. Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space[J]. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918

    Related Papers:

    [1] Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083
    [2] Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150
    [3] Canhong Long, Zuozhi Liu, Can Ma . Synchronization dynamics in fractional-order FitzHugh–Nagumo neural networks with time-delayed coupling. AIMS Mathematics, 2025, 10(4): 8673-8687. doi: 10.3934/math.2025397
    [4] Shang Wu, Pengfei Xu, Jianhua Huang . Invariant measure of stochastic damped Ostrovsky equation driven by pure jump noise. AIMS Mathematics, 2020, 5(6): 7145-7160. doi: 10.3934/math.2020457
    [5] Feifei Cheng, Ji Li, Qing Yu . The existence of solitary wave solutions for the neuron model with conductance-resistance symmetry. AIMS Mathematics, 2023, 8(2): 3322-3337. doi: 10.3934/math.2023171
    [6] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057
    [7] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [8] Zongning Zhang, Chunguang Li, Jianqiang Dong . A class of lattice Boltzmann models for the Burgers equation with variable coefficient in space and time. AIMS Mathematics, 2022, 7(3): 4502-4516. doi: 10.3934/math.2022251
    [9] Soo-Oh Yang, Jea-Hyun Park . Analysis for the hierarchical architecture of the heterogeneous FitzHugh-Nagumo network inducing synchronization. AIMS Mathematics, 2023, 8(9): 22385-22410. doi: 10.3934/math.20231142
    [10] Yameng Duan, Wieslaw Krawcewicz, Huafeng Xiao . Periodic solutions in reversible systems in second order systems with distributed delays. AIMS Mathematics, 2024, 9(4): 8461-8475. doi: 10.3934/math.2024411
  • The focus of this paper lies in exploring the limiting dynamics of stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions and nonlinear noise in weighted space. To begin, we established the well-posedness of solutions to these stochastic delay lattice systems and subsequently proved the existence and uniqueness of invariant measures.



    The objective of this paper is to investigate the existence and uniqueness of invariant measures for the stochastic FitzHugh-Nagumo delay lattice system with long-range interactions on the integer set Z:

    {dun(t)=(mZJ(nm)um(t)αvn(t)+fn(un(t))+an)dt+j=1(gj,n(un(t),un(tρ))+bj,n)dWj(t),dvn(t)=(βun(t)λvn(t)+cn)dt+j=1(hj,n(vn(t),vn(tρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s[ρ,0], (1.1)

    where un,vnR, t>0, α,ρ,β,λ>0, the coupling parameters J(m) are real numbers satisfying J(m)=J(m) for all positive integer m, a=(an)nZ, c=(cn)nZ, b=(bj,n)jN,nZ, and l=(lj,n)jN,nZ are given deterministic sequences in 2η, fn,gj,n,hj,n are Lipschitz continuous functions for all jN,nZ, and (Wj(t))jN is a sequence of independent two-sided real-valued Wiener processes defined on a complete filtered probability space (Ω,F,{F}tR,P).

    The subsequent changes should be observed while considering the transformation of J(m),

    J(m)=2kj=0(2kj)(1)jδm,jk,

    where k is any positive integer and δm,n is the Kronecker's delta. Then, lattice system (1.1) can be changed into

    {dun(t)=(kun(t)αvn(t)+fn(un(t))+an)dt+j=1(gj,n(un(t),un(tρ))+bj,n)dWj(t),dvn(t)=(βun(t)λvn(t)+cn)dt+j=1(hj,n(vn(t),vn(tρ))+lj,n)dWj(t),un(s)=ϕn(s),vn(s)=φn(s),s[ρ,0],

    where t>0,nZ, k=,k times, and is defined by un=un+1+un12un.

    The emergence of lattice equations from spatial discretization of partial differential equations is widely acknowledged. Lattice systems exhibiting long-range interactions have garnered significant attention in the literature. Of those, the dynamics of the DNA molecule were described by Schrödinger lattice systems in [1]. Subsequently, Pereira investigated the asymptotic behavior of Schrödinger lattice systems in [2] and delay lattice systems in [3], respectively. Recently, Chen et al. considered the long-term dynamics of stochastic complex Ginzburg-Landau systems in their study [4], and Wong-Zakai approximations of stochastic lattice systems in another study [5].

    The FitzHugh-Nagumo systems were used to describe the transmission of signals across axons in neurobiology in [6]. The asymptotic behavior of FitzHugh-Nagumo systems were studied in both deterministic [7] and stochastic scenarios [8,9,10,11,12]. The FitzHugh-Nagumo lattice systems were employed to stimulate the propagation of action potentials in myelinated nerve axons in [13]. The attractors of FitzHugh-Nagumo lattice systems were investigated in the deterministic case by [7,14], and in the stochastic case by [11,12,15,16,17,18]. Among these studies, Wang et al. [11] derived the existence and upper semi-continuity of random attractors for FitzHugh-Nagumo lattice systems in 2×2, while Chen et al. [15] obtained the existence and uniqueness of weak pullback mean random attractors for FitzHugh-Nagumo lattice systems with nonlinear noises in weighted spaces 2σ×2σ.

    Furthermore, time delays are a common occurrence in various systems, and can lead to instability, oscillation, and other changes in dynamical systems. Due to their practical and theoretical significance, there has been an increasing emphasis on the study of time-delay systems. Recent studies have delved into the exploration of random attractors for stochastic lattice systems featuring fixed delays in [18,19,20,21,22]. Additionally, investigations have also been carried out concerning systems with varying delays over time as documented in [3,12,23,24,25].

    Currently, there has been a significant amount of research conducted on the dynamical behavior of differential equations driven by linear noise. In order to effectively handle stochastic systems with nonlinear noise, Kloeden[26] and Wang[27,28] introduced the concept of weak pullback mean random attractors. The work described above has subsequently been widely applied in numerous studies on stochastic systems by a multitude of scholars in [15,16,17,19,20,21,25,27,28,29,30,31,32,33,34,35,36,37,38]. Among them, Wang et al [25] studied the stochastic delay modified Swift-Hohenberg lattice systems, as well as Chen et al.[19] and Li et al.[20] considered the stochastic delay lattice systems. However, to the best of our knowledge, the current state of literature on the invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions driven by nonlinear noise in weighted space is regrettably scarce.

    The lattice system (1.1) is defined on Z, which represents a spatially discrete analogue to stochastic partial differential equations (PDEs) defined on R. Proving the existence of invariant measures for PDEs on unbounded domains poses a major challenge, primarily due to establishing the tightness of distribution laws of solutions caused by non-compactness in usual Sobolev embeddings on unbounded domains. Various approaches have been developed in literature to address the tightness of solution distributions for PDEs on unbounded domains, such as using weighted spaces in [39,40], weak Feller property of solutions in [41,42], and cut-off techniques in [43,44]. In this paper, the cut-off method will be employed to establish the existence of invariant measures for the stochastic lattice system (1.1) in C([ρ,0],2η×2η). Specifically, we will demonstrate that when time is sufficiently large, the mean square of solution tails in C([ρ,0],2η×2η) becomes uniformly small; based on this result, we can establish tightness in distribution laws for solutions in C([ρ,0],2η×2η). The tail-estimates method has previously been used to prove existence of global attractors for deterministic PDEs [45,46] and stochastic PDEs with additive or linear multiplicative noise in [47,48]. In this paper, we will apply the tail-estimates approach to handle nonlinear noise involved in (1.1) in C([ρ,0],2η×2η). For further information regarding existence of invariant measures for stochastic PDEs defined within bounded domains, please refer to [49] and its references.

    The structure of this paper is organized as follows: Section 2 introduces the notations and discusses the well-posedness of lattice system (1.1). The subsequent section establishes necessary uniform estimates of solutions, which play a crucial role in demonstrating the main results in the following section. Sections 4 and 5 focus on establishing the existence and uniqueness of invariant measures for lattice system (1.1). Finally, we provide a summary and closing remarks in the last section.

    In this section, we will investigate the well-posedness of the stochastic Fitzhugh-Nagumo delay lattice system (1.1) in weighted space 2η×2η, where 2η is defined by

    2η={u=(un)nZ|unR,nZηn|un|2<}.

    2η is a Hilbert space with the inner product and norm given by

    (u,v)η=nZηnunvn,u2η=(u,u)η,u,v2η.

    We further assume that weights η=(ηn)nZ satisfy the conditions

    ηn>0,nZ,nZηn<, (2.1)

    and

    αm:=supnZηn+m+ηnη1/2n+mη1/2n<,mN. (2.2)

    To get the existence of invariant measures for lattice system (1.1) in 2η, the interaction J(m) should decrease at a sufficiently rapid rate such that

    ˜α:=m=0αm|J(m)|<. (2.3)

    For sequences a=(an)nZ, c=(cn)nZ, b=(bj,n)jN,nZ, and l=(lj,n)jN,nZ in lattice system (1.1), we assume

    a2η=nZηn|an|2<,b2η=jNnZηn|bj,n|2<,c2η=nZηn|cn|2<,l2η=jNnZηn|lj,n|2<. (2.4)

    For the nonlinear term fn in lattice system (1.1), we assume that fn is a smooth function satisfying that there exists κR such that for all zR and nZ,

    fn(0)=0,fn(z)κ. (2.5)

    Moreover, for each nZ and zR, we assume that there are positive constants ιn and δ such that

    fn(z)zδ|z|2+ιn, (2.6)

    where ι=(ιn)nZ belongs to 1η and its norm is denoted by ι1,η.

    For every jN and nZ, we assume that gj,n,hj,n:RR is globally Lipschitz continuous; that is, there is a constant L>0 such that for all z1,z2,z1,z2R,

    |gj,n(z1,z2)gj,n(z1,z2)||hj,n(z1,z2)hj,n(z1,z2)|L(|z1z1|+|z2z2|). (2.7)

    We further assume that for each z,zR, jN, and nZ,

    |gj,n(z,z)||hj,n(z,z)|γj,n(1+|z|+|z|), (2.8)

    where γj,n>0, γ2=jNnZ|γj,n|2<, and γ2η=jNnZηn|γj,n|2<.

    For any u=(un)nZ2η and v=(vn)nZ2η, denote by f(u)=(fn(un))nZ and f(v)=(fn(vn))nZ. By (2.5), we get

    (f(u)f(v),uv)η=nZηn(fn(un)fn(vn))(unvn)=nZηnfn(ξn)|unvn|2κuv2η, (2.9)

    where ξn=θnun+(1θn)vn for some θn(0,1). Moreover, we can obtain that f is locally Lipschitz continuous from 2η to 2η; that is, there exists LC>0 such that for any u,v2η with u2ηC and v2ηC,

    f(u)f(v)2ηL2Cuv2η. (2.10)

    For each u1=(u1n)nZ,u2=(u2n)nZ,v1=(v1n)nZ,v2=(v2n)nZ2η, and jN, denote by gj(u1,v1)=(gj,n(u1n,v1n))nZ and hj(u1,v1)=(hj,n(u1n,v1n))nZ. It follows from (2.7) and (2.8) that

    jNgj(u1,v1)2ηjNhj(u1,v1)2η2γ2η+4γ2(u12η+v12η) (2.11)

    and

    jNgj(u1,v1)gj(u2,v2)2ηjNhj(u1,v1)gj(u2,v2)2η2L2(u1u22η+v1v22η). (2.12)

    The system (1.1) can be reformulated as an abstract system in 2, for u=(un)nZ2, and we set

    (Au)n=mZJ(nm)um. (2.13)

    By Lemma 3.1 of [4], we have

    Au22|J(0)|2u2+8(m=1|J(m)|)2u2. (2.14)

    By the above notation, system (1.1) can be rewritten as follows: For all t>0,

    {du(t)=(Au(t)αv(t)+f(u(t))+a)dt+j=1(gj(u(t),u(tρ))+bj)dWj(t),dv(t)=(βu(t)λv(t)+c)dt+j=1(hj(v(t),v(tρ))+lj)dWj(t),u(s)=ϕ(s),v(s)=φ(s),s[ρ,0]. (2.15)

    Let (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)) be F0 -measurable. Then, a continuous 2η×2η -valued Ft -adapted stochastic process (u(t),v(t)) is called a solution of stochastic lattice system (2.15) if (u0,v0)=(ϕ,φ), (u(t),v(t))L2(Ω,C([ρ,T],2η×2η)) for all T>ρ, t0 and for almost all ωΩ,

    {u(t)=ϕ(0)+t0(Au(r)αv(r)+f(u(r))+a)dr+j=1t0(gj(u(r),u(rρ))+bj)dWj(r),v(t)=φ(0)+t0(βu(r)λv(r)+c)dr+j=1t0(hj(v(r),v(rρ))+lj)dWj(r).

    By (2.1)–(2.8) and the theory of the functional differential equation, we can get that for any (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), stochastic lattice system (2.15) has a solution (u(t),v(t))L2(Ω,C([ρ,T],2η×2η)) for every Tρ. Moreover, this solution is unique if (u(t),v(t)) is any other solution of system (2.15), then

    P({(u(t),v(t))=(u(t),v(t))for alltρ})=1.

    Actually, the stochastic lattice system (2.15) has a unique solution defined for t[t0ρ,), regardless of any initial time t00 and any Ft0 -measurable (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)).

    Hereafter, for tR, (ut,vt) is defined by

    (ut,vt)(s)=(un,t(s),vn,t(s))nZ=(un(t+s),vn(t+s))nZ=(u(t+s),v(t+s)),s[ρ,0],

    and let Cρ,η=C([ρ,0],2η) with the norm χρ,η=supρs0χ(s)η, χCρ,η.

    The establishment of Lipschitz continuity for solutions to stochastic lattice system (2.15) in relation to initial data will now be undertaken, which shall subsequently be employed.

    Lemma 2.1. Suppose (2.1)–(2.8) hold and (ϕ1,φ1),(ϕ2,φ2)L2(Ω,C([ρ,0],2η×2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of stochastic lattice system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any t0,

    E[supρrtu(r,ϕ1)u(r,ϕ2)2η+supρrtv(r,φ1)v(r,φ2)2η]M1(1+eM1t)E[ϕ1ϕ22Cρ,η+φ1φ22Cρ,η],

    where M1 is a positive constant independent of (ϕ1,φ1), (ϕ2,φ2), and t.

    Proof. By (2.15), we get that for all t0,

    d(u(t,ϕ1)u(t,ϕ2))=A(u(t,ϕ1)u(t,ϕ2))dtα(v(t,φ1)v(t,φ2))dt+(f(u(t,ϕ1))f(u(t,ϕ2)))dt+j=1(gj(u(t,ϕ1),u(tρ,ϕ1))gj(u(t,ϕ2),u(tρ,ϕ2)))dWj(t), (2.16)

    and

    d(v(t,φ1)v(t,φ2))=β(u(t,ϕ1)u(t,ϕ2))dtλ(v(t,φ1)v(t,φ2))dt+j=1(hj(v(t,φ1),v(tρ,φ1))hj(v(t,φ2),v(tρ,φ2)))dWj(t),

    which along with (2.16) and Itô's formula shows that for all t0,

    12(βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η)=12(βϕ1(0)ϕ2(0)2η+αφ1(0)φ2(0)2η)λαt0v(s,φ1)v(s,φ2)2ηds+βt0(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+βt0(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+β2j=1t0gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds+α2j=1t0hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds+βj=1t0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)+αj=1t0(hj,v(s,φ1)v(s,φ2))ηdWj(s), (2.17)

    where

    gj=gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))

    and

    hj=hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2)).

    By (2.13) and the fact of J(m)=J(m), we have

    (A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZηnm=1J(m)(un(s,ϕ1)un(s,ϕ2))×(unm(s,ϕ1)unm(s,ϕ2)+un+m(s,ϕ1)un+m(s,ϕ2))=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZm=1J(m)ηn+m(un+m(s,ϕ1)un+m(s,ϕ2))(un(s,ϕ1)un(s,ϕ2))+nZm=1J(m)ηn(un(s,ϕ1)un(s,ϕ2))(un+m(s,ϕ1)un+m(s,ϕ2))=J(0)u(s,ϕ1)u(s,ϕ2)2η+nZm=1J(m)(ηn+ηn+m)(un(s,ϕ1)un(s,ϕ2))(un+m(s,ϕ1)un+m(s,ϕ2)), (2.18)

    which along with (2.2) and (2.3) implies that

    βt0(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηdsβJ(0)t0u(s,ϕ1)u(s,ϕ2)2ηds+βt0nZm=1|J(m)|αmη12nη12n+m|un(s,ϕ1)un(s,ϕ2)||un+m(s,ϕ1)un+m(s,ϕ2)|dsβ˜αt0u(s,ϕ1)u(s,ϕ2)2ηds. (2.19)

    By (2.9), we obtain

    βt0(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηdsβκt0u(s,ϕ1)u(s,ϕ2)2ηds. (2.20)

    By (2.12), we get

    β2j=1t0gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds+α2j=1t0hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds2βL2t0u(s,ϕ1)u(s,ϕ2)2ηds+βL20ρϕ1(s)ϕ2(s)2ηds+2αL2t0v(s,φ1)v(s,φ2)2ηds+αL20ρφ1(s)φ2(s)2ηds. (2.21)

    It follows from (2.17)–(2.21) that for all t0,

    βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2ηβϕ1(0)ϕ2(0)2η+αφ1(0)φ2(0)2η+2βL20ρϕ1(s)ϕ2(s)2ηds+2αL20ρφ1(s)φ2(s)2ηds+4αL2t0v(s,φ1)v(s,φ2)2ηds+2β(˜α+|κ|+2L2)t0u(s,ϕ1)u(s,ϕ2)2ηds+2β|j=1t0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|+2α|j=1t0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|,

    which implies that for all t0,

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η](1+2ρL2)(E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η])+2β(˜α+|κ|+2L2)t0E[sup0rsu(r,ϕ1)u(r,ϕ2)2η]ds+4αL2t0E[sup0rsv(r,φ1)v(r,φ2)2η]ds+2βE[sup0rt|j=1r0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]+2αE[sup0rt|j=1r0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]. (2.22)

    For the last two terms of (2.22), by (2.12), the Burkholder-Davis-Gundy (BDG) inequality, and the Minkowski inequality, we have

    2βE[sup0rt|j=1r0(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]βC12E[(t0j=1gj2ηu(s,ϕ1)u(s,ϕ2)2ηds)12]βC12E[sup0stu(s,ϕ1)u(s,ϕ2)η×(t0j=1gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds)12]βC1LE[sup0stu(s,ϕ1)u(s,ϕ2)η(t0u(s,ϕ1)u(s,ϕ2)2ηds)12]+βC1LE[sup0stu(s,ϕ1)u(s,ϕ2)η(t0u(sρ,ϕ1)u(sρ,ϕ2)2ηds)12]β2E[sup0rtu(r,ϕ1)u(r,ϕ2)2η]+2βC21L2t0E[sup0rsu(r,ϕ1)u(r,ϕ2)2η]ds+ρβC21L2E[ϕ1ϕ22Cρ,η], (2.23)

    and

    2αE[sup0rt|j=1r0(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]α2E[sup0rtv(r,φ1)v(r,φ2)2η]+2αC21L2t0E[sup0rsv(r,φ1)v(r,φ2)2η]ds+ραC21L2E[φ1φ22Cρ,η],

    which along with (2.22) and (2.23) shows that

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η]C2E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]+C3t0E[βsup0rsu(r,ϕ1)u(r,ϕ2)2η+αsup0rsv(r,φ1)v(r,φ2)2η]ds, (2.24)

    where C2=2(1+2ρL2+ρC21L2), C3=4(˜α+2L2+|κ|+C21L2). It follows from (2.24) and the Gronwall inequality that for all t0,

    E[βsup0rtu(r,ϕ1)u(r,ϕ2)2η+αsup0rtv(r,φ1)v(r,φ2)2η]C2eC3tE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η].

    This completes the proof.

    The existence of invariant measures of the stochastic lattice system (2.15) in the subsequent analysis necessitates the fulfillment of the following inequality.

    γ2<196eρνmax{2δ4˜α27β4λ38,2λ27α4δ36}, (2.25)

    where ν>0,2δ4˜α27β4λ38>0,2λ27α4δ36>0.

    In this section, we obtain uniform estimates of the solutions to stochastic lattice system (2.15), which play a pivotal role in proving the existence of invariant measures. More specifically, we will showcase the compactness of a family of probability distributions pertaining to (ut,vt) in C([ρ,0],2η×2η). Initially, our focus lies on discussing uniform estimates of solutions to stochastic lattice system (2.15) in C([ρ,0],2η×2η) for all t0.

    Lemma 3.1. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies

    suptρE[u(t)2η+v(t)2η]M2(1+E[ϕ2Cρ,η+φ2Cρ,η]),

    where M2 is a positive constant independent of (ϕ,φ).

    Proof. By (2.15) and Itô's formula, we get that for all t0,

    {du(t)2η=2((Au(t),u(t))ηα(v(t),u(t))η+(f(u(t)),u(t))η+(a,u(t))η)dt+j=1gj(u(t),u(tρ))+bj2ηdt+2j=1(gj(u(t),u(tρ))+bj,u(t))ηdWj(t),dv(t)2η=2(β(u(t),v(t))ηλv(t)2η+(c,v(t))η)dt+j=1hj(v(t),v(tρ))+lj2ηdt+2j=1(hj(v(t),v(tρ))+lj,v(t))ηdWj(t). (3.1)

    Let ν be a positive constant which will be specified later. We get from (3.1) that for all t0,

    eνt(βu(t)2η+αv(t)2η)νβt0eνsu(s)2ηds(ν2λ)αt0eνsv(s)2ηds=βϕ(0)2η+αφ(0)2η+2βt0eνs(Au(s),u(s))ηds+2βt0eνs(a,u(s))ηds+2βt0eνs(f(u(s)),u(s))ηds+βj=1t0eνsgj(u(s),u(sρ))+bj2ηds+2αt0eνs(c,v(s))ηds+αj=1t0eνshj(v(s),v(sρ))+lj2ηds+2βj=1t0eνs(gj(u(s),u(sρ))+bj,u(s))ηdWj(s)+2αj=1t0eνs(hj(v(s),v(sρ))+lj,v(s))ηdWj(s). (3.2)

    Taking the expectation, we obtain that for t0,

    eνtE[βu(t)2η+αv(t)2η]νβt0eνsE[u(s)2η]ds(ν2λ)αt0eνsE[v(s)2η]ds=E[βϕ(0)2η+αφ(0)2η]+2βt0eνsE[(Au(s),u(s))η]ds+2βt0eνsE[(a,u(s))η]ds+2βt0eνsE[(f(u(s)),u(s))η]ds+2αt0eνsE[(c,v(s))η]ds+βj=1t0eνsE[gj(u(s),u(sρ))+bj2η]ds+αj=1t0eνsE[hj(v(s),v(sρ))+lj2η]ds. (3.3)

    Similar to (2.18) and (2.19), we get

    2βt0eνsE[(Au(s),u(s))η]ds2β˜αt0eνsE[u(s)2η]ds. (3.4)

    By (2.6), we have

    2βt0eνsE[(f(u(s)),u(s))η]ds2βδt0eνsE[u(s)2η]ds+2βι1,ηνeνt. (3.5)

    Note that

    2βt0eνsE[(a,u(s))η]ds+2αt0eνsE[(c,v(s))η]dsβδt0eνsE[u(s)2η]ds+λαt0eνsE[v(s)2η]ds+βδνa2ηeνt+αλνc2ηeνt. (3.6)

    By (2.11), we obtain

    βj=1t0eνsE[gj(u(s),u(sρ))+bj2η]ds2βj=1t0eνsE[gj(u(s),u(sρ))2η]ds+2βj=1t0eνsE[bj2η]ds8βγ2t0eνsE[u(s)2η+u(sρ)2η]ds+4βνγ2ηeνt+2βνb2ηeνt8βρeρνγ2E[ϕ2Cρ,η]+16βeρνγ2t0eνsE[u(s)2η]ds+4βνγ2ηeνt+2βνb2ηeνt, (3.7)

    and

    αj=1t0eνsE[hj(v(s),v(sρ))+lj2η]ds8αρeρνγ2E[φ2Cρ,η]+16αeρνγ2t0eνsE[v(s)2η]ds+4ανγ2ηeνt+2ανl2ηeνt. (3.8)

    For t0, it follows from (3.3)–(3.8) that

    eνtE[βu(t)2η+αv(t)2η](1+8ρeρνγ2)E[βϕ2Cρ,η+αφ2Cρ,η]+eνtν(4(β+α)γ2η+βδa2η+αλc2η+2βb2η+2αl2η+2βι1,η)+β(νδ+2˜α+16eρνγ2)t0eνsE[u(s)2η]ds+α(νλ+16eρνγ2)t0eνsE[v(s)2η]ds. (3.9)

    For t0, by (2.25) and (3.9), we get that there exists ν1>0 such that for all ν(0,ν1),

    E[βu(t)2η+αv(t)2η](1+8ρeρνγ2)E[βϕ2Cρ,η+αφ2Cρ,η]eνt+1ν(4(β+α)γ2η+βδa2η+αλc2η+2βb2η+2αl2η+2βι1,η). (3.10)

    Note that

    supρt0E[βu(t)2η+αv(t)2η]E[βϕ2Cρ,η+αφ2Cρ,η],

    which along with (3.10) implies the desired result.

    Lemma 3.2. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L4(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies

    suptρE[u(t)4η+v(t)4η]M3(1+E[ϕ4Cρ,η+φ4Cρ,η]),

    where M3 is a positive constant independent of (ϕ,φ).

    Proof. Given nN, define τn by

    τn=inf{t0:u(t)η+v(t)η>n},

    and τn= if the set {t0:u(t)η+v(t)η>n}=. By (3.1) and Itô's formula, we get for all t0,

    d(u(t)4η+v(t)4η)+4λv(t)4ηdt4(βv(t)2ηαu(t)2η)(u(t),v(t))ηdt=4u(t)2η(Au(t),u(t))ηdt+4u(t)2η(f(u(t)),u(t))ηdt+4u(t)2η(a,u(t))ηdt+2u(t)2ηj=1gj(u(t),u(tρ))+bj2ηdt+4j=1|(gj(u(t),u(tρ))+bj,u(t))η|2dt+4u(t)2ηj=1(gj(u(t),u(tρ))+bj,u(t))ηdWj(t)+4v(t)2η(c,v(t))ηdt+2v(t)2ηj=1hj(v(t),v(tρ))+lj2ηdt+4j=1|(hj(v(t),v(tρ))+lj,v(t))η|2dt+4v(t)2ηj=1(hj(v(t),v(tρ))+lj,v(t))ηdWj(t). (3.11)

    Let ν be a positive constant which will be specified later, and we get from (3.11) that for all t0,

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)]+4λE[tτn0eνsv(s)4ηds]=E[ϕ(0)4η+φ(0)4η]+νE[tτn0eνs(u(s)4η+v(s)4η)ds]+4E[tτn0eνs(βv(s)2ηαu(s)2η)(u(s),v(s))ηds]+4E[tτn0eνsu(s)2η(A(u(s)),u(s))ηds]+4E[tτn0eνsu(s)2η(a,u(s))ηds]+4E[tτn0eνsu(s)2η(f(u(s)),u(s))ηds]+4E[tτn0eνsv(s)2η(c,v(s))ηds]+2E[tτn0eνsu(s)2ηj=1gj(u(s),u(sρ))+bj2ηds]+4E[tτn0eνsj=1|(gj(u(s),u(sρ))+bj,u(s))η|2ds]+2E[tτn0eνsv(s)2ηj=1hj(v(s),v(sρ))+lj2ηds]+4E[tτn0eνsj=1|(hj(v(s),v(sρ))+lj,v(s))η|2ds]. (3.12)

    Similar to (2.18) and (2.19), we get

    4tτn0eνsE[u(s)2η(Au(s),u(s))η]ds4˜αtτn0eνsE[u(s)4η]ds. (3.13)

    By (2.6) and Young's inequality, we have

    4E[tτn0eνsu(s)2η(f(u(s)),u(s))ηds]4E[tτn0eνsu(s)2η(δu(s)2η+ι1,η)ds]2(12δ)E[tτn0eνsu(s)4ηds]+2ι21,ηνeνt. (3.14)

    Note that

    4E[tτn0eνsu(s)2η(a,u(s))ηds]+4E[tτn0eνsv(s)2η(c,v(s))ηds]δE[tτn0eνsu(s)4ηds]+λE[tτn0eνsv(s)4ηds]+27δ3νa4ηeνt+27λ3νc4ηeνt, (3.15)

    and

    4E[tτn0eνs(βv(s)2ηαu(s)2η)(u(s),v(s))ηds]4βE[tτn0eνsv(s)3ηu(s)ηds]+4αE[tτn0eνsu(s)3ηv(s)ηds](λ+27α4δ3)E[tτn0eνsv(s)4ηds]+(δ+27β4λ3)E[tτn0eνsu(s)4ηds]. (3.16)

    By (2.8), we get

    2E[j=1tτn0eνsu(s)2ηgj(u(s),u(sρ))+bj2ηds]+4E[j=1tτn0eνs|(gj(u(s),u(sρ))+bj,u(s))η|2ds]6E[j=1tτn0eνsu(s)2ηgj(u(s),u(sρ))+bj2ηds]12E[tτn0eνsu(s)2η(j=1bj2η+2γ2η)ds]+72γ2E[tτn0eνsu(s)4ηds]+24γ2E[tτn0eνsu(sρ)4ηds](96eρνγ2+6)E[tτn0eνsu(s)4ηds]+6(b2η+2γ2η)2eνtν+24ρeρνγ2E[ϕ4Cρ,η], (3.17)

    and

    2E[j=1tτn0eνsv(s)2ηhj(v(s),v(sρ))+lj2ηds]+4E[j=1tτn0eνs|(hj(v(s),v(sρ))+lj,v(s))η|2ds](96eρνγ2+6)E[tτn0eνsv(s)4ηds]+6(l2η+2γ2η)2eνtν+24ρeρνγ2E[φ4Cρ,η]. (3.18)

    For t0, it follows from (3.12)–(3.18) that

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]+(ν2δ+4˜α+96eρνγ2+27β4λ3+8)E[tτn0eνsu(s)4ηds]+(ν2λ+96eρνγ2+27α4δ3+6)E[tτn0eνsv(s)4ηds]+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)eνtν,

    which along with (2.25) implies that there exists ν2>0 such that for all ν(0,ν2),

    E[eν(tτn)(u(tτn)4η+v(tτn)4η)](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)eνtν.

    Letting n, we obtain from the above inequality that for all t0,

    E[u(t)4η+v(t)4η](1+24ρeρνγ2)E[ϕ4Cρ,η+φ4Cρ,η]eνt+(2ι21,η+6(b2η+2γ2η)2+6(l2η+2γ2η)2+27δ3a4η+27λ3c4η)1ν. (3.19)

    Note that for all t[ρ,0],

    E[u(t)4η+v(t)4η]E[ϕ4Cρ,η+φ4Cρ,η],

    which along with (3.19) concludes the proof.

    Lemma 3.3. Suppose (2.1)–(2.8) and (2.25) hold. Let (ϕ,φ)L4(Ω,C([ρ,0],2η×2η)) be the initial data of stochastic lattice system (2.15), then the solution (u,v) of the system (2.15) satisfies, for any t>r0,

    E[u(t)u(r)4η+v(t)v(r)4η]M4(|tr|2+|tr|4),

    where M4 is a positive constant depending on (ϕ,φ), but is independent of t and r.

    Proof. For t>r0, by (2.15), we get

    {u(t)u(r)=tr(Au(s)αv(s)+f(u(s))+a)ds+j=1tr(gj(u(s),u(sρ))+bj)dWj(s),v(t)v(r)=tr(βu(s)λv(s)+c)dt+j=1tr(hj(v(s),v(tρ))+lj)dWj(s),

    which together with (2.5), (2.10), and (2.14) implies that, for t>r0,

    {u(t)u(r)ηtr(C4u(s)η+αv(s)η)ds+aη|tr|+j=1tr(gj(u(s),u(sρ))+bj)dWj(s)η,v(t)v(r)ηtr(βu(s)η+λv(s)η)ds+cη|tr|+j=1tr(hj(v(s),v(tρ))+lj)dWj(s)η, (3.20)

    where C4=2|J(0)|2+8(m=1|J(m)|)2+LC. By (3.20), we get

    E[u(t)u(r)4η+v(t)v(r)4η]64(C44+β4)E[(tru(s)ηds)4]+64(α4+λ4)E[(trv(s)ηds)4]+64(a4η+c4η)|tr|4+64E[j=1tr(gj(u(s),u(sρ))+bj)dWj(s)4η]+64E[j=1tr(hj(v(s),v(sρ))+lj)dWj(s)4η]. (3.21)

    By Schwarz's inequality and Lemma 3.2, we have

    64(C44+β4)E[(tru(s)ηds)4]+64(α4+λ4)E[(trv(s)ηds)4]64(C44+β4+α4+λ4)|tr|3trE[u(s)4η+v(s)4η]dsC5|tr|4. (3.22)

    For the last two terms of (3.21), by (2.11), Lemma 3.2, and the BDG inequality, we get

    64E[j=1tr(gj(u(s),u(sρ))+bj)dWj(s)4η]C6E[(trj=1gj(u(s),u(sρ))+bj2ηds)2]8C6(2γ2η+b2η)2|tr|2+128C6γ4E[(tr(u(s)2η+u(sρ)2η)ds)2]C7|tr|2, (3.23)

    and

    64E[j=1tr(hj(v(s),v(sρ))+lj)dWj(s)4η]C7|tr|2,

    which along with (3.21)–(3.23) implies the desired result.

    The subsequent step entails acquiring uniform estimates on the tails of solutions to stochastic lattice system (2.15), which play a pivotal role in proving the tightness of a family of solution distributions.

    Lemma 3.4. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset EL2(Ω,C([ρ,0],2η×2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies

    lim supksup(ϕ,φ)Esuptρ|n|kE[ηn(|un(t,ϕ)|2+|vn(t,φ)|2)]=0.

    Proof. Let ϑ be a smooth function which is defined on R+ such that 0ϑ(z)1 for all zR+, and

    ϑ(z)={0,0z1;1,z2.

    For kN, set ϑk=(ϑ(|n|k))nZ, ϑku=(ϑ(|n|k)un)nZ, and ϑkv=(ϑ(|n|k)vn)nZ. By (2.15), we have

    {d(ϑku(t))=(ϑkAu(t)αϑkv(t)+ϑkf(u(t))+ϑka)dt+j=1(ϑkgj(u(t),u(tρ))+ϑkbj)dWj(t),d(ϑkv(t))=(βϑku(t)λϑkv(t)+ϑkc)dt+j=1(ϑkhj(v(t),v(tρ))+ϑklj)dWj(t),

    which along with Itô's formula implies that

    d(βϑku(t)2η+αϑkv(t)2η)=2β(ϑkAu(t),ϑku(t))ηdt+2β(ϑkf(u(t)),ϑku(t))ηdt+2β(ϑka,ϑku(t))ηdt+βj=1ϑkgj(u(t),u(tρ))+ϑkbj2ηdt2λαϑkv(t)2ηdt+2α(ϑkc,ϑkv(t))ηdt+αj=1ϑkhj(v(t),v(tρ))+ϑklj2ηdt+2βj=1(ϑkgj(u(t),u(tρ))+ϑkbj,ϑku(t))ηdWj(t)+2αj=1(ϑkhj(v(t),v(tρ))+ϑklj,ϑkv(t))ηdWj(t). (3.24)

    Then, we get that for all t0,

    eνtE[βϑku(t)2η+αϑkv(t)2η]+(2λν)αt0eνsE[ϑkv(s)2η]ds=E[βϑkϕ(0)2η+αϑkφ(0)2η]+νβt0eνsE[ϑku(s)2η]ds+2βt0eνsE[(ϑkAu(s),ϑku(s))η]ds+2βt0eνsE[(ϑkf(u(s)),ϑku(s))η]ds+2βt0eνsE[(ϑka,ϑku(s))η]ds+2αt0eνsE[(ϑkc,ϑkv(s))η]ds+βj=1t0eνsE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1t0eνsE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds, (3.25)

    where ν is a positive constant which will be specified later. Furthermore, we find that

    (ϑkAu,ϑku)η=nZηnmZJ(m)ϑ2(|n|k)unmun=J(0)nZϑ2(|n|k)ηn|un|2+nZm=1J(m)ϑ2(|n|k)ηnun+mun+nZm=1J(m)ϑ2(|n+m|k)ηn+munun+m=J(0)nZϑ2(|n|k)ηn|un|2+nZm=1J(m)(ϑ2(|n+m|k)ηn+m+ϑ2(|n|k)ηn)unun+m=J(0)nZϑ2(|n|k)ηn|un|2+J1+J2, (3.26)

    where

    J1=nZm=1J(m)(ϑ2(|n+m|k)ϑ2(|n|k))ηn+munun+m,

    and

    J2=nZm=1J(m)ϑ2(|n|k)(ηn+m+ηn)unun+m.

    For any nZ and mN+, by the definition of ϑ(z) we can get that there exists a constant C8>0 such that

    |ϑ(|n+m|k)ϑ(|n|k)|mkC8. (3.27)

    By (2.2), we have

    η1/2n+mαmη1/2n,nZ,m1,

    which together with (3.27) implies that for any p>1,

    |J1|nZm=1|J(m)||ϑ2(|n+m|k)ϑ2(|n|k)|ηn+m|un+m||un|2C8kpm=1mαm|J(m)|nZη1/2n+mη1/2n|un+m||un|+m=p+1αm|J(m)|nZη1/2n+mη1/2n|un+m||un|2C8kpm=1mαm|J(m)|u2η+m=p+1αm|J(m)|u2η. (3.28)

    By (2.2), we obtain

    |J2|m=1αm|J(m)|nZϑ2(|n|k)η1/2n+mη1/2n|un+m||un|12m=1αm|J(m)|(nZϑ2(|n|k)ηn+m|un+m|2+nZϑ2(|n|k)ηn|un|2),

    which together with (3.27) and (2.3) implies that for any p>1,

    |J2|m=1αm|J(m)|nZϑ2(|n|k)ηn|un|2+12pm=1αm|J(m)|nZηn+m|ϑ2(|n+m|k)ϑ2(|n|k)||un+m|2+12m=p+1αm|J(m)|nZηn+m|ϑ2(|n+m|k)ϑ2(|n|k)||un+m|2m=1αm|J(m)|nZϑ2(|n|k)ηn|un|2+C8kpm=1mαm|J(m)|u2η+m=p+1αm|J(m)|u2η. (3.29)

    For any p>1, it follows from (3.26), (3.28), and (3.29) that

    2β|(ϑkAu,ϑku)η|2β˜αnZϑ2(|n|k)ηn|un|2+6βC8kpm=1mαm|J(m)|u2η+4βm=p+1αm|J(m)|u2η. (3.30)

    By (2.6) and Young's inequality, we have

    2βt0eνsE[(ϑkf(u(s)),ϑku(s))η]ds2βδt0eνsE[ϑku(s)2η]ds+2βeνtν|n|kηn|ιn|. (3.31)

    Note that

    2βt0eνsE[(ϑka,ϑku(s))η]ds+2αt0eνsE[(ϑkc,ϑkv(s))η]dsβδt0eνsE[ϑku(s)2η]ds+βeνtδν|n|kηn|an|2+λαt0eνsE[ϑkv(s)2η]ds+αeνtλν|n|kηn|cn|2. (3.32)

    For the last two terms of (3.25), by (2.8), we get

    βj=1t0eνsE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1t0eνsE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds2βνeνt|n|kj=1ηn(b2j,n+2γ2j,n)+8βγ2t0eνsE[ϑku(s)2η+ϑku(sρ)2η]ds+2ανeνt|n|kj=1ηn(l2j,n+2γ2j,n)+8αγ2t0eνsE[ϑkv(s)2η+ϑkv(sρ)2η]ds2βνeνt|n|kj=1ηn(b2j,n+2γ2j,n)+16βeρνγ2t0eνsE[ϑku(s)2η]ds+2ανeνt|n|kj=1ηn(l2j,n+2γ2j,n)+16αeρνγ2t0eνsE[ϑkv(s)2η]ds+8βeρνγ20ρeνsE[ϑkϕ(s)2η]ds+8αeρνγ20ρeνsE[ϑkφ(s)2η]ds. (3.33)

    Then, it follows from (3.25) and (3.30)–(3.33) that for p>1,

    E[βϑku(t)2η+αϑkv(t)2η](1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]eνt+β(νδ+16eρνγ2+2˜α+6C8kpm=1mαm|J(m)|+4+m=p+1αm|J(m)|)t0eν(st)E[u(s)2η]ds+α(νλ+16eρνγ2)t0eν(st)E[v(s)2η]ds+βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|. (3.34)

    Furthermore, it follows from (2.3) that there is a K1=K1(ν)>0 such that for all kK1,

    6C8kpm=1mαm|J(m)|ν2. (3.35)

    By (2.3) again, we can choose p=p(ν) large enough such that

    4m=p+1αm|J(m)|ν2,

    which along with (3.35) and (2.25) implies that there exists ν3>0 such that for all ν(0,ν3),

    νδ+16eρνγ2+2˜α+6C8kpm=1mαm|J(m)|+4+m=p+1αm|J(m)|2νδ+16eρνγ20,

    which together with (3.34) and (2.25) shows that for all t0 and kK1,

    E[βϑku(t)2η+αϑkv(t)2η](1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]eνt+βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|. (3.36)

    Note that (ϕ,φ)E and E is a compact subset in L2(Ω,C([ρ,0],2η×2η)). Then, for each ε>0, there exists K2=K2(ε,ϕ,φ)1 such that for all kK2,

    |n|kE[ηn(β|ϕn(0)|2+α|φn(0)|2)]ε. (3.37)

    It follows from (3.37) that for all kK2,

    (1+8ρeρνγ2)E[βϑkϕ(0)2η+αϑkφ(0)2η]=(1+8ρeρνγ2)nZE[ηn(β|ϑ(|n|k)ϕn(0)|2+α|ϑ(|n|k)φn(0)|2)](1+8ρeρνγ2)|n|kE[ηn(β|ϕn(0)|2+α|φn(0)|2)](1+8ρeρνγ2)ε. (3.38)

    Since a=(an)nZ, c=(cn)nZ,b=(bj,n)jN,nZ,l=(lj,n)jN,nZ,γ=(γj,n)jN,nZ2η and ι=(ιn)nZ1η, we get that there exists K3=K3(ε)1 such that for all t0 and kK3,

    βδν|n|kηn|an|2+αλν|n|kηn|cn|2+2βν|n|kj=1ηn(b2j,n+2γ2j,n)+2αν|n|kj=1ηn(l2j,n+2γ2j,n)+2βν|n|kηn|ιn|ε,

    which along with (3.36) and (3.38) implies that for all t0, kmax{K1,K2,K3}, and (ϕ,φ)E,

    |n|2kE[ηn(β|un(t)|2η+α|vn(t)|2η)]E[βϑku(t)2η+αϑkv(t)2η](2+8ρeρνγ2)ε. (3.39)

    Observe that {(ϕ(s),φ(s))L2(Ω,2η×2η):s[ρ,0]} is a compact subset in L2(Ω,2η×2η). Then, for each ε>0, there are s1,s2,sm[ρ,0] such that

    {(ϕ(s),φ(s))L2(Ω,2η×2η):s[ρ,0]}mj=1B((ϕ(sj),φ(sj)),12ε), (3.40)

    where B((ϕ(sj),φ(sj)),12ε) is an open ball in L2(Ω,2η×2η) centered at (ϕ(sj),φ(sj)) with radius 12ε. Since (ϕ(sj),φ(sj))L2(Ω,2η×2η), for j=1,,m, there exists K4=K4(ε,ϕ,φ)1, such that for all kK4,

    |n|kE[ηn(|ϕn(sj)|2+|φn(sj)|2)]14ε,j=1,2,,m. (3.41)

    It follows from (3.40) and (3.41) that for all kK4 and s[ρ,0],

    |n|kE[ηn(|ϕn(s)|2+|φn(s)|2)]ε,

    which along with (3.39) implies the desired result.

    The tail estimates given by Lemma 3.4 have been enhanced to obtain uniform estimates on the tails of solutions, which are crucial for achieving tightness in the probability distributions of solution segments in the space C([ρ,0],2η×2η).

    Lemma 3.5. Suppose (2.1)–(2.8) and (2.25) hold. For any compact subset EL2(Ω,C([ρ,0],2η×2η)), the solution (u,v) of stochastic lattice system (2.15) satisfies

    lim supnsup(ϕ,φ)EsuptρE[suptρrt|n|kηn(|un(r,ϕ)|2+|vn(r,φ)|2)]=0.

    Proof. Let ϑ be the function defined in Lemma 3.4. For all tρ and tρrt, it follows from (3.24) that

    βϑku(r)2η+αϑkv(r)2η+2λαrtρϑkv(s)2ηds=βϑku(tρ)2η+αϑkv(tρ)2η+2βrtρ(ϑkAu(s),ϑku(s))ηds+2βrtρ(ϑkf(u(s)),ϑku(s))ηds+2βrtρ(ϑka,ϑku(s))ηds+2αrtρ(ϑkc,ϑkv(s))ηds+βj=1rtρϑkgj(u(s),u(sρ))+ϑkbj2ηds+2βj=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)+αj=1rtρϑkhj(v(s),v(sρ))+ϑklj2ηds+2αj=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s),

    which shows that for all tρ,

    E[suptρrt(βϑku(r)2η+αϑkv(r)2η)]+2λαE[ttρϑkv(s)2ηds]E[βϑku(tρ)2η+αϑkv(tρ)2η]+2βE[ttρ|(ϑkAu(s),ϑku(s))η|ds]+2βE[ttρ|(ϑkf(u(s)),ϑku(s))η|ds]+2βE[ttρϑkaηϑku(s)ηds]+2αE[ttρϑkcϑkv(s)ηds]+βE[j=1ttρϑkgj(u(s),u(sρ))+ϑkbj2ηds]+αE[j=1ttρϑkhj(v(s),v(sρ))+ϑklj2ηds]+2βE[suptρrt|j=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s)|]. (3.42)

    For any ε>0, by Lemma 3.4, we get that there is a K5=K5(ε,E)1 such that for all kK5 and tρ,

    |n|kE[ηn(β|un(t)|2+α|vn(t)|2)]ε,

    which shows that for all kK5 and tρ,

    E[βϑku(t)2η+αϑkv(t)2η]=|n|kE[ηn(β|ϑkun(t)|2+α|ϑkvn(t)|2)]|n|kE[ηn(β|un(t)|2+α|vn(t)|2)]ε. (3.43)

    Then, for all kK5 and tρ,

    E[βϑku(tρ)2η+αϑkv(tρ)2η]ε. (3.44)

    Proceeding as in (3.30), we have

    2βE[ttρ|(ϑkAu(s),ϑku(s))η|ds]2β˜αttρE[ϑku(s)2η]ds+6βC8kpm=1mαm|J(m)|ttρE[u(s)2η]ds+4βm=p+1αm|J(m)|ttρE[u(s)2η]ds. (3.45)

    Then, by (3.43), we get that for all kK5 and tρ,

    2β˜αttρE[ϑku(s)2η]ds2˜αρε. (3.46)

    Furthermore, it follows from (2.3) and Lemma 3.1 that there is a K6=K6(ε,E)K5, such that for all kK6 and tρ,

    6βC8kpm=1mαm|J(m)|ttρE[u(s)2η]dsρε. (3.47)

    By (2.3) and Lemma 3.1 again, we can choose p=p(ε) large enough such that for all tρ,

    4βm=p+1αm|J(m)|ttρE[u(s)2η]dsρε. (3.48)

    Since ι=(ιn)nZ1η, we get that there exists K7=K7(ε,E)K6 such that for all kK7,

    2βttρE[|(ϑkf(u(s)),ϑku(s))η|]ds2βδttρE[ϑku(s)2]ds+2βρ|n|>kηn|ιn|ρε. (3.49)

    By (3.43), we get for all kK5 and tρ,

    2βE[ttρϑkaϑku(s)ηds]+2αE[ttρϑkcϑkv(s)ηds]ttρE[βϑku(s)2η+αϑkv(s)2η]ds+ttρE[βϑka2η+αϑkc2η]dsρε+ρ|n|kηn(β|an|2+α|cn|2). (3.50)

    Since a=(an)nZ,c=(cn)nZ2η, it follows from (3.50) that there exists K8=K8(ε,E)K7 such that for all kK8 and tρ,

    2βE[ttρ(ϑka,ϑku(s))ηds]+2αE[ttρ(ϑkc,ϑkv(s))ηds]2ρε. (3.51)

    By (2.8), (3.43), and Lemma 3.4, we get for all tρ and kK5,

    βj=1ttρE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds2βj=1ttρE[ϑkgj(u(s),u(sρ))2η]ds+2βj=1ttρE[ϑkbj2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+8βγ2ttρE[ϑku(s)2η+ϑku(sρ)2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+8βγ2ttρE[ϑku(s)2η]ds+8βγ2tρt2ρE[ϑku(s)2η]ds2ρβj=1|n|kηn(b2j,n+2γ2j,n)+16βγ2ρε, (3.52)

    and

    αj=1ttρE[ϑkhj(v(s),v(sρ))+ϑklj2η]ds2ραj=1|n|kηn(l2j,n+2γ2j,n)+16αγ2ρε. (3.53)

    Since b=(bj,n)jN,nZ, l=(lj,n)jN,nZ, and γ=(γj,n)jN,nZ belong to 2η, we infer from (3.52) and (3.53) that there exists K9=K9(ε,E)K8 such that for all kK9 and tρ,

    βj=1ttρE[ϑkgj(u(s),u(sρ))+ϑkbj2η]ds+αj=1ttρE[ϑkhj(v(s),v(sρ))+ϑklj2η]dsρ(β+α)(2+16γ2)ε. (3.54)

    For the last two terms of (3.42), by the BDG inequality, (2.8), and (3.54), we have for all kK9 and tρ,

    2βE[suptρrt|j=1rtρ(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(ϑkhj(v(s),v(sρ))+ϑklj,ϑkv(s))ηdWj(s)|]2βC9E[(ttρj=1|(ϑkgj(u(s),u(sρ))+ϑkbj,ϑku(s))η|2ds)12]+2αC9E[(ttρj=1|(ϑkhj(v(s),v(sρ))+ϑkcj,ϑkv(s))η|2ds)12]β2E[suptρrtϑku(r)2η]+2βC29E[ttρj=1ϑkgj(u(s),u(sρ))+ϑkbj2ηds]+α2E[suptρrtϑkv(r)2η]+2αC29E[ttρj=1ϑkhj(v(s),v(sρ))+ϑklj2ηds]β2E[suptρrtϑku(r)2η]+α2E[suptρrtϑkv(r)2η]+2C29ρ(β+α)(2+16γ2)ε. (3.55)

    By (3.42)–(3.55), we get that for all tρ and kK9,

    E[suptρrt|n|2kηn(β|un(r)|2+α|vn(r)|2)]E[suptρrt(βϑku(r)2+αϑkv(r)2)]C10ε,

    where C10=2(1+2˜αρ+5ρ+ρ(β+α)(2+16γ2)(1+2C29))ε. This completes the proof.

    The focus of this section is to establish the existence of invariant measures for lattice system (2.15) in C([ρ,0],2η×2η). Initially, we introduce the transition operators of the lattice system and subsequently demonstrate the tightness of a family of probability distributions for solutions of the lattice system.

    Given every t00 and Ft0 -measurable (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), lattice system (2.15) possesses a distinct solution that is valid for all tt0ρ. Given tt0 and (ϕ,φ)L2(Ω,C([ρ,0],2η×2η)), we use (ut(t0,ϕ),vt(t0,ϕ)) to represent the segment of the solution (u(t,t0,ϕ),v(t,t0,φ)) which is given by

    (ut(t0,ϕ),vt(t0,φ))(s)=(u(s+t,t0,ϕ),v(s+t,t0,φ)),s[ρ,0].

    Then, we have (ut(t0,ϕ),vt(t0,φ))L2(Ω,C([ρ,0],2η×2η)) for all tt0.

    Suppose ψ:C([ρ,0],2η×2η)R is a bounded Borel function. For 0rt, we set

    (pr,tψ)(ϕ,φ)=E[ψ((ut(r,ϕ),vt(r,φ)))],(ϕ,φ)C([ρ,0],2η×2η).

    In addition, for GB(C([ρ,0],2η×2η)), 0rt, and (ϕ,φ)C([ρ,0],2η×2η), we set

    p(r,ϕ,φ;t,G)=(pr,t1G)(ϕ,φ)=P{ωΩ:(ut(r,ϕ),vt(r,φ))G},

    where 1G is the characteristic function of G. Then, we can get that p(r,ϕ,φ;t,) is the probability distribution of (ut(r,ϕ),vt(r,φ)) in C([ρ,0],2η×2η). Furthermore, the transition operator p0,t is denoted as pt for the sake of convenience.

    Definition 4.1. A probability measure μ on C([ρ,0],2η×2η) is called an invariant measure of lattice system (2.15) if

    C([ρ,0],2η×2η)(ptψ)(ϕ,φ)dμ(ϕ,φ)=C([ρ,0],2η×2η)ψ(ϕ,φ)dμ(ϕ,φ),t0.

    Now, we show the properties of transition operators {pr,t}0rt as follows.

    Lemma 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, we have

    (i) The family {pr,t}0rt is Feller; that is, if ψ:C([ρ,0],2η×2η)R is bounded and continuous, then pr,tψ:C([ρ,0],2η×2η)R is bounded and continuous.

    (ii) The family {pr,t}0rt is homogeneous; that is,

    p(r,ϕ,φ;t,)=p(0,ϕ,φ;tr,),r[0,t],(ϕ,φ)C([ρ,0],2η×2η).

    (iii) Given r0 and (ϕ,φ)C([ρ,0],2η×2η), the process {(ut(r,ϕ),vt(r,φ))}tr is a C([ρ,0],2η×2η) -value Markov process. Consequently, if ψ:C([ρ,0],2η×2η)R is a bounded Borel function, then for any 0srt, P-a.s.

    (ps,tψ)(ϕ,φ)=(ps,t(pr,tψ))(ϕ,φ),(ϕ,φ)C([ρ,0],2η×2η),

    for all (ϕ,φ)C([ρ,0],2η×2η) and GB(C([ρ,0],2η×2η)), the Chapman-Kolmogorov equation is valid:

    p(s,ϕ,φ;t,G)=C([ρ,0],2η×2η)p(s,ϕ,φ;r,dy)p(r,y;t,G).

    Proof. By Lemma 2.1 and the standard arguments as in [49], we can get the Feller property (ⅰ)–(ⅲ).

    Lemma 4.2. Suppose (2.1)–(2.8) and (2.25) hold. Then, the distribution laws of the process {(ut(0,0),vt(0,0))}t0 is tight on C([ρ,0],2η×2η).

    Proof. For all t0, by Lemma 3.1 and Chebyshev's inequality, we have

    P{ut(0)η+vt(0)ηR}2R2E[ut(0)2η+vt(0)2η]C11R20,asR.

    Then, for each ε>0, there exists a constant R1=R1(ε)>0 such that

    P{ut(0)η+vt(0)ηR1}ε3,t0. (4.1)

    By Lemma 3.3, we get that for all r,s[ρ,0] and tρ,

    E[u(t+r)u(t+s)4η+v(t+r)v(t+s)4η]C12(1+|ts|2)|rs|2C12(1+ρ2)|rs|2 (4.2)

    for some C12>0. Given ε>0, it follows from the usual technique of diadic division and (4.2) that there exists a constant R2=R2(ε)>0 such that for all t0,

    P({supρs<r0ut(r)ut(s)η+vt(r)vt(s)η|rs|18R2})>113ε. (4.3)

    By Lemma 3.5, we obtain that for every ε>0 and mN, there exists an integer km=km(ε,m)1 such that for all t0,

    E[suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)]ε22m+2. (4.4)

    Then, for all t0 and mN,

    P(m=1{suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)12m})m=12mE[suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)]ε4,

    which shows that for all t0,

    P({suptρrt|n|kmηn(|un(r)|2+|vn(r)|2)12m,mN})>113ε. (4.5)

    For ε>0, set Zε=Z1,εZ2,εZ3,ε, where

    Z1,ε={(u,v)C([ρ,0],2η×2η):u(0)η+v(0)ηR1(ε)}, (4.6)
    Z2,ε={(u,v)C([ρ,0],2η×2η):supρs<r0u(r)u(s)η+v(r)v(s)η|rs|18R2(ε)}, (4.7)
    Z3,ε={(u,v)C([ρ,0],2η×2η):supρr0|n|kmηn(|un(r)|2+|vn(r)|2)12m,mN}. (4.8)

    It follows from (4.1), (4.3), and (4.5)–(4.8) that for all t0,

    P({(ut,vt)Zε})>1ε. (4.9)

    By Arzela-Ascoli theorem, we can establish the pre-compactness of Zε in C([ρ,0],2η×2η). Specifically, by (4.7), we get that Zε is equi-continuous in C([ρ,0],2η×2η). On the other hand, by (4.6) and (4.7), we have for every r[ρ,0],

    u(r)η+v(r)ηu(r)u(0)η+u(0)η+v(r)v(0)η+v(0)ηR2(ε)|r|18+R1(ε)ρ18R2(ε)+R1(ε),

    which along with (4.8) shows that {(u(r),v(r)),(u,v)Zε} is pre-compact in 2η×2η. This completes the proof.

    Now, the main outcome of this paper has been showed: The existence of invariant measures for lattice system (2.15) on C([ρ,0],2η×2η).

    Theorem 4.1. Suppose (2.1)–(2.8) and (2.25) hold. Then, lattice system (2.15) has an invariant measure on C([ρ,0],2η×2η).

    Proof. By using Krylov-Bogolyubov's method, for each nN, the probability measure μn is defined by

    μn=1nn0p(0,0;t,)dt. (4.10)

    It follows from Lemma 4.2 that the sequence (μn)n=1 is tight on C([ρ,0],2η×2η). Consequently, there exists a probability measure μ on C([ρ,0],2η×2η) and a subsequence (still denoted by (μn)n=1) such that

    μnμ,asn. (4.11)

    By (4.10)–(4.11) and Lemma 4.1, we can get for every t0 and every bounded and continuous function ψ:C([ρ,0],2η×2η)R,

    C([ρ,0],2η×2η)ψ(y)dμ(y)=limn1nn0(C([ρ,0],2η×2η)ψ(y)p(0,0;s,dy))ds=limn1nntt(C([ρ,0],2η×2η)ψ(y)p(0,0;s+t,dy))ds=limn1nn0(C([ρ,0],2η×2η)ψ(y)p(0,0;s+t,dy))ds=limn1nn0(C([ρ,0],2η×2η)(C([ρ,0],2η×2η)ψ(y)p(s,ϕ,φ;s+t,dy))p(0,0;s,d(ϕ,φ)))ds
    =limn1nn0(C([ρ,0],2η×2η)(C([ρ,0],2η×2η)ψ(y)p(0,ϕ,φ;t,dy))p(0,0;s,d(ϕ,φ)))ds=C([ρ,0],2η×2η)(C([ρ,0],2η×2η)ψ(y)p(0,ϕ,φ;t,dy))dμ(ϕ,φ)=C([ρ,0],2η×2η)(p0,tψ)(ϕ,φ)dμ(ϕ,φ),

    which implies that μ is an invariant measure of lattice system (2.15). This completes the proof.

    In this section, we examine the uniqueness of invariant measures for system (2.15) under additional constraints on the diffusion and drift terms. Specifically, we impose the following assumption:

    2L2<max{λ,˜ακ}, (5.1)

    which implies that there exists a small number ς>0 such that

    max{4L2+2˜α+2κ+ς,4L22λ+ς}0. (5.2)

    From now on, we fix such a ς>0 satisfying (5.2). We will demonstrate that, subject to condition (5.2), any two solutions of Eq (2.15) converge toward each other at an exponential rate, which immediately implies the uniqueness of invariant measures. To begin with, we establish uniform estimates in C([ρ,0],2η×2η).

    Lemma 5.1. Suppose (2.1)–(2.8) and (5.1) hold, and (ϕ1,φ1),(ϕ2,φ2)L2(Ω,C([ρ,0],2η×2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any tρ,

    E[u(t,ϕ1)u(t,ϕ2)2η+v(t,φ1)v(t,φ2)2η]M5E[ϕ1ϕ22Cρ,η+φ1φ22Cρ,η]eςt,

    where M5 is a positive constant depending on (ϕ,φ).

    Proof. By (2.17), we get that for t0,

    E[βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η]E[βϕ1(0)ϕ2(0)2η+αφ1(0)φ2(0)2η]2λαt0E[v(s,φ1)v(s,φ2)2η]ds+2βt0E[(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η]ds+2βt0E[(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η]ds+βj=1t0E[gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2η]ds+αj=1t0E[hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2η]ds. (5.3)

    Similar to (2.18) and (2.19), we obtain

    2βt0E[(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η]ds2β˜αt0E[u(s,ϕ1)u(s,ϕ2)2η]ds. (5.4)

    By (2.9), we have

    2βt0E[(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η]ds2βκt0E[u(s,ϕ1)u(s,ϕ2)2η]ds. (5.5)

    By (2.12), we get

    βj=1t0[gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2η]ds+αj=1t0[hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2η]ds4βL2t0[u(s,ϕ1)u(s,ϕ2)2η]ds+2βL20ρ[ϕ1(s)ϕ2(s)2η]ds+4αL2t0[v(s,φ1)v(s,φ2)2η]ds+2αL20ρ[φ1(s)φ2(s)2η]ds. (5.6)

    It follows from (5.2)–(5.6) that for all t0,

    E[βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η](1+2ρL2)E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]ςt0E[βu(s,ϕ1)u(s,ϕ2)2η+αv(s,φ1)v(s,φ2)2η]ds,

    which implies that for all t0,

    E[βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η](1+2ρL2)E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eςt. (5.7)

    On the other hand, for t[ρ,0], we have

    E[βu(t,ϕ1)u(t,ϕ2)2η+αv(t,φ1)v(t,φ2)2η]=E[βϕ1(t)ϕ2(t)2η+αφ1(t)φ2(t)2η]E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eςt,

    which along with (5.7) concludes the proof.

    Lemma 5.2. Suppose (2.1)–(2.8) and (5.1) hold, and (ϕ1,φ1),(ϕ2,φ2)L2(Ω,C([ρ,0],2η×2η)). If (u(t,ϕ1),v(t,φ1)) and (u(t,ϕ2),v(t,φ2)) are the solutions of system (2.15) with initial data (ϕ1,φ1) and (ϕ2,φ2), respectively, then for any tρ,

    E[suptρrt(u(r,ϕ1)u(r,ϕ2)2+v(r,φ1)u(r,φ2)2)]M6E[ϕ1ϕ22Cρ,η+φ1φ22Cρ,η]eςt,

    where M6 is a positive constant independent of (ϕ1,φ1) and (ϕ2,φ2).

    Proof. By (2.17), we get that for tρ and rtρ,

    βu(r,ϕ1)u(r,ϕ2)2η+αv(r,φ1)v(r,φ2)2η+2λαrtρv(s,φ1)v(s,φ2)2ηds=βu(tρ,ϕ1)u(tρ,ϕ2)2η+αv(tρ,φ1)v(tρ,φ2)2η+2βrtρ(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+2βrtρ(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds+βj=1rtρgj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds+αj=1rtρhj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds+2βj=1rtρ(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)+2αj=1rtρ(hj,v(s,φ1)v(s,φ2))ηdWj(s), (5.8)

    where

    gj=gj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2)),

    and

    hj=hj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2)).

    By (5.8), we get that for all tρ,

    E[βsuptρrtu(r,ϕ1)u(r,ϕ2)2η+αsuptρrtv(r,φ1)v(r,φ2)2η]E[βu(tρ,ϕ1)u(tρ,ϕ2)2η+αv(tρ,φ1)v(tρ,φ2)2η]+2βE[ttρ|(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η|ds]+2βE[suptρrtrtρ(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds]+βE[j=1ttρgj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2ηds]+αE[j=1ttρhj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2ηds]+2βE[suptρrt|j=1rtρ(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]. (5.9)

    By Lemma 5.1, we see that for all tρ,

    E[βu(tρ,ϕ1)u(tρ,ϕ2)2η+αv(tρ,φ1)v(tρ,φ2)2η](1+2ρL2)E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(tρ). (5.10)

    Similar to (2.18) and (2.19), we obtain

    2βE[ttρ|(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η|ds]2β˜αttρu(s,ϕ1)u(s,ϕ2)2ηds,

    which along with Lemma 5.1 implies that

    2βE[ttρ|(A(u(s,ϕ1)u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))η|ds]2˜α(1+2ρL2)ςE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(tρ). (5.11)

    By (2.9) and (5.1), we have

    2βE[suptρrtrtρ(f(u(s,ϕ1))f(u(s,ϕ2)),u(s,ϕ1)u(s,ϕ2))ηds]0. (5.12)

    By (2.12) and Lemma 5.1 we get

    βE[j=1ttρgj(u(s,ϕ1),u(sρ,ϕ1))gj(u(s,ϕ2),u(sρ,ϕ2))2η]ds+αE[j=1ttρhj(v(s,φ1),v(sρ,φ1))hj(v(s,φ2),v(sρ,φ2))2η]ds4βL2ttρE[u(s,ϕ1)u(s,ϕ2)2η]ds+2βL2tρt2ρE[u(s,ϕ1)u(s,ϕ2)2η]ds+4αL2ttρE[v(s,φ1)v(s,φ2)2η]ds+2αL2tρt2ρE[v(s,φ1)v(s,φ2)2η]ds4L2(1+2ρL2)ςE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(tρ)+2L2(1+2ρL2)ςE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(t2ρ)6L2(1+2ρL2)ςE[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(tρ). (5.13)

    For the last two terms of (5.9), by the BDG inequality and (5.13), we get

    2βE[suptρrt|j=1rtρ(gj,u(s,ϕ1)u(s,ϕ2))ηdWj(s)|]+2αE[suptρrt|j=1rtρ(hj,v(s,φ1)v(s,φ2))ηdWj(s)|]C13βE[(ttρj=1|(gj,u(s,ϕ1)u(s,ϕ2))η|2ds)12]+C13αE[(ttρj=1|(hj,v(s,φ1)v(s,φ2))η|2ds)12]C13βE[suptρstu(s,ϕ1)u(s,ϕ2)η(ttρj=1gj2ηds)12]+C13αE[suptρstv(s,φ1)v(s,φ2)η(ttρj=1hj2ηds)12]β2E[suptρstu(s,ϕ1)u(s,ϕ2)2η]+β2C213E[ttρj=1gj2ηds]+α2E[suptρstv(s,φ1)v(s,φ2)2η+α2C213E[ttρj=1hj2ηds]12E[suptρst(βu(s,ϕ1)u(s,ϕ2)2η+αv(s,φ1)v(s,φ2)2η)]+C14E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eς(tρ), (5.14)

    where C14=3C213L2(1+2ρL2)ς. It follows from (5.9)–(5.14) that for all t0,

    E[suptρrt(βu(r,ϕ1)u(r,ϕ2)2η+αv(r,φ1)v(r,φ2)2η)]C15E[βϕ1ϕ22Cρ,η+αφ1φ22Cρ,η]eςt,

    where C15=2((1+2ρL2)(1+2˜α+6L2ς)+C14). This completes the proof.

    Theorem 5.1. Suppose (2.1)–(2.8) and (5.1) hold. Then, stochastic lattice system (2.15) has a unique invariant measure in C([ρ,0],2η×2η).

    Proof. For any (ϕ1,φ1),(ϕ2,φ2)L2(Ω,C([ρ,0],2η×2η)), by Lemma 5.2, we see that the segments of the solutions (ut(ϕ1),vt(φ1)) and (ut(ϕ2),vt(φ2)) of (2.15) satisfy, for all tρ,

    E[ut(ϕ1)ut(ϕ2)2Cρ,η+vt(φ1)vt(φ2)2Cρ,η]M7E[ϕ1ϕ22Cρ,η+φ1φ22Cρ,η]eςt,

    which along with the standard arguments (see, e.g., [50]) implies the uniqueness of invariant measures for the lattice system (2.15). This completes the proof.

    The current focus lies in the theoretical proof of the well-posedness of solutions and the existence and uniqueness of invariant measures for these stochastic delay lattice systems. In the future, our research group will investigate the convergence and approximation of invariant measures for the systems under noise perturbation, as well as explore large deviation principles for the systems. Additionally, we will employ finite-dimensional numerical approximation methods to address both the existence of numerical solutions and numerical invariant measures.

    Xintao Li and Lianbing She: Conceptualization, Writing original draft and writing-review and editing; Rongrui Lin: Writing original draft and writing-review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Scientific Research and Cultivation Project of Liupanshui Normal University (LPSSY2023KJYBPY14).

    The authors declare no conflict of interest.



    [1] S. F. Mingaleev, P. L. Christiansen, Y. B. Gaidideiet, M. Johansson, K. Ø. Rasmussen, Models for energy and charge transport and storage in biomolecules, J. Biol. Phys., 25 (1999), 41–63. https://doi.org/10.1023/A:1005152704984 doi: 10.1023/A:1005152704984
    [2] J. M. Pereira, Global attractor for a generalized discrete nonlinear Schrödinger Equation, Acta. Appl. Math., 134 (2014), 173–183. https://doi.org/10.1007/s10440-014-9877-0 doi: 10.1007/s10440-014-9877-0
    [3] J. M. Pereira, Pullback attractor for a nonlocal discrete nonlinear Schrödinger equation with delays, Electron. J. Qual. Theo., 93 (2021), 1–18. https://doi.org/10.14232/ejqtde.2021.1.93 doi: 10.14232/ejqtde.2021.1.93
    [4] Y. Chen, X. Wang, Random attractors for stochastic discrete complex Ginzburg-Landau equations with long-range interactions, J. Math. Phys., 63 (2022), 032701. https://doi.org/10.1063/5.0077971 doi: 10.1063/5.0077971
    [5] Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1092–1115. https://doi.org/10.3934/dcdsb.2022113 doi: 10.3934/dcdsb.2022113
    [6] C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 286 (1984), 431–469. https://doi.org/10.2307/1999806 doi: 10.2307/1999806
    [7] B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal-Theor., 70 (2009), 3799–3815. https://doi.org/10.1016/j.na.2008.07.011 doi: 10.1016/j.na.2008.07.011
    [8] A. Adili, B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst. Special, (2013), 1–10. https://doi.org/10.3934/proc.2013.2013.1
    [9] A. Adili, B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin, Dyn. Syst. Ser. B, 18 (2013), 643–666. https://doi.org/10.3934/dcdsb.2013.18.643 doi: 10.3934/dcdsb.2013.18.643
    [10] A. Gu, B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689–1720. https://doi.org/10.3934/dcdsb.2018072 doi: 10.3934/dcdsb.2018072
    [11] Z. Wang, S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwan. J. Math., 20 (2016), 589–616. https://doi.org/10.11650/tjm.20.2016.6699 doi: 10.11650/tjm.20.2016.6699
    [12] S. Yang, Y. Li, T. Caraballo, Dynamical stability of random delayed FitzHugh-Nagumo lattice systems driven by nonlinear Wong-Zakai noise, J. Math. Phys., 63 (2022), 111512. https://doi.org/10.1063/5.0125383 doi: 10.1063/5.0125383
    [13] C. E. Elmer, E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations, SIAM J. Appl. Math., 65 (2005), 1153–1174. https://doi.org/10.1137/S003613990343687 doi: 10.1137/S003613990343687
    [14] E. Van Vleck, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317–336. https://doi.org/10.1016/j.physd.2005.10.006 doi: 10.1016/j.physd.2005.10.006
    [15] Z. Chen, D. Yang, S. Zhong, Limiting dynamics for stochastic FitzHugh-Nagumo lattice systems in weighted spaces, J. Dyn. Diff. Equ., 2022, 1–32. https://doi.org/10.1007/s10884-022-10145-2
    [16] A. Gu, Y. R. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. https://doi.org/10.1016/j.cnsns.2014.04.005 doi: 10.1016/j.cnsns.2014.04.005
    [17] A. Gu, Y. Li, J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by α-stable Lévy noises, Int. J. Bifurcat. Chaos, 24 (2014), 1450123. https://doi.org/10.1142/S0218127414501235 doi: 10.1142/S0218127414501235
    [18] L. Xu, W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079–1103. https://doi.org/10.11650/twjm/1500406680 doi: 10.11650/twjm/1500406680
    [19] Z. Chen, X. Li, B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3235–3269. https://doi.org/10.3934/dcdsb.2020226 doi: 10.3934/dcdsb.2020226
    [20] D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equ., 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
    [21] Y. Lin, D. Li, Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems, Discrete Contin. Dynam. Syst. Ser. B, 27 (2022), 7561–7590. https://doi.org/10.3934/dcdsb.2022054 doi: 10.3934/dcdsb.2022054
    [22] W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702. https://doi.org/10.1063/1.3319566 doi: 10.1063/1.3319566
    [23] D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 24 (2018), 872–897. https://doi.org/10.1080/10236198.2018.1437913 doi: 10.1080/10236198.2018.1437913
    [24] D. Li, L. Shi, X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5121–5148. https://doi.org/10.3934/dcdsb.2019046 doi: 10.3934/dcdsb.2019046
    [25] F. Wang, T. Caraballo, Y. Li, R. Wang, Periodic measures for the stochastic delay modified Swift-Hohenberg lattice systems, Commun. Nonlinear Sci., 125 (2023), 107341. https://doi.org/10.1016/j.cnsns.2023.107341 doi: 10.1016/j.cnsns.2023.107341
    [26] P. E. Kloeden, T. Lorenz, Mean-quare random dynamical systems, J. Differ. Equations, 253 (2012), 1422–1438. https://doi.org/10.1016/j.jde.2012.05.016 doi: 10.1016/j.jde.2012.05.016
    [27] B. Wang, Dynamics of stochastic reaction difusion lattice system driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104–132. https://doi.org/10.1016/j.jmaa.2019.04.015 doi: 10.1016/j.jmaa.2019.04.015
    [28] B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spacs, J. Dyn. Differ. Equ., 31 (2019), 277–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
    [29] S. Yang, Y. Li, Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise, J. Math. Phys., 62 (2021), 051510. https://doi.org/10.1063/5.0037929 doi: 10.1063/5.0037929
    [30] A. Gu, Weak pullback mean random attractors for stochastic evolution equations and applications, Stoch. Dynam., 22 (2022), 1–6. https://doi.org/10.1142/S0219493722400019 doi: 10.1142/S0219493722400019
    [31] A. Gu, Weak pullback mean random attractors for non-autonomous p-Laplacian equations, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3863–3878. https://doi.org/10.3934/dcdsb.2020266 doi: 10.3934/dcdsb.2020266
    [32] R. Liang, P. Chen, Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 28 (2023), 4993–5011. https://doi.org/10.3934/dcdsb.2023050 doi: 10.3934/dcdsb.2023050
    [33] B. Wang, R. Wang, Asymptotic behavior of stochastic Schrödinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213–237. https://doi.org/10.1080/07362994.2019.1679646 doi: 10.1080/07362994.2019.1679646
    [34] J. Shu, L. Zhang, X. Huang, J. Zhang, Dynamics of stochastic Ginzburg-Landau equations driven by nonlinear noise, Dynam. Syst., 37 (2022), 382–402. https://doi.org/10.1080/14689367.2022.2060066 doi: 10.1080/14689367.2022.2060066
    [35] R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
    [36] R. Wang, B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 25 (2020), 2461–2493. https://doi.org/10.3934/dcdsb.2020019 doi: 10.3934/dcdsb.2020019
    [37] R. Wang, Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping, J. Dynam. Differ. Equ., 33 (2021), 767–803. https://doi.org/10.1007/s10884-020-09830-x doi: 10.1007/s10884-020-09830-x
    [38] X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 1–31. https://doi.org/10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
    [39] J. Kim, On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 835–866. https://doi.org/10.3934/dcdsb.2006.6.835 doi: 10.3934/dcdsb.2006.6.835
    [40] J. Kim, On the stochastic Benjamin-Ono equation, J. Differ. Equations, 228 (2006), 737–768. https://doi.org/10.1016/j.jde.2005.11.005 doi: 10.1016/j.jde.2005.11.005
    [41] Z. Brzeźniak, E. Motyl, M. Ondrejat, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Probab., 45 (2017), 3145–3201. https://doi.org/10.1214/16-AOP1133 doi: 10.1214/16-AOP1133
    [42] Z. Brzeźniak, M. Ondrejat, J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equations, 260 (2016), 4157–4179. https://doi.org/10.1016/j.jde.2015.11.007 doi: 10.1016/j.jde.2015.11.007
    [43] J. Kim, Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55 (2006), 687–717. https://doi.org/10.1512/iumj.2006.55.2701 doi: 10.1512/iumj.2006.55.2701
    [44] J. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differ. Eq., 5 (2004), 1–30. https://doi.org/10.1023/B:DISC.0000005011.93152.d8 doi: 10.1023/B:DISC.0000005011.93152.d8
    [45] C. Sun, C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains, Nonlinear Anal-Theor., 63 (2005), 49–65. https://doi.org/10.1016/j.na.2005.04.034 doi: 10.1016/j.na.2005.04.034
    [46] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
    [47] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. https://doi.org/10.1016/j.jde.2008.05.017 doi: 10.1016/j.jde.2008.05.017
    [48] H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dynam. Syst. Ser. A, 39 (2019), 683–706. https://doi.org/10.3934/dcds.2019028 doi: 10.3934/dcds.2019028
    [49] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511666223
    [50] F. Wu, G. Yin, H. Mei, Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differ. Equations, 262 (2017), 1226–1252. https://doi.org/10.1016/j.jde.2016.10.006 doi: 10.1016/j.jde.2016.10.006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(984) PDF downloads(55) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog