Research article

A kinetic non-steady state analysis of immobilized enzyme systems with external mass transfer resistance

  • Received: 20 March 2024 Revised: 26 April 2024 Accepted: 29 April 2024 Published: 28 May 2024
  • MSC : 35A22, 35A35, 35G31, 97M60

  • The goal of this paper is to utilize the homotopy perturbation method (HPM) and Laplace transform to provide an approximate analytical expression to the non-linear time-dependent reaction diffusion equation arising in a mathematical model of an immobilized enzyme system with external mass transfer resistance. This mathematical model is a non-steady, non-linear reaction diffusion equation based on Michaelis–Menten kinetics. Approximate analytical expressions are also provided for various geometries of the enzyme catalytic pellets, namely, planar, cylindrical, and spherical. Obtained semi-analytical expressions are proven to fit for all the parameters appearing in the system and for all the geometries of enzyme catalytic pellets. When comparing the numerical and approximate analytical solutions, satisfactory results are obtained. Also, approximate analytical expressions of the effectiveness factor (EF) of the immobilized system are presented, and the effect of parameters on the EF is also analyzed.

    Citation: M. Sivakumar, M. Mallikarjuna, R. Senthamarai. A kinetic non-steady state analysis of immobilized enzyme systems with external mass transfer resistance[J]. AIMS Mathematics, 2024, 9(7): 18083-18102. doi: 10.3934/math.2024882

    Related Papers:

  • The goal of this paper is to utilize the homotopy perturbation method (HPM) and Laplace transform to provide an approximate analytical expression to the non-linear time-dependent reaction diffusion equation arising in a mathematical model of an immobilized enzyme system with external mass transfer resistance. This mathematical model is a non-steady, non-linear reaction diffusion equation based on Michaelis–Menten kinetics. Approximate analytical expressions are also provided for various geometries of the enzyme catalytic pellets, namely, planar, cylindrical, and spherical. Obtained semi-analytical expressions are proven to fit for all the parameters appearing in the system and for all the geometries of enzyme catalytic pellets. When comparing the numerical and approximate analytical solutions, satisfactory results are obtained. Also, approximate analytical expressions of the effectiveness factor (EF) of the immobilized system are presented, and the effect of parameters on the EF is also analyzed.



    加载中


    [1] P. J. Halling, R. V. Ulijn, S. L. Flitsch, Understanding enzyme action on immobilised substrates, Curr. Opin. Biotech., 16 (2005), 385–392. https://doi.org/10.1016/j.copbio.2005.06.006 doi: 10.1016/j.copbio.2005.06.006
    [2] T. Kobayashi, K. J. Laidler, Theory of the kinetics of reactions catalyzed by enzymes attached to membranes, Biotechnol. Bioeng., 16 (1974), 77–97. https://doi.org/10.1002/bit.260160107 doi: 10.1002/bit.260160107
    [3] A. Kheirolomoom, K. Shigeo, E. Sada, K. I. Yoshida, Reaction characteristics and stability of a membrane‐bound enzyme reconstituted in bilayers of liposomes, Biotechnol. Bioeng., 37 (1991), 809–813. https://doi.org/10.1002/bit.260370904 doi: 10.1002/bit.260370904
    [4] S. Gondo, S. Isayama, K. Kusunoki, Effects of internal diffusion on the lineweaver‐Burk plots for immobilized enzymes, Biotechnol. Bioeng., 17 (1975), 423–431. https://doi.org/10.1002/bit.260170310 doi: 10.1002/bit.260170310
    [5] A. Illanes, M. E. Zuniga, S. Contreras, A. Guerrero, Reactor design for the enzymatic isomerization of glucose to fructose, Bioprocess Engineering, 7 (1992), 199–204. https://doi.org/10.1007/BF00369546 doi: 10.1007/BF00369546
    [6] C. Picioreanu, M. C. M. van Loosdrecht, J. J. Heijnen, Effect of diffusive and convective substrate transport on biofilm structure formation: A two‐dimensional modeling study, Biotechnol. Bioeng., 69 (2000), 504–515. https://doi.org/10.1002/1097-0290(20000905)69:5%3C504::AID-BIT5%3E3.0.CO;2-S doi: 10.1002/1097-0290(20000905)69:5%3C504::AID-BIT5%3E3.0.CO;2-S
    [7] B. K. Hamilton, C. R. Gardner, C. K. Colton, Basic concepts in the effects of mass transfer on immobilized enzyme kinetics, In: Immobilized enzymes in food and microbial processes, Boston: Springer, 1974,205–224. https://doi.org/10.1007/978-1-4684-2088-3_12
    [8] S. A. Mireshghi, A. A. Kheyr, F. Khorasheh, Application of an optimization algorithm for estimation of substrate mass transfro parameters for immobilized enzyme reactions, Sci. Iran., 8 (2001), 189–196.
    [9] M. Di Serio, R. Tesser, E. Santacesaria, A kinetic and mass transfer model to simulate the growth of baker's yeast in industrial bioreactors, Chem. Eng. J., 82 (2001), 347–354. https://doi.org/10.1016/S1385-8947(00)00353-3 doi: 10.1016/S1385-8947(00)00353-3
    [10] Q. Gan, S. J. Allen, G. Taylor, Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling, Process Biochem., 38 (2003), 1003–1018. https://doi.org/10.1016/S0032-9592(02)00220-0 doi: 10.1016/S0032-9592(02)00220-0
    [11] A. E. Al-Muftah, I. M. Abu-Reesh, Effects of internal mass transfer and product inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis, Biochem. Eng. J., 23 (2005), 139–153. https://doi.org/10.1016/j.bej.2004.10.010 doi: 10.1016/j.bej.2004.10.010
    [12] A. E. AL‐Muftah, I. M. Abu‐Reesh, Effects of external mass transfer and product inhibition on a simulated immobilized enzyme‐catalyzed reactor for lactose hydrolysis, Eng. Life Sci., 4 (2004), 326–340. https://doi.org/10.1002/elsc.200401980 doi: 10.1002/elsc.200401980
    [13] R. Baronas, J. Kulys, L. Petkevičius, Modelling the enzyme catalysed substrate conversion in a microbioreactor acting in continuous flow mode, Nonlinear Anal. Model., 23 (2018), 437–456. https://doi.org/10.15388/NA.2018.3.9 doi: 10.15388/NA.2018.3.9
    [14] M. Maldonado, J. G. Pacheco, Mathematical modelling of mass transfer phenomena for sucrose and lactitol molecules during osmotic dehydration of cherries, Heliyon, 8 (2022), e08788 https://doi.org/10.1016/j.heliyon.2022.e08788 doi: 10.1016/j.heliyon.2022.e08788
    [15] M. Sivakumar, R. Senthamarai, L. Rajendran, M. E. G. Lyons, Reaction and kinetic studies of immobilized enzyme systems: part-Ⅰ without external mass transfer resistance, Int. J. Electrochem. Sc., 17 (2022), 221159. https://doi.org/10.20964/2022.09.69 doi: 10.20964/2022.09.69
    [16] M. Sivakumar, R. Senthamarai, L. Rajendran, M. E. G. Lyons, Reaction and kinetics studies of immobilized enzyme systems: part-Ⅱ with external mass transfer resistance, Int. J. Electrochem. Sc., 17 (2022), 221031. https://doi.org/10.20964/2022.10.43 doi: 10.20964/2022.10.43
    [17] Y. Shi, X. H. Yang, A time two-grid difference method for nonlinear generalized viscous Burger' equation, J. Math. Chem., 2024 (2024), 1–34. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [18] C. J. Li, H. X. Zhang, X. H. Yang, A new nonlinear compact difference scheme for a fourth-order nonlinear Burgers type equation with a weakly singular kernel, J. Appl. Math. Comput., 2024 (2024), 1–33. https://doi.org/10.1007/s12190-024-02039-x doi: 10.1007/s12190-024-02039-x
    [19] Y. Shi, X. H. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation, Electron. Res. Arch., 32 (2024), 1471–1497. http://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [20] A. G. Atta, Y. H. Youssri, Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers' equation, Iran. J. Math. Chem., 14 (2023), 207–224. http://doi.org/10.22052/IJMC.2023.252824.1710 doi: 10.22052/IJMC.2023.252824.1710
    [21] X. H. Yang, H. X. Zhang, J. Tang, The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions, Comput. Math. Appl., 82 (2021), 1–12. https://doi.org/10.1016/j.camwa.2020.11.015 doi: 10.1016/j.camwa.2020.11.015
    [22] Z. Y. Zhou, H. X. Zhang, X. H. Yang, J. Tang, An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions, Int. J. Comput. Math., 100 (2023), 1719–1736. https://doi.org/10.1080/00207160.2023.2212307 doi: 10.1080/00207160.2023.2212307
    [23] M. Madani, M. Fathizadeh, Y. Khan, A. Yildirim, On the coupling of the homotopy perturbation method and Laplace transformation, Math. Comput. Model., 53 (2011), 1937–1945. https://doi.org/10.1016/j.mcm.2011.01.023 doi: 10.1016/j.mcm.2011.01.023
    [24] M. Yavuz, N. Sene, Approximate solutions of the model describing fluid flow using generalized $\rho$-Laplace transform method and heat balance integral method, Axioms, 9 (2020), 123. https://doi.org/10.3390/axioms9040123 doi: 10.3390/axioms9040123
    [25] M. Sivakumar, M. Mallikarjuna, R. Senthamarai, A kinetic non-steady-state analysis of immobilized enzyme systems without external mass transfer resistance, Int. J. Anal. Appl., 22 (2024), 31. https://doi.org/10.28924/2291-8639-22-2024-31 doi: 10.28924/2291-8639-22-2024-31
    [26] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [27] R. Senthamarai, R. J. Ranjani, Solution of non-steady-state substrate concentration in the action of biosensor response at mixed enzyme kinetics, J. Phys.: Conf. Ser., 1000 (2018), 012138. https://doi.org/10.1088/1742-6596/1000/1/012138 doi: 10.1088/1742-6596/1000/1/012138
    [28] A. Kumar, A. Khan, R. Arora, T. Abdeljawad, K. Karthikeyan, M. Houas, Analysis of the far-field behavior of waves in magnetogasdynamic, AIMS Mathematics, 8 (2023), 7329–7345. https://doi.org/10.3934/math.2023369 doi: 10.3934/math.2023369
    [29] Y. Yang, S. Liao, Comparison between homotopy analysis method and homotopy renormalization method in fluid mechanics, Eur. J. Mech. B-Fluid., 97 (2023), 187–198. https://doi.org/10.1016/j.euromechflu.2022.10.005 doi: 10.1016/j.euromechflu.2022.10.005
    [30] O. Nave, Modification of semi-analytical method applied system of ODE, Modern Applied Science, 14 (2020), 75. https://doi.org/10.5539/mas.v14n6p75 doi: 10.5539/mas.v14n6p75
    [31] Y. Ji, J. Liu, H. B. Liu, An identification algorithm of generalized time-varying systems based on the Taylor series expansion and applied to a pH process, J. Process Contr., 128 (2023), 103007. https://doi.org/10.1016/j.jprocont.2023.103007 doi: 10.1016/j.jprocont.2023.103007
    [32] C. H. He, Y. U. E. Shen, F. Y. Ji, J. H. He, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28 (2020), 2050011. https://doi.org/10.1142/S0218348X20500115 doi: 10.1142/S0218348X20500115
    [33] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [34] M. Mallikarjuna, R. Senthamarai, An amperometric biosensor and its steady state current in the case of substrate and product inhibition: Taylors series method and Adomian decomposition method, J. Electroanal. Chem., 946 (2023), 117699. https://doi.org/10.1016/j.jelechem.2023.117699 doi: 10.1016/j.jelechem.2023.117699
    [35] Y. Jawarneh, H. Yasmin, A. H. Ganie, M. M. Al-Sawalha, A. Ali, Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems, AIMS Mathematics, 9 (2024), 371–390. https://doi.org/10.3934/math.2024021 doi: 10.3934/math.2024021
    [36] S. Hosseinzadeh, K. Hosseinzadeh, M. Rahai, D. D. Ganji, Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method, Mod. Phys. Lett. B, 35 (2021), 2150462. https://doi.org/10.1142/S0217984921504625 doi: 10.1142/S0217984921504625
    [37] S. Saravanakumar, A. Eswari, O. D. Makinde, N. Anbazhagan, G. P. Joshi, W. Cho, Analysis of temperature-dependent thermal conductivity and fin efficiency: direct Akbari-Ganji method, Case Stud. Therm. Eng., 51 (2023), 103627. https://doi.org/10.1016/j.csite.2023.103627 doi: 10.1016/j.csite.2023.103627
    [38] M. Adel, M. M. Khader, H. Ahmad, T. A. Assiri, Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method, AIMS Mathematics, 8 (2023), 19083–19096. https://doi.org/10.3934/math.2023974 doi: 10.3934/math.2023974
    [39] R. Senthamarai, T. N. Saibavani, Substrate mass transfer: analytical approach for immobilized enzyme reactions, J. Phys.: Conf. Ser., 1000 (2018), 012146. https://doi.org/10.1088/1742-6596/1000/1/012146 doi: 10.1088/1742-6596/1000/1/012146
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(574) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog