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Nomenclature

Symbol Meaning Units [8]
X Radial dimension inside the catalyst m
T Time s
c(X,T ) Substrate concentration µmol/cm3

cb Bulk substrate concentration µmol/cm3

Vmax Maximum enzymatic rate mol/s
De Diffusion constant m2/s
R Half the thickness of the pellets m
Km Michaelis–Menten constant µmol/cm3

kl External mass transfer coefficient m/s
x Dimensionless radial dimension inside the catalyst -
t Dimensionless time -
C(x, t) Dimensionless substrate concentration -
g Shape factor of the pellet -
α Thiele modulus -
β Dimensionless Michaelis–Menten constant -
Bi Biot number -

1. Introduction

The immobilization of enzymes on suitable materials has significantly increased their utilization
in continuous bioreactors, biosensors, and batch reactors. However, these kinds of enzymes have
several affecting factors that significantly differ from the kinetics of the non-immobilized enzyme.
These factors encompass interparticle and intraparticle diffusion limitations, steric and conformational
effects, and the partitioning of the substrate between the support and the bulk solution. The partitioning
of the substrate between the support and the bulk solution, as well as conformational and spatial effects
resulting from the immobilization mechanism, can lead to alterations in the enzyme’s structure [1–3].
Measured reaction rates are influenced by the limitations in mass transfer that arise from the bulk phase
to the support pellet’s external surface [4]. The factors that influence the diffusion of the substrate in
the bulk fluid phase include the diffusivity, velocity, density, viscosity, and substrate concentration of
the fluid phase over the support pellets [5, 6]. Hamilton et al. [7] discussed in detail basic concepts
in the effects of mass transfer on immobilized enzyme kinetics, which were illustrated by analyzing
simple examples and determining the values of intrinsic kinetic parameters of immobilized enzymes.

Previously, various mathematical models considering the mass transfer resistance in the
immobilized enzyme kinetics have been successfully applied in various fields using enzymatic kinetics.
Mireshghi et al. [8] proposed a mathematical model for estimating the mass transfer of the enzymes
immobilized onto the nonporous medium. Di Serio et al. [9] have developed a mathematical model
describing the effect of limitation in oxygen mass transfer in the fed-batch reactor for growing baker’s
yeast. Gan et al. [10] analyzed experimentally and mathematically the influence of internal and external
mass transfer resistance and interaction between the non-hyderolytic materials in the heterogeneous
reaction system of cellulose hydrolysis. Al-Muftah and Abu-Reesh developed mathematical models
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for estimating and simulating the performance of a packed-bed reactor for lactose hydrolysis, with the
effect of internal [11] and external [12] mass transfer and inhibition of product concentrations. Baronas
et al. [13] modeled a microbioreactor continuous mode of flowing of the substrate on a catalyzed
enzyme and observed that the internal and external mass transfer had a non-linear effect on the system.
A model explaining the process of mass transfer between lactitol and sucrose molecules during the
osmotic dehydration of cherry was proposed by Maldonado and Peacheco [14].

Recently, Sivakumar et al. analyzed a mathematical model of immobilized enzyme kinetics, where
the model is considered without the mass transfer effect, and obtained semi-analytical solutions for the
concentration of substrate and EF at steady-state [15] conditions. The effect of existing parameters of
the system on the EF of enzyme kinetics is also discussed. They also provided approximate analytical
expressions for substrate concentration and EF for steady-state enzyme kinetics with the effect of
external mass transfer resistance by using Taylor’s series method [16].

Nevertheless, the aforementioned approach is restricted to the steady-state condition of enzymatic
kinetics in an immobilized state. Recently, various iteration-based numerical and analytical techniques
have been developed to solve the non-linear time-dependent partial differential equations. Shi and
Yang [17] utilized the time-two-grid finite difference scheme for the first time to provide a numerical
solution for the non-linear generalized viscous Burger’s equation. Li et al. [18] proposed a new
numerical scheme for solving the non-linear fourth-order Burgers’ type equation with a weakly
singular kernel known as the non-linear compact difference scheme. Shi and Yang [19] utilized
the pointwise error estimate of a three-level conservative difference scheme for the supergeneralized
viscous Burgers’ equation. Atta and Hassan Youssri [20] provided a numerical solution for the
third-order time-fractional Korteweg-De Vries Burgers’ equation by utilizing the shifted second-kind
Chebyshev polynomials and selecting the trail function as compatible with the governing equations.
Yang et al. [21] formulated a higher-order method based on the orthogonal spine collocation method
for solving the fourth-order subdiffusion problem on the rectangle domain in 2D with sides parallel
to the coordinate axes. Zhou et al. [22] constructed an efficient numerical scheme evolution equation
with three weakly singular kernels in three-dimensional space by making use of the backward Euler
alternating direction implicit (ADI) method for the time derivative and the first-order convolution
quadrature formula to deal with the Riemann–Liouville (R-L) fractional integral term. Researchers
prefer obtaining approximate analytical expressions over numerical solutions due to difficulty in
achieving numerical stability, adjusting parameters to match numerical data, and evaluating essential
parameters.

The analytical method, namely the Laplace homotopy perturbation method (LHPM), has been
recently used by researchers to obtain an approximate analytical solution for the non-linear partial
differential equations arising in various fields of research. This method is a combination of two well-
known analytical methods: the homotopy perturbation method and the Laplace transform method. By
utilizing this method, a highly precise solution can be obtained in a very small number of iterations,
which was first proposed by Madani et al. [23] in 2011. Yavuz and Sene [24] coupled this method with
the heat balance integral method and successfully solved the fractional incompressible fluid differential
equations. Recently, Sivakumar et al. [25] utilized the HPM with Laplace transform to provide an
approximate analytical solution for the time-dependent non-linear partial differential equation arising
in the enzymatic kinetics of the immobilized enzyme system without considering the mass transfer
resistance. They have also provided semi-analytical expressions for all three geometries of the catalytic
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pellets and the effectiveness factor of the system. As far as the authors are aware, no previous work
has presented the approximate analytical expression for the non-steady, non-linear reaction diffusion
equation of the immobilized enzyme, which is immobilized onto the nonporous medium with the effect
of external mass transfer resistance.

In this paper, the main contributions are as follows:

• We have provided an approximate analytical expression for the time-dependent non-linear
reaction diffusion equation of the substrate concentration and effectiveness factor of immobilized
enzymes on the nonporous medium by utilizing the homotopy perturbation method and Laplace
transform.
• The numerical simulation of the system is done using the MATLAB software, and the analytical

expressions are compared with the numerical solution.
• Semi-analytical expressions for the substrate concentration and effectiveness factor of planar,

cylindrical, and spherical geometries of the enzyme catalytic pellets are also provided using HPM
and the Laplace transform. The sensitivity of EF to the parameters present in the system is also
analyzed.

The work in this article is articulated as follows: in Section 2, we have presented the mathematical
model of an immobilized enzyme system with external mass transfer resistance. In Section 3, the
approximate analytical solution of the considered governing equation is provided by using the
HPM and Laplace transform methods, and Section 4 provides the analytical expressions for various
geometries of the catalytic pellets, namely, planar, cylindrical, and spherical. Section 5 demonstrates
the validity of the obtained approximate analytical solutions by comparing them with the numerical
simulation, presenting the graphical representation, and providing the error table. In Section 6, we
illustrate the main result with graphical representations, and subsections 6.1 and 6.2 provide the effect
of time and other parameters on the effectiveness factor of the system. Section 7 provides the research
conclusion and future work. Finally, Section 7 provides the methodology to obtain the approximate
analytical expression of the governing equation using HPM and the Laplace transform.

2. Mathematical model

A non-steady-state, non-linear enzyme kinetics model of immobilized enzymes is made by
assuming:

1) Michaelis–Menten kinetics is utilized to describe the kinetics, which is represented as

v =
Vmax[S ]
Km + [S ]

,

where v is the rate of reaction of the system, Vmax is the maximum rate of reaction attained by the
enzyme, Km is the Michaelis–Menten constant, and S represents the substrate taking part in the
reaction.

2) Support material is uniformly distributed by the enzyme.
3) Between the support and bulk fluid phases, the effect of partition is neglected.
4) With the support material, the effects of diffusivity and temperature are constant.
5) By considering the variation in time, a non-steady-state model is developed.
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6) The deactivation of enzymes is neglected.

By making use of the above assumptions, the time-dependent partial differential equation with the
boundary conditions expressing the concentration of substrate with mass transfer is obtained as follows:

∂c(X,T )
∂T

= De

(
∂c(X,T )
∂X2 +

g − 1
X
∂c(X,T )
∂X

)
−

Vmaxc(X,T )
Km + c(X,T )

, (2.1)

with the initial condition as,

at T = 0, c(X, 0) = 0, (2.2)

and boundary as

at X = 0, cx(0,T ) = 0, (2.3)

at X = R, cx(R,T ) =
Rkl

De
(1 − c). (2.4)

where De is the diffusion constant and R is the half-thickness of the pellets, c is the dimensional
substrate concentration, cb is the substrate in bulk phase, and kl is the external mass transfer coefficient.
The above equations are made dimensionless by the following dimensionless parameters:

x =
X
R
, t =

T
R2 , C =

c
cb
, α = R

√
Vmax

KmDe
, β =

cb

Km
, Bi =

Rkl

De
, (2.5)

the dimensionless governing equations from Eqs (2.1)–(2.4) are obtained as follows:

∂C(x, t)
∂t

=
∂2C(x, t)
∂x2 +

g − 1
x
∂C(x, t)
∂x

−
α2C(x, t)

1 + βC(x, t)
, (2.6)

the governing equation has boundary conditions such as,

when t = 0, C(x, t) = 0, (2.7)

when x = 0,
∂C(x, t)
∂x

= 0, (2.8)

when x = 1,
∂C(x, t)
∂x

= Bi(1 −C(x, t)). (2.9)

where C(x, t) is the concentration of substrate, x indicates the radial dimension inside the catalyst,
g is the shape factor of the pellet, α symbolizes the Thiele modulus, β represents the dimensionless
Michaelis–Menten constant, t depicts dimensionless time, and Bi is the Biot number.
The EF of the system is represented as

η =
g(1 + β)
α2

(
∂C
∂x

)
x=1
. (2.10)
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3. Approximate analytical expressions of non-steady-state governing equation by utilizing HPM
and Laplace transform

Obtaining the solution for non-linear differential equations arising in various fields of physics,
biosciences, chemical engineering, and biochemical engineering has been a challenge for researchers
for decades. For solving these non-linear differential equations, researchers have recently utilized
various iteration techniques. These iteration techniques are HPM [25–27], homotopy analysis
method [28, 29], decomposition of homotopy analysis method [30], Taylors series method [15, 16,
31, 32], Adomian decomposition method [33–35], Akbari–Ganji method [36, 37], variational iteration
method [38, 39], etc.

In this research, we have applied HPM with Laplace transform to obtain a semi-analytical
expression (see Section 7) for the time-dependent non-linear governing equations Eq (2.6) with the
boundary conditions Eqs (2.7)–(2.9), and the expression is obtained as:

C(x, t) = Bi(1 − l)


√

g
a

cosh
(
x
√

a
g

)
sinh

(√
a
g

) − g
a

e−at − 2g
∞∑

n=0

(−1)ne−t(gn2π2+a)

(gn2π2 + a)
cos(nπx)

 , (3.1)

where a = α2

1+β , and

l =
D

1 + D
, (3.2)

where

D = Bi

√g
a

coth
(√

a
g

)
−

g
a

e−at − 2g
∞∑

n=0

e−t(gn2π2+a)

(gn2π2 + a)

 , (3.3)

and the EF of the system is represented as

η =
g
a

Bi (1 − l). (3.4)

4. Influence of geometries

4.1. Planar

When the shape factor value is g = 1, the shape of the catalytic pellet is planar, and the expression
of concentration Eq (3.1) becomes

C(x, t) = Bi(1 − l)


√

1
a

cosh
(√

ax
)

sinh
(√

a
) − e−at

a
− 2

∞∑
n=0

(−1)ne−t(n2π2 + a)

(n2π2 + a)
cos(nπx)

 , (4.1)

and by substituting the same for l in Eq (3.2), D transforms to

D = Bi

√1
a

coth
(√

a
)
−

e−at

a
− 2

∞∑
n=0

e−t(n2π2+a)

(n2π2 + a)

 , (4.2)

and the EF of the planar pellet obtained by taking g = 1 in Eq (3.4)

η =
1
a

[Bi (1 − l)] . (4.3)

AIMS Mathematics Volume 9, Issue 7, 18083–18102.



18089

4.2. Cylindrical

When the shape factor value is g = 2, the shape of the catalytic pellet is cylindrical, and the
expression of concentration Eq (3.1) becomes

C(x, t) = Bi(1 − l)


√

2
a

cosh
( √ a

2 x
)

sinh
( √ a

2

) − 2
a

e−at − 4
∞∑

n=0

(−1)ne−t(2n2π2+a)

(2n2π2 + a)
cos(nπx)

 , (4.4)

and by substituting the same for l in Eq (3.2), D transforms to

D = Bi

√2
a

coth
(√

a
2

)
−

2
a

e−at − 4
∞∑

n=0

e−t(2n2π2+a)

(2 n2π2 + a)

 , (4.5)

and the EF of a cylindrical pellet obtained by taking g = 2 in Eq (3.4)

η =
2
a

[Bi(1 − l)] . (4.6)

4.3. Spherical

When the shape factor value is g = 3, the shape of the catalytic pellet is spherical, and the expression
of concentration Eq (3.1) becomes

C(x, t) = Bi(1 − l)


√

3
a

cosh
( √ a

3 x
)

sinh
( √ a

3

) − 3
a

e−at − 6
∞∑

n=0

(−1)ne−t(3n2π2+a)

(3n2π2 + a)
cos(nπx)

 , (4.7)

and by substituting the same for l in Eq (3.2), D transforms to

D = Bi

√3
a

coth
(√

a
3

)
−

3
a

e−at − 6
∞∑

n=0

e−t(3n2π2+a)

(3 n2π2 + a)

 , (4.8)

and the EF of the spherical pellet obtained by taking g = 3 in Eq (3.4)

η =
3
a

[Bi(1 − l)] . (4.9)

5. Validation of analytical result

The numerical solution of the non-linear time-dependent governing reaction-diffusion equation
is obtained by using the MATLAB software. The approximate analytical expression for the time-
dependent governing equation Eq (2.6) is obtained using HPM and the Laplace transform as Eq (3.1).
The comparison of numerical and approximate analytical results for the non-steady state governing
equations is shown in Figures 2–4 and Tables 1–3. The maximum error percentage obtained between
numerical and HPM is 0.15%. Thus, HPM is more effective for obtaining the approximate analytical
expression for the substrate concentration C(x, t).
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Table 1. Comparison of the approximate analytical result with numerical result of substrate
concentration at planar geometry for the fixed α = 0.5, t = 10, Bi = 1, and various values of
β.

β = 1 β = 5 β = 10

χ Numerical HPM Error% Numerical HPM Error% Numerical HPM Error%
0.0 0.31740 0.31734 0.01890 0.38320 0.38295 0.06524 0.41320 0.41290 0.07260
0.2 0.32624 0.32618 0.01839 0.39189 0.39164 0.06379 0.42165 0.42135 0.07115
0.4 0.35284 0.35278 0.01701 0.41781 0.41756 0.05984 0.44681 0.44651 0.06714
0.6 0.39746 0.39740 0.01510 0.46057 0.46032 0.05428 0.48811 0.48781 0.06146
0.8 0.46048 0.46042 0.01303 0.51947 0.51922 0.04813 0.54465 0.54435 0.05508
1.0 0.54239 0.54233 0.01106 0.59355 0.59330 0.04212 0.61514 0.61484 0.04877
Average error % 0.01558 0.05557 0.06270

Table 2. Comparison of the approximate analytical result with numerical result of substrate
concentration at cylindrical geometry for the fixed α = 0.5, t = 10, Bi = 1, and various values
of β.

β = 1 β = 5 β = 10

χ Numerical HPM Error% Numerical HPM Error% Numerical HPM Error%
0.0 0.56430 0.56410 0.03544 0.66820 0.66790 0.04490 0.70240 0.70160 0.11390
0.2 0.57022 0.57002 0.03507 0.67311 0.67281 0.04457 0.70691 0.70611 0.11317
0.4 0.58797 0.58777 0.03402 0.68769 0.68739 0.04362 0.72028 0.71948 0.11107
0.6 0.61742 0.61722 0.03239 0.71149 0.71119 0.04216 0.74200 0.74120 0.10782
0.8 0.65841 0.65821 0.03038 0.74381 0.74351 0.04033 0.77128 0.77048 0.10372
1.0 0.71072 0.71052 0.02814 0.78368 0.78338 0.03828 0.80705 0.80625 0.09913
Average error % 0.03257 0.04231 0.10813

Table 3. Comparison of the approximate analytical result with numerical result of substrate
concentration at spherical geometry for the fixed α = 0.5, t = 10, Bi = 1, and various values
of β.

β = 1 β = 5 β = 10

χ Numerical HPM Error% Numerical HPM Error% Numerical HPM Error%

0.0 0.71450 0.71417 0.04619 0.82210 0.82130 0.09731 0.85240 0.85110 0.15251
0.2 0.71841 0.71808 0.04593 0.82476 0.82396 0.09700 0.85468 0.85338 0.15210
0.4 0.73012 0.72979 0.04520 0.83264 0.83184 0.09608 0.86141 0.86011 0.15091
0.6 0.74951 0.74918 0.04403 0.84548 0.84468 0.09462 0.87232 0.87102 0.14903
0.8 0.77644 0.77611 0.04250 0.86286 0.86206 0.09271 0.88694 0.88564 0.14657
1.0 0.81071 0.81038 0.04071 0.88422 0.88342 0.09047 0.90467 0.90337 0.14370
Average error % 0.04409 0.09470 0.14914
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6. Result and discussion

Equation (3.1) represents the novel semi-analytical expression of the non-steady non-linear
governing equation Eq (2.6) with the boundaries Eqs (2.7)–(2.9) obtained by making use of HPM
and Laplace transform. Equations (4.1), (4.4), and (4.7) represent the semi-analytical solution for
planar, cylindrical, and spherical geometries of the catalytic pellets. Figure 1 represents the effect of
dimensionless distance x and dimensionless time t on the substrate concentration C(x, t) for planar
1(a), cylindrical 1(b), and spherical 1(c) shaped catalytic pellets. It is observed that the substrate
concentration is an increasing function with respect to time and distance, and as their values increase,
the concentration also increases.

(a) (b) (c)

Figure 1. Surface plots of the concentration profile of substrate C(x, t) with respect to the
dimensionless distance and time for (a) planar, (b) cylindrical, and (c) spherical geometries.

Figures 2–4 depict the dimensionless concentration of substrate C(x, t). From the figures, it is
observed that the concentration is an increasing function with respect to the dimensionless distance x
since the concentration is at its lowest value when x = 0 and reaches its maximum value when x = 1
for all the geometries of the enzyme. The impact of the parameters on the system is analyzed by
varying the values of the dimensionless Michaelis–Menten constant β, the Thiele modulus α, and the
Biot number Bi. From these figures, it is observed that β is directly proportional to the substrate since
as the values of these parameters increase, the concentration also increases, which can be observed in
Figures 2(a), 3(a) and 4(a), and the same can be observed for Biot number Bi which is observed in
Figures 2(c), 3(c) and 4(c), whereas in the case of α, an increase in values decreases the concentration,
which can be observed in Figures 2(b), 3(b) and 4(b).
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Figure 2. Comparison of dimensionless concentration profile of substrate versus the distance
x of the planar pellets for (a) various values of β; (b) various values of α; (c) various values
of Bi when t = 5, ‘· · · ’ indicate the numerical results and ‘∗ ∗ ∗’ depict the analytical results
by HPM.
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Figure 3. Comparison of dimensionless concentration profile of substrate versus the distance
x of the cylindrical pellets for (a) various values of β; (b) various values of α; (c) various
values of Bi when t = 5, ‘· · · ’ indicate the numerical results and ‘∗ ∗ ∗’ depict the analytical
results by HPM.
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Figure 4. Comparison of dimensionless concentration profiles of substrate versus the
distance x of the spherical pellets for (a) various values of β; (b) various values of α; (c)
various values of Bi when t = 5, ‘· · · ’ indicate the numerical results and ‘∗ ∗ ∗’ depict the
analytical results by HPM.

6.1. Effectiveness factor

The effectiveness factor (EF) depicts the reaction rate ratio within the pellet to the reaction rate at
its external surface. It is a unit-less metric ranging from 0 to 1, reflecting the efficiency of the catalyst.
As the reaction rate increases throughout the entire volume of the pellet, η approaches 1, whereas η
approaches its minimum when the pellet experiences a slower reaction. The semi-analytical expression
for the EF of the system is presented in Eq (3.4). By substituting the values of g = 1, 2, 3, we get semi-
analytical expressions for the EF of different geometric pellets, namely planar Eq (4.3), cylindrical Eq
(4.6), and spherical Eq (4.9), which are derived using the HPM.

Figures 5–7 represent the variation in the effectiveness factor of the system with respect to the
dimensionless time t in various geometries of catalytic pellets. It is seen that the effectiveness factor
and the dimensionless time are directly proportional since, as the time increases, the effectiveness
factor also increases for every geometric of catalytic pellets. It can be observed from the figures that
the EF gradually increases with an increase in time, and then it attains equilibrium when t ≥ 10. Also,
when there is an increase in the dimensionless Michaelis–Menten constant β, the effectiveness factor
also increases, as can be seen in Figures 5(a), 6(a), and 7(a), whereas in the case of the Thiele modulus
α, as it increases, the effectiveness factor decreases gradually, as can be observed in Figures 5(b), 6(b),
and 7(b).
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Figure 5. Effectiveness factor versus (a) Michaelis–Menten constant β for fixed parameters
α = 1 and Bi = 1; (b) Thiele modulus α for fixed parameters β = 10 and Bi = 1 for various
values of time t for planar pellets.
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Figure 6. Effectiveness factor versus (a) Michaelis–Menten constant β for fixed parameters
α = 1 and Bi = 1; (b) Thiele modulus α for fixed parameters β = 10 and Bi = 1 for various
values of time t for cylindrical pellets.
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Figure 7. Effectiveness factor versus (a) Michaelis–Menten constant β for fixed parameters
α = 1 and Bi = 1; (b) Thiele modulus α for fixed parameters β = 10 and Bi = 1 for various
values of time t for spherical pellets.

6.2. Analysis of parameters sensitivity

Partial derivatives with respect to the parameters indicate the degree of the solution’s responsiveness
to parameter changes. This study showcases the impact of each parameter on the system’s EF in
enzyme kinetics, identifying critical factors that significantly influence the system. Consequently, this
analysis not only guides experimental design and optimization efforts but also enhances understanding
of the system’s robustness, reliability, and performance under varying conditions. Figure 8 depicts the
influence and parameter effects on the EF of the system. Parametric values utilized for analysis are
β = 10, α = 1, Bi = 1, and t = 5.

Figure 8. Parameters effect on effectiveness factor.

From Figure 8, it is observed that the Thiele modulus α has the most effect on the effective
performance of the reaction diffusion of the system at 90%. This shows that the diffusion parameter
De, the Michaelis–Menten constant Km, and the maximum enzymatic rate Vmax have a major effect on
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the system. The second most affecting parameter is the biot number Bi, with 6%, which implies that
the external mass transfer resistance affects the system considerably. The parameter that has the least
effect on the EF is α at 4%, which shows that the bulk substrate concentration has less effect on the EF
of the system.

7. Conclusions

The HPM and Laplace transform have been successfully applied to obtain an approximate analytical
solution of the non-linear time-dependent reaction diffusion equation of the immobilized enzyme
kinetic model with external mass transfer resistance and the effectiveness factor. Closed-form semi-
analytical expressions of substrate concentration for planar, cylindrical, and spherical enzyme catalytic
pellets and their corresponding semi-analytical expressions of EF are also derived and analyzed. The
obtained semi-analytical expression is compared with the numerical solution using the MATLAB
program to achieve satisfactory results for all parameter values. It is found that the effectiveness factor
of the system is most sensitive to the Thiele modulus α, followed by Biot number Bi.

The obtained analytical expressions provide a precise understanding of the enzyme kinetics of the
immobilized enzyme system with mass transfer resistance, which can be utilized in the areas where
immobilized enzymes are used, namely, biosensors, batch reactors, food, textile, and pharmaceutical
industries. This proposed method can be applied to solve time-dependent partial differential problems
that arise in various fields of research.
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Appendix

Approximate analytical solution of Eq (2.6) using HPM and Laplace transform

The homotopy for the governing equation is constructed as

(1 − p)
[
∂C
∂t
−
∂2C
∂x2 −

g − 1
x
∂C
∂x
+

α2C
1 + βC(1, t)

]
+ p

[
∂C
∂t
−
∂2C
∂x2 −

g − 1
x
∂C
∂x
+
α2C

1 + βC

]
= 0, (7.1)

we consider that when t → ∞ the substrate concentration C(1, t) ≈ 1 to linearize the equation for
effective computation of the governing equation by utilizing HPM

(1 − p)
[
∂C
∂t
−
∂2C
∂x2 −

g − 1
x
∂C
∂x
+
α2C
1 + β

]
+ p

[
∂C
∂t
−
∂2C
∂x2 −

g − 1
x
∂C
∂x
+
α2C

1 + βC

]
= 0, (7.2)

the solution of the substrate concentration is given as

C(x, t) = C0(x, t) + p C1(x, t) + p2 C2(x, t) + · · · , (7.3)

by substituting the above equation in Eq (7.2) and for the initial power of the p, we get

p0 :
∂C0

∂t
−
∂2C0

∂x2 −
g − 1

x
∂C0

∂x
+ aC0 = 0, (7.4)

where the constant a = α2

1+β .
Then, by applying the transform by Laplace method, we get

d2C̃0(x, s)
dx2 +

g − 1
x

dC̃0(x, s)
dx

− (s + a) C̃0(x, s) = 0, (7.5)

with the boundaries

at x = 0,
dC̃0(x, s)

dx
= 0, (7.6)

at x = 1,
dC̃0(x, s)

dx
=

Bi(1 − l)
s
, (7.7)

where C̃0(x, s)is the Laplace transform of C0(x, t).
By utilizing the AGM the solution is assumed as

C̃0(x, s) = A cosh(mx) + B sinh(mx), (7.8)

by utilizing the boundary conditions Eqs (7.6) and (7.7) we obtain the solution of the substrate as

C̃0(x, s) =
Bi(1 − l) cosh (mx)

ms sinh(m)
, (7.9)

by using the Eq (7.9) into Eq (7.5) the constant m is obtained as

m =
√

s + a
g
. (7.10)

AIMS Mathematics Volume 9, Issue 7, 18083–18102.



18101

By substituting the above values in Eq (7.9)

C̃0(x, s) =
Bi(1 − l) cosh

(√
s+a
g x

)
s
√

s+a
g sinh

(√
s+a
g

) . (7.11)

By using complex inversion formula

C0(x, t) =
1

2πi

∫ x+i∞

x−i∞
estC̃0(x, s)ds = sum of residues at all poles lie inside the range (x − i∞, x + i∞).

(7.12)
Hence, in order to invert Eq (7.11) the residues are at s = 0, s = −a are simple poles and the sn =

−gn2π2 − a, where n = 1, 2, 3, · · · generates infinitely many poles as the solution of sinh
(√

s+a
g

)
= 0

Res
[

Bi (1−l) cosh
(
x
√

s+a
g

)
s
√

s+a
g sinh

(√
s+a
g

)
]
= Res

[
Bi (1−l) cosh

(
x
√

s+a
g

)
s
√

s+a
g sinh

(√
s+a
g

)
]

s=0

+ Res
[

Bi (1−l) cosh
(
x
√

s+a
g

)
s
√

s+a
g sinh

(√
s+a
g

)
]

s=s−a

+ Res
[

Bi (1−l) cosh
(
x
√

s+a
g

)
s
√

s+a
g sinh

(√
s+a
g

)
]

s=sn

, (7.13)

the residue at s = 0 is given by

Res


Bi (1 − l) cosh

(
x
√

s+a
g

)
s

√
s+a
g sinh

(√
s+a
g

)


s=0

= lim
s→0


(s − 0)estBi(1 − l) cosh(

√
s+a
g x)√

s+a
g sinh(

√
s+a
g )



=

Bi (1 − l) cosh
(
x
√

a
g

)
√

a
g sinh

(√
a
g

) , (7.14)

at s = −a

Res


Bi (1 − l) cosh

(
x
√

s+a
g

)
s

√
s+a
g sinh

(√
s+a
g

)


s=−a

= lim
s→−a


(s + a)est cosh(

√
s+a
g x)√

s+a
g sinh(

√
s+a
g )


= −

g Bi (1 − l)
a

e−at, (7.15)

and at s = sn

Res


Bi (1 − l) cosh

(
x
√

s+a
g

)
s

√
s+a
g sinh

(√
s+a
g

)


s= sn

= lim
s→sn


est cosh(

√
s+a
g x)

d
ds sinh(

√
s+a
g )
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= −2g Bi (1 − l)
∞∑

n=0

e−t(gn2π2 + a) cos(nπx)
(gn2π2 + a)

, (7.16)

by adding Eqs (7.14)–(7.16) we get the solution expression, which is represented in Eq (3.1).
By substituting x = 1 in Eq (3.1) and upon simplification, we obtain the value of unknown l as in Eq
(3.2).
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