
The fractional generalized cumulative residual entropy, a broader version of the cumulative residual entropy, holds significance in assessing the uncertainty model of random variables and maintains straightforward connections with reliability models and crucial information. This article represents and modifies some novel features of the fractional generalized cumulative residual entropy and discusses the weak convergence. Additionally, the measure is utilized to assess uniformity, involving the derivation of the limit distribution and an approximation of the test statistic's distribution. Furthermore, the concept of stability is addressed. Moreover, the presentation includes the critical points and power analysis against alternative distributions of this test statistic. Furthermore, a simulation study is carried out to compare the power value of the proposed test with that of other tests of uniformity. Moreover, the uniformity test utilizes real data on daily smokers in the countries of the Euro Area. Finally, our model's exponential distribution is applied to our model's empirical form.
Citation: Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed. Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data[J]. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881
[1] | I. A. Husseiny, M. Nagy, A. H. Mansi, M. A. Alawady . Some Tsallis entropy measures in concomitants of generalized order statistics under iterated FGM bivariate distribution. AIMS Mathematics, 2024, 9(9): 23268-23290. doi: 10.3934/math.20241131 |
[2] | Mansour Shrahili, Mohamed Kayid . Uncertainty quantification based on residual Tsallis entropy of order statistics. AIMS Mathematics, 2024, 9(7): 18712-18731. doi: 10.3934/math.2024910 |
[3] | Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133 |
[4] | Mohamed Said Mohamed, Muqrin A. Almuqrin . Properties of fractional generalized entropy in ordered variables and symmetry testing. AIMS Mathematics, 2025, 10(1): 1116-1141. doi: 10.3934/math.2025053 |
[5] | Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy . Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics, 2023, 8(9): 20283-20304. doi: 10.3934/math.20231034 |
[6] | Mansour Shrahili, Mohamed Kayid, Mhamed Mesfioui . Stochastic inequalities involving past extropy of order statistics and past extropy of record values. AIMS Mathematics, 2024, 9(3): 5827-5849. doi: 10.3934/math.2024283 |
[7] | Mansour Shrahili . Some new results involving residual Renyi's information measure for $ k $-record values. AIMS Mathematics, 2024, 9(5): 13313-13335. doi: 10.3934/math.2024649 |
[8] | Abdulhakim A. Al-Babtain, Amal S. Hassan, Ahmed N. Zaky, Ibrahim Elbatal, Mohammed Elgarhy . Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIMS Mathematics, 2021, 6(4): 3889-3914. doi: 10.3934/math.2021231 |
[9] | Mashael A. Alshehri, Mohamed Kayid . Cumulative entropy properties of consecutive systems. AIMS Mathematics, 2024, 9(11): 31770-31789. doi: 10.3934/math.20241527 |
[10] | Zawar Hussain, Atif Akbar, Mohammed M. A. Almazah, A. Y. Al-Rezami, Fuad S. Al-Duais . Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data. AIMS Mathematics, 2024, 9(2): 4057-4075. doi: 10.3934/math.2024198 |
The fractional generalized cumulative residual entropy, a broader version of the cumulative residual entropy, holds significance in assessing the uncertainty model of random variables and maintains straightforward connections with reliability models and crucial information. This article represents and modifies some novel features of the fractional generalized cumulative residual entropy and discusses the weak convergence. Additionally, the measure is utilized to assess uniformity, involving the derivation of the limit distribution and an approximation of the test statistic's distribution. Furthermore, the concept of stability is addressed. Moreover, the presentation includes the critical points and power analysis against alternative distributions of this test statistic. Furthermore, a simulation study is carried out to compare the power value of the proposed test with that of other tests of uniformity. Moreover, the uniformity test utilizes real data on daily smokers in the countries of the Euro Area. Finally, our model's exponential distribution is applied to our model's empirical form.
Rao et al. [17] presented the concept of cumulative residual entropy (CRE) for a random variable (RV) X, which plays a significant role across various scientific disciplines for quantifying the uncertainty measure in the RV X. In this paper, X represents a non-negative RV characterized by the continuous cumulative distribution function (CDF) F along with its associated probability density function (PDF) f. The CRE is expressed as
Rn(X)=−∫∞0¯F(x)Θ(x)dx, | (1.1) |
where Θ(x)=log(¯F(x)), x>0. Numerous extensions of the CRE have been proposed, incorporating additional parameters to enhance their adaptability to a wide range of probability distribution shapes. Di Crescenzo and Longobardi [6], as well as Navarro et al. [13], introduced and examined a similar model known as cumulative entropy. This model is described concerning the CDF F as follows:
Cn(X)=−∫d0F(x)log(F(x))dx, | (1.2) |
where X is supported by (0,d). Xiong et al. [22] presented the fractional cumulative residual entropy in the following manner:
FRn(X)=∫∞0¯F(x)[−Θ(x)]γdx,0≤γ≤1. | (1.3) |
Adding a further term can result in a better relationship with other valuable measures. In particular, Di Crescenzo et al. [5] considered fractional generalized cumulative residual entropy (FGCRE) for any non-negative RV X. FGCRE is expressed as
FGCRnγ(X)=FGCRnγ(F)=G(γ)∫∞0¯F(x)[−Θ(x)]γdx, | (1.4) |
where G(γ)=1Γ(γ+1), γ≥0. Moreover, if γ=n∈N, thus G(n)=1n! which is the case studied by Psarrakos and Navarro [15] as the generalized cumulative residual entropy. It is evident that FGCRnγ(X) is regarded as a dispersion measure. Additionally, the measure relates to a nonhomogeneous Poisson process's inter-epoch intervals and relevance transformation, as shown in Toomaj and Di Crescenzo [19]. Moreover, Alomani and Kayid [3] discussed further properties of the FGCRE.
A helpful manual for goodness-of-fit testing with statistics derived from the empirical CDF was given by Stephens [18]. Moreover, [18] carried out power comparisons of several uniformity tests. Dudewicz and Van der Meulen [8] examined the power analysis of the uncertainty when employed for the uniformity test. Additionally, by contrasting it with other uniformity tests, they demonstrated that the entropy-based test has strong power attributes for diverse alternatives. Noughabi [14] examined some of the aspects of the CRE and created a uniformity test based on it. He also contrasted the power and percentage points of seven different distributions. To test for consistency, Mohamed et al. [11,12] employed fractional CRE and cumulative residual Tsallis entropy measurements, respectively.
In this consideration, the FGCRE is employed to conduct a uniformity test. It is found in the study that the test conducted under FGCRE is being compared with other tests in terms of power. The succeeding contents of this article are arranged in the subsequent order: In Section 2, we reintroduce and modify some properties of the FGCRE. Section 3 introduces the FGCRE test statistic for assessing uniformity and examines specific characteristics, such as stability. In Section 4, we suggest techniques for determining the percentile values of FGCRE. Moreover, we compute the percentile values of FGCRE. Section 5 employs a Monte Carlo method to compare the power of various tests for uniformity against alternative distributions. Besides, we use the real data of the daily smokers in the countries of the Euro Area to get the test power estimations. At the end of the article, we apply the empirical form of the FGCRE to the exponential distribution.
This section will discuss some further aspects of the FGCRE. Alomani and Kayid presented the following theorem [3], and we will represent its proof with more details and modifications.
Theorem 2.1. Provided that the random vector (RVT) X={Xj}nj=1 in Rn. Therefore, from (1.4), we have:
(1) For some m>1γ, Xj∈Lm, E[|Xj|m]<∞, 1≤j≤n. Thus, for all 0<γ<1, FGCRnγ(X)<∞.
(2) For some m>γ, Xj∈Lm, E[|Xj|m]<∞, 1≤j≤n. Thus, for all γ≥1, FGCRnγ(X)<∞.
Proof. We can readily verify that the function defined by h(x;γ)=G(γ)x[−Θ(x)]γ reaches its maximum value G(γ)γγeγ, at x0=e−γ, for all 0≤x≤1 and γ≥0. In addition, we have
0≤h(x;γ)≤G(γ)γγeγ≤1,0≤x≤1,γ≥0. | (2.1) |
In the sequel, it is important to prove the following inequality:
h(x;γ)≤G(γ)γγeγxλ(1−λ)γ=G(γ)γγeγw(x;γ),0≤x≤1, | (2.2) |
where w(x;γ)=xλ(1−λ)γ, λ=γ when 0≤γ≤1, λ=1γ when γ≥1, and in both cases we have 0≤λ≤1. The inequality (2.2) has two cases: first, if w(x;γ)≥1 it holds, Second, if w(x;γ)<1, we get x<(1−λ)γλ. Therefore, the ratio
h(x;γ)w(x;γ)eγG(γ)γγ=G(γ)x1−λ(−logx)γ(1−λ)γeγG(γ)γγ≤G(γ)(1−λ)γλ(1−λ)(−log[(1−λ)γλ])γ(1−λ)γeγG(γ)γγ=G(γ)(1−λ)γλ(−log[(1−λ)γλ])γeγG(γ)γγ≤G(γ)γγeγeγG(γ)γγ=1, |
where the last line is obtained from (2.1) (i.e. G(γ)(1−λ)γλ(−log[(1−λ)γλ])γ≤G(γ)γγeγ, 0≤λ≤1). Figure 1 shows the behavior of functions.
Next, for each γ≥0, from the inequality (2.2), we have
G(γ)P[|Xj|>xj,1≤j≤n][−logP[|Xj|>xj,1≤j≤n]]γ≤G(γ)γγeγ(P[|Xj|>xj,1≤j≤n])λ(1−λ)γ≤G(γ)γγeγ(1−λ)γn∏j=1¯Fλn|Xj|(xj). | (2.3) |
By integrating both sides of (2.3) across Rn+={xj∈Rn;xj≥0} and employing the Markov inequality, the result obtained is:
FGCRnγ(X)≤G(γ)γγeγ(1−λ)γ∫Rn+n∏j=1¯Fλn|Xj|(xj)dxj=G(γ)γγeγ(1−λ)γn∏j=1{∫∞0ˉFλn∣Xj∣(xj)dxj}=G(γ)γγeγ(1−λ)γn∏j=1{∫10ˉFpN∣Xi∣(xi)dxi+∫∞1ˉFλn∣Xj∣(xj)dxj}≤G(γ)γγeγ(1−λ)γn∏j=1{1+∫∞1[1xmjE[|Xj|m]]λndxj}, |
if mλn>1, then it is finite. Therefore, for any m>n, we can select λ<1 (close to one sufficiently) such that mλn>1, and consequently, the outcome holds.
Theorem 2.2. Suppose that the N-dimensional RVTs Xn is converge in distribution to a RVT X (i.e., Xn dis⟶nX). Moreover, let m>N, Xn∈Lm, for all n. Then,
limn→+∞FGCRnγ(Xn)=FGCRnγ(X). |
[Weak convergence]
Proof. Since Xn dis⟶nX, we have
limn→+∞ˉF|Xn|(x)(−logˉF|Xn|(x))γ=ˉF|X|(x)(−logˉFθ|X|(x))γ,x∈RN+. |
On the other hand, from (2.3), we have
G(γ)¯F|Xn|(x)(−log¯F|Xn|(x))γ≤G(γ)γγeγ(1−λ)γN∏j=1¯FλN|Xj|(xj)≤G(γ)γγeγ(1−λ)γN∏j=1[I[0,1](xj)+x−mjI[1,∞)(xj)E(|Xnj|m)]λN. |
The jth component of the RVT Xn is denoted by Xnj, and IA(x) represents the indicator function, defined as IA(x)=1 if x∈A, and IA(x)=0 if x∉A. Hence, when mλN>1, the expression ¯F|Xn|(x)(−log¯F|Xn|(x))γ is constrained by a function that is integrable. Additionally, for any m>N, it is possible to select λ<1 close enough to one such that mλN>1. The proof is concluded by applying the dominated convergence theorem.
Alomani and Kayid presented the following theorem [3], and we will represent its proof with modifications and more details. Below, we demonstrate that the measure FGCRnγ(X) prevails over the classical Shannon entropy, a condition that can occur when X possesses a density.
Theorem 2.3. Provided that the non-negative RV X follows CDF FX(x), thus, we have
FGCRnγ(X)≥T(γ)eSHn(X),γ≥0, |
where T(γ)=e∫10log(G(γ)x(−logx)γ)dx<∞ and SHn(X)=−∫∞0f(x)logf(x)dx is the classical Shannon entropy.
Proof. Since, the log-sum inequality indicates for the following expression that
∫∞0f(x)log(f(x)G(γ)¯F(x)(−log¯F(x))γ)dx≥log1∫∞0G(γ)¯F(x)(−log¯F(x))γdx=−logFGCRnγ(X). | (2.4) |
Moreover, the expression on the left-hand side in Eq (2.4) is obtained as
∫∞0fX(x)log(fX(x)G(γ)¯F(x)(−log¯F(x))γ)dx=−SHn(X)−∫10log(G(γ)x(−logx)γ)dx. |
Therefore,
logFGCRnγ(X)≥SHn(X)+∫10log(G(γ)x(−logx)γ)dx. | (2.5) |
After exponentiating both sides of (2.5) and employing (2.1), the outcome emerges, wherein T(γ)=e∫10ln(G(γ)x(−logx)γ)dx≤G(γ)γγeγ≤1 remains finite. This concludes the proof.
Suppose we have X1,X2,...,Xn as a random sample following a continuous CDF F supported in the interval [0,1]. Additionally, the corresponding order statistics are denoted by X(1)≤X(2)≤...≤X(n). For FGCRnγ(F), we can propose its estimator as FGCRnγ(Fn)=∫∞0g(ˉFn(x);γ)dx,γ>0, where ˉFn(x)=1−Fn(x) and Fn(x) represents the empirical CDF, which is expressed as
Fn(x)=n−1∑j=1jnI[X(j),X(j+1))(x)+I[X(n),∞)(x),x∈R. | (3.1) |
Furthermore, for the purpose of obtaining a consistent test of the uniformity hypothesis, we think of employing a consistent statistical test as follows:
Tn(γ)=G(γ)n−1∑j=1(1−jn)[−log(1−jn)]γ(X(j+1)−X(j))=n−1∑j=1MjΩj, | (3.2) |
where Mj=G(γ)(1−jn)[−log(1−jn)]γ, γ>0, and Ωj=(X(j+1)−X(j)), j=1,2,...,n−1.
Theorem 3.1. The test relying on the sample estimate Tn(γ) maintains its consistency.
Proof. Based on the Glivenko-Cantelli theorem, as discussed in Howard [9], it can be inferred that supy|Fn(y)−F(y)|a.s.⟶n0 (i.e., almost surely as n tends to ∞). Furthermore, it can be readily claimed that FGCRnγ(Fn)a.s.⟶nFGCRnγ(F), and the proof holds.
In order to set up the uniformity test based on the null hypothesis H0, the following theorem is required.
Theorem 3.2. If the non-negative RV X adheres to a CDF F with support on [0,1], then 0≤FGCRnγ(F)≤G(γ)γγeγ holds. Additionally, the value 12γ+1 is exclusively achieved by the standard uniform distribution (i.e., U(0,1)) for all γ>0.
Proof. We can see that the inequality 0≤FGCRnγ(F)≤G(γ)γγeγ can be readily derived from (2.1). Simultaneously, leveraging the strict concavity of h(x;γ)=G(γ)x(−logx)γ, we establish that FGCRnγ(F) returns a distributions of concave function supporting with [0,1]. Consequently, FGCRnγ(F)=12γ+1 is exclusively attained by the U(0,1) distribution. This validates the proof.
Remark 3.1. Due to the convergence in probability as n approaches to ∞, we have FGCRnγ(Fn)p⟶nFGCRnγ(F), therefore we observe Tn(γ)p⟶n12γ+1 under the null hypothesis H0. Conversely, under the hypothesis of alternative (that F represents any CDF supported with the interval [0,1], except for the U(0,1) distribution), Tn(γ)p⟶nδ, where δ could be either smaller or larger than 12γ+1.
Theorem 3.3. If X1,X2,...,Xn are defined as a random sample taken from an unspecified continuous CDF F on the interval [0,1], then Tn(γ) satisfies the inequality 0≤Tn(γ)≤G(γ)γγeγ, where γ>0.
Proof. Considering Eq (2.1), we find that
0≤Tn(θ)≤n−1∑j=1G(γ)γγeγΩj=G(γ)γγeγ(X(n)−X(1))≤G(γ)γγeγ. |
This concludes the result.
Theorem 3.4. Under the null hypothesis H0, the mean and variance of the statistic Tn(γ) are provided, respectively, by
E(Tn(γ))=1n+1n−1∑j=1Mj,andVar(Tn(γ))=n(n+1)2(n+2)n−1∑j=1M2j. |
Proof. It is evident that for every j=1,2,...,n−1, the RV Ωj, which follows a U(0,1) distribution, possesses a beta distribution based on the (1,n) parameter-vector, denoted as Ωj∼Beta(1,n) (cf. [4]). This concludes the proof.
Remark 3.2. Under H0, we obtain limn→∞E(Tn(γ))=12γ+1 and limn→∞Var(Tn(γ))=0.
The interval [lower,upper]:=[FGCRnoγ,α2,FGCRnoγ,1−α2] delineates the region crucial for defining the uniformity test, where α denotes the specified level of significance, and FGCRnoγ,α represents the α−quantile function of the approximate or asymptotic CDF FGCRnγ(Fn) test statistic under the null hypothesis H0.
The stability of information measures has been explored in various literature sources, as noted in references [1,2,22]. Similarly, we introduce the concept of stability for the FGCRnγ in the subsequent definition.
Definition 3.1. If X1,X2,...,Xn constitute a random sample following a continuous CDF F, and χ1,χ2,...,χn represent any minor alterations from this random sample. The empirical FGCRnγ remains stable provided that for every τ>0, ∃ θ>0, the condition ∑nk=1|Xk−χk|<θ implies |FGCRnγ(ˉFn(X))−FGCRnγ(ˉFn(χ))|<τ, where n∈Z+.
The following theorem provides a condition sufficient for determining the stability of the empirical FGCRnγ.
Theorem 3.5. Provided any continuous RV X, the empirical FGCRnγ is stable if X is distributed on finite, closed, or open intervals.
Proof. Assuming that the RV X is confined within the finite interval [α,β], where α≥0 and β<∞. For the brevity sake, denote Wk=g(ˉFn(X(k));γ), W′k=g(ˉFn(χ(k));γ), and Ω′k=χ(k+1)−χ(k), then, the empirical FGCRnγ can be obtained based on (3.2) as FGCRnγ(ˉFn(X))=G(γ)∑n−1k=1WkΩk, γ≥0. Thus, when ∑nk=1|Xk−χk|<θ, we get
|FGCRnγ(ˉFn(X))−FGCRnγ(ˉFn(χ))|=|n−1∑k=1WkΩk−n−1∑k=1W′kΩ′k|=|n−1∑k=1(Wk−W′k)Ωk+n−1∑k=1W′k[Ωk−Ω′k]|≤n−1∑k=1|Wk−W′k|Ωk+n−1∑k=1W′k[|(X(k+1)−X′(k+1))|+|(X(k)−X′(k))|]≤G(γ)τ2(β−α)(X(n)−X(1))+2θ. |
The validity of the second part in the second inequality line is justified concerning (2.1). Conversely, the justification for the first part of that inequality stems from the reality that, for any t′, t″, and arbitrarily small \theta^\star > 0 , there exists \tau^\star > 0 where |{\bar F}n(x')-{\bar F}n(x'')| < \tau^\star whenever |t'-t''| < \theta^\star (cf. [22]), which implies \left|W_k-W_k'\right|\leq \frac{\tau}{2 (\beta-\alpha)} whenever \sum{k = 1}^{n}|X{k}- \chi_{k}| < \theta . Now, selecting \theta = \frac{\tau}{4} yields G(\gamma)\frac{\tau}{2 (b-a)}(X_{(n)}-X_{(1)})+2\theta\leq \tau . This concludes the proof.
In this part, we figure out the asymptotic distribution of {\cal T}_{n}(\gamma) , assuming the null hypothesis, by using three different methods. From (3.2), recall the test statistic {\cal T}_{n}(\gamma) = \sum_{j = 1}^{n-1}{\cal R}_{j} = \sum_{j = 1}^{n-1}{\cal M}_{j}\Omega_j , then we have
\frac{\sum\nolimits_{j = 1}^{n-1}({\cal R}_{j}-\mu_{j})}{\sqrt{\sum\nolimits_{j = 1}^{n-1}\sigma^{2}_{j}}} = \frac{{\cal T}_{n}(\gamma)-E({\cal T}_{n}(\gamma))}{\sqrt{Var({\cal T}_{n}(\gamma))}} { \begin{array}{c} \stackrel{dis}{\longrightarrow}\\ {n\rightarrow \infty}\end{array}}Z |
where the RV {\cal R}_{j} has the PDF
\begin{equation*} f_{{\cal R}_{j}}(y) = \frac{n}{\Omega_{j}}\left(1-\frac{y}{\Omega_{j}}\right)^{n-1}, \; j = 1, 2, ..., n-1, \end{equation*} |
the RV Z represents the standard normal distribution (i.e., N(0, 1) ), and \Omega_j\sim \; Beta(1, n) . Therefore, the mean and variance of {\cal R}_{j} are \mu_{j} = E({\cal R}_{j}) = {\cal M}_{j}\mbox{E}(\Omega_j) = \frac{{\cal M}_{j}}{n+1} and \sigma^{2}_{j} = \mbox{Var}(R_{i}) = {\cal M}^{2}_{i}\mbox{Var}(\Omega_j) = \frac{n {\cal M}^2_{i}}{(n+1)^{2}(n+2)} . Therefore, the first procedure to obtain the percentage point FGCRn^{o}_{\gamma, \alpha} by using the normal asymptotic of {\cal T}_{n}(\gamma) (normal approximation percentage points) is given by
\begin{equation} \widehat{FGCRn}_{\gamma, \alpha}^{o} = E({\cal T}_{n}(\gamma))+\sqrt{Var({\cal T}_{n}(\gamma))} Z_{\alpha}. \end{equation} | (4.1) |
Johannesson and Giri [10] illustrated an approximation method for the CDF of a linear combination of a limited number of RVs following the beta distribution. Noughabi [14] employed this finding to approximate and estimate the percentage points of the FGCRn_{\gamma} for finite values of n . By employing a comparable approach, an approximation method for {\cal T}_{n}(\gamma) for limited values of n can be derived from the following expression (beta approximation percentage points):
\begin{equation} lower: = \left(\sum\limits_{j = 1}^{n-1}{\cal M}_{j}\right) Beta^{-1}\left(\frac{\alpha}{2};\nu_{1}, \nu_{2}\right)\; \; \mbox{and}\; \; upper: = \left(\sum\limits_{i = 1}^{n-1}{\cal M}_{j}\right) Beta^{-1}\left(1-\frac{\alpha}{2};\nu_{1}, \nu_{2}\right), \end{equation} | (4.2) |
such that Beta^{-1}(\nu_{1}, \nu_{2}) is the function of quantile of Beta(\nu_{1}, \nu_{2}) distribution, with
\begin{equation} \nu_{1} = \frac{(n+2)(\sum\nolimits_{j = 1}^{n-1}{\cal M}_{j})^{2}}{(n+1)(\sum\nolimits_{j = 1}^{n-1}{\cal M}_{j}^{2})}-\frac{1}{n+1}\; \; \mbox{and}\; \nu_{2} = \frac{n}{n+1}\left(\frac{(n+2)(\sum\nolimits_{j = 1}^{n-1}{\cal M}_{j})^{2}}{\sum\nolimits_{j = 1}^{n-1}{\cal M}_{j}^{2}}-1\right). \end{equation} | (4.3) |
Moreover, in this second procedure, we have
\mbox{E}({\cal T}_{n}(\gamma)) = \left(\sum\limits_{j = 1}^{n-1}{\cal M}_{j}\right)\frac{\nu_{1}}{\nu_{1}+\nu_{2}}\; \; \mbox{and}\; \; \mbox{Var}({\cal T}_{n}(\gamma)) = \left(\sum\limits_{j = 1}^{n-1}{\cal M}_{j}\right)^{2}\frac{\nu_{1}\;\nu_{2}}{(\nu_{1}+\nu_{2})^{2}(\nu_{1}+\nu_{2}+1)}. |
We produce 50,000 with n = 10, 20, 30, 40, 50, 70,100 , samples of sizes from U(0, 1) . Employing (3.2), the test statistic {\cal M}_{n}(\gamma) is assessed through the empirical FGCRE for each sample. Additionally, FGCRn_{1.5}(U) = 0.1767 , FGCRn_{2}(U) = 0.125 , FGCRn_{2.5}(U) = 0.0883 , FGCRn_{3}(U) = 0.0625 , FGCRn_{3.5}(U) = 0.04419 , and FGCRn_{4}(U) = 0.03125 , where FGCRn_{\gamma}(U) represents the FGCRE of the CDF U(0, 1) . Consequently, for {\cal M}_{n}(\gamma) , the percentage points of the Monte Carlo procedure, asymptotic normality, and beta approximation are presented. Table 1 indicates that:
n | \gamma | {\cal T}_{n}(\gamma) | |||||
Normal procedure | Beta procedure | Monte Carlo procedure | |||||
lower | upper | lower | upper | lower | upper | ||
10 | 1.5 | 0.05111 | 0.26028 | 0.06789 | 0.2748 | 0.08935 | 0.21938 |
2 | 0.02804 | 0.18601 | 0.04206 | 0.19801 | 0.05442 | 0.166307 | |
2.5 | 0.01316 | 0.1316 | 0.0249 | 0.1415 | 0.03198 | 0.12451 | |
3 | 0.00446 | 0.09171 | 0.01414 | 0.09973 | 0.01851 | 0.09109 | |
3.5 | 0.0000131 | 0.0624 | 0.00771 | 0.06876 | 0.010435 | 0.06467 | |
4 | -0.00181 | 0.04146 | 0.00406 | 0.04617 | 0.00573 | 0.04438 | |
20 | 1.5 | 0.08533 | 0.24809 | 0.09508 | 0.2569 | 0.1195 | 0.2108 |
2 | 0.0544 | 0.1789 | 0.06262 | 0.18625 | 0.07662 | 0.15841 | |
2.5 | 0.03322 | 0.1289 | 0.04021 | 0.1351 | 0.04831 | 0.1188 | |
3 | 0.01912 | 0.09252 | 0.02512 | 0.0977 | 0.03005 | 0.08848 | |
3.5 | 0.01014 | 0.0658 | 0.01524 | 0.07022 | 0.018291 | 0.06513 | |
4 | 0.00473 | 0.04619 | 0.00898 | 0.0498 | 0.01096 | 0.04727 | |
30 | 1.5 | 0.1016 | 0.2388 | 0.1084 | 0.2451 | 0.13225 | 0.20597 |
2 | 0.06712 | 0.1722 | 0.0728 | 0.1775 | 0.086707 | 0.15337 | |
2.5 | 0.04315 | 0.1244 | 0.04806 | 0.1289 | 0.05625 | 0.11429 | |
3 | 0.02682 | 0.08985 | 0.03108 | 0.09369 | 0.03592 | 0.08478 | |
3.5 | 0.01596 | 0.06459 | 0.01965 | 0.06787 | 0.02277 | 0.06263 | |
4 | 0.00897 | 0.04609 | 0.0121 | 0.0488 | 0.01417 | 0.04608 | |
40 | 1.5 | 0.1115 | 0.2323 | 0.1168 | 0.2372 | 0.13903 | 0.20322 |
2 | 0.07484 | 0.1674 | 0.0792 | 0.1715 | 0.09237 | 0.15037 | |
2.5 | 0.04922 | 0.12101 | 0.053 | 0.1244 | 0.06073 | 0.11151 | |
3 | 0.0316 | 0.0874 | 0.0348 | 0.0904 | 0.039576 | 0.082705 | |
3.5 | 0.01968 | 0.06312 | 0.0225 | 0.06571 | 0.02547 | 0.061189 | |
4 | 0.01179 | 0.0453 | 0.0142 | 0.0475 | 0.01618 | 0.04496 | |
50 | 1.5 | 0.1184 | 0.2275 | 0.1226 | 0.2315 | 0.143706 | 0.20105 |
2 | 0.08014 | 0.1638 | 0.0837 | 0.1671 | 0.09613 | 0.14799 | |
2.5 | 0.0534 | 0.1183 | 0.05646 | 0.1211 | 0.06382 | 0.10945 | |
3 | 0.03491 | 0.0855 | 0.0375 | 0.088 | 0.04207 | 0.08094 | |
3.5 | 0.02229 | 0.06182 | 0.0246 | 0.0639 | 0.027419 | 0.05976 | |
4 | 0.01381 | 0.04455 | 0.01586 | 0.0464 | 0.01768 | 0.04407 | |
70 | 1.5 | 0.12746 | 0.2207 | 0.1305 | 0.2236 | 0.14923 | 0.19757 |
2 | 0.0871 | 0.1586 | 0.08974 | 0.16115 | 0.10083 | 0.14492 | |
2.5 | 0.0589 | 0.1144 | 0.06112 | 0.1165 | 0.067702 | 0.10659 | |
3 | 0.0392 | 0.0826 | 0.04121 | 0.0845 | 0.045185 | 0.07838 | |
3.5 | 0.0257 | 0.0597 | 0.0274 | 0.0613 | 0.029963 | 0.05775 | |
4 | 0.0165 | 0.04319 | 0.01804 | 0.04457 | 0.019673 | 0.042546 | |
100 | 1.5 | 0.1355 | 0.2142 | 0.1377 | 0.2163 | 0.154169 | 0.194932 |
2 | 0.0933 | 0.1537 | 0.0952 | 0.1555 | 0.105001 | 0.14239 | |
2.5 | 0.0638 | 0.1106 | 0.0653 | 0.1121 | 0.071237 | 0.104129 | |
3 | 0.04316 | 0.07985 | 0.04453 | 0.08115 | 0.048081 | 0.076222 | |
3.5 | 0.02885 | 0.05769 | 0.03006 | 0.05882 | 0.032291 | 0.05591 | |
4 | 0.01901 | 0.04169 | 0.04269 | 0.02008 | 0.02154 | 0.040977 |
(1) Under fixed n and increasing \gamma , the discrepancy between percentage points diminishes.
(2) Under fixed \gamma and increasing n , the discrepancy between percentage points diminishes.
Moreover, it transpires that the difference among the three methods is not significant for {\cal M}_{n}(\gamma) . Figure 2 illustrates the empirical PDFs of the test statistics via Monte Carlo simulation samples with n = 10, 20, 30, 50,100. It is observed that the test statistics converge closer to the exact values as n increases, implying a reduction in bias and variance with increasing n .
In this section, we investigate the power analysis of the Monte Carlo simulation procedure across different distributions. The value of the power of {\cal T}_{n}(\gamma) is gauged by the ratio of generated samples falling within the critical region. Across the distributions of seven alternatives, the power analysis of {\cal T}_{n}(\gamma) is evaluated using the Monte Carlo procedure with 50,000 generated samples for each sample size of n = 10, 20, 30 . The alternative distributions, as outlined by Stephens [18] in the investigation of uniformity tests, are utilized for this analysis by
\begin{equation} \begin{split} &U1_{p}: F(t) = 1-(1-t)^{p}, \; \; \; \; \; 0\leq t\leq 1, p = 1.5, 2, \\&U2_{p}: F(t) = \begin{cases} 2^{p-1}t^{p}, \; \; \; \; \; 0\leq t\leq 0.5, \\ 1-2^{p-1}(1-t)^{p}, \; \; \; \; \; 0.5\leq t\leq 1, p = 1.5, 2, 3, \\ \end{cases} \\&U3_{p}: F(t) = \begin{cases} 0.5-2^{p-1}(0.5-t)^{p}, \; \; \; \; \; 0\leq t\leq 0.5, \\ 0.5+2^{p-1}(t-0.5)^{p}, \; \; \; \; \; \; 0.5\leq t\leq 1, p = 1.5, 2. \\ \end{cases} \end{split} \end{equation} | (5.1) |
According to Stephens' report [18], family U1_p yields points closer to zero than expected under the assumption of uniformity, understood as a shift in the mean. Alternative U2_p produces points near 0.5, indicating a trend towards reduced variance, while family U3_p exhibits two clusters near 0 and 1, suggesting an increase in variance. Consequently, Stephens proposed that alternatives U1 and U2 yield points near 0 and 1, respectively, while alternative U3 produces points near 0 and 1. Our test's performance is compared to several omnibus tests, including Kolmogorov-Smirnov (Ko-S), Kuiper (Ku), Cramer-von Mises (C-v-M), Watson (Wn), and Anderson-Darling (An-D). These tests enjoy widespread popularity among practitioners in various fields. Based on the information presented in Table 2, the following conclusions can be drawn:
n | Alternative | {\cal T}_{n}(\gamma) | Ko-S | Ku | C-v-M | Wn | An-D | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | |||||||
10 | U1_{1.5} | 0.0634 | 0.07052 | 0.07568 | 0.07706 | 0.07736 | 0.12606 | 0.0756 | 0.1456 | 0.07776 | 0.1877 |
U1_{2} | 0.08758 | 0.09094 | 0.0963 | 0.09948 | 0.09904 | 0.30288 | 0.1631 | 0.3551 | 0.16308 | 0.4761 | |
U2_{1.5} | 0.08864 | 0.0684 | 0.05484 | 0.0495 | 0.04642 | 0.07351 | 0.0971 | 0.0741 | 0.1017 | 0.1349 | |
U2_{2} | 0.21018 | 0.14052 | 0.09818 | 0.07792 | 0.05628 | 0.1184 | 0.2307 | 0.1104 | 0.2481 | 0.3269 | |
U2_{3} | 0.53166 | 0.35484 | 0.23366 | 0.1677 | 0.102 | 0.2424 | 0.5394 | 0.2154 | 0.5699 | 0.72308 | |
U3_{1.5} | 0.10784 | 0.09594 | 0.08626 | 0.0802 | 0.07318 | 0.0342 | 0.0974 | 0.0239 | 0.1031 | 0.0222 | |
U3_{2} | 0.18994 | 0.14916 | 0.12638 | 0.1174 | 0.10704 | 0.0402 | 0.2331 | 0.01114 | 0.2475 | 0.00924 | |
20 | U1_{1.5} | 0.06514 | 0.0975 | 0.1265 | 0.14224 | 0.14578 | 0.2179 | 0.1226 | 0.25208 | 0.1225 | 0.3235 |
U1_{2} | 0.08716 | 0.1263 | 0.18412 | 0.2219 | 0.23662 | 0.5616 | 0.3486 | 0.6241 | 0.3358 | 0.7538 | |
U2_{1.5} | 0.14064 | 0.07482 | 0.04944 | 0.04448 | 0.05096 | 0.0869 | 0.1634 | 0.0781 | 0.1786 | 0.1774 | |
U2_{2} | 0.4014 | 0.19424 | 0.10288 | 0.06842 | 0.0597 | 0.1849 | 0.4646 | 0.162 | 0.5067 | 0.52702 | |
U2_{3} | 0.86214 | 0.53432 | 0.2924 | 0.17262 | 0.0921 | 0.4588 | 0.8711 | 0.4615 | 0.8978 | 0.93998 | |
U3_{1.5} | 0.14508 | 0.11046 | 0.0984 | 0.09634 | 0.0899 | 0.0509 | 0.1621 | 0.02406 | 0.1791 | 0.0213 | |
U3_{2} | 0.25556 | 0.16544 | 0.14948 | 0.15748 | 0.16504 | 0.1162 | 0.4633 | 0.0462 | 0.5048 | 0.0338 | |
30 | U1_{1.5} | 0.06984 | 0.13642 | 0.19682 | 0.23342 | 0.23802 | 0.3134 | 0.18002 | 0.366 | 0.1721 | 0.4498 |
U1_{2} | 0.08778 | 0.17868 | 0.29888 | 0.37228 | 0.4017 | 0.7512 | 0.5447 | 0.8105 | 0.5071 | 0.8963 | |
U2_{1.5} | 0.19688 | 0.08316 | 0.0444 | 0.04184 | 0.06452 | 0.1023 | 0.2477 | 0.0873 | 0.2667 | 0.2271 | |
U2_{2} | 0.5831 | 0.24324 | 0.10248 | 0.0608 | 0.08348 | 0.2705 | 0.6695 | 0.25107 | 0.7076 | 0.7002 | |
U2_{3} | 0.97308 | 0.67266 | 0.33416 | 0.1639 | 0.1066 | 0.6701 | 0.97506 | 0.7227 | 0.9818 | 0.99104 | |
U3_{1.5} | 0.16596 | 0.11614 | 0.10976 | 0.11484 | 0.11828 | 0.07 | 0.2492 | 0.0302 | 0.2668 | 0.0271 | |
U3_{2} | 0.28858 | 0.17178 | 0.17122 | 0.20436 | 0.247 | 0.2077 | 0.6711 | 0.1258 | 0.7121 | 0.1105 |
(1) Under fixed n and increasing \gamma , the power of the FGCRn_{\gamma} test increases for alternative U1 and decreases for alternatives U2 and U3 .
(2) The power of the FGCRn_{\gamma} test increases by increasing n as \gamma is fixed.
In this section, we will study the uniformity of the FGCRE among the daily smokers of the countries in the Euro Area, see [7]. Figure 3 shows the data analysis, where the daily smokers are individuals aged 15 and above who report smoking daily. The goodness-of-fit test problem is for the U(\alpha, \beta) distribution. The PDF of the U(\alpha, \beta) distribution is expressed as f(r) = \frac{1}{\beta-\alpha} ; where \alpha < r < \beta . If (\alpha, \beta) are provided, then the transformation Z = \frac{U-\alpha}{\beta-\alpha} provides a random sample from the U(0, 1) distribution. Thus, tests can be readily applied by converting them into standard uniform samples. The power analysis of these tests remains unaffected for assessing the U(\alpha, \beta) distribution when (\alpha, \beta) are given. In cases where the parameters are unknown, they can be estimated from the data using maximum likelihood estimators. Let U_{1}, U_{2}, ..., U_{n} be an n size random sample that follows the U(\alpha, \beta) distribution. The maximum likelihood estimators for \alpha and \beta are the first and nth order statistics U_{(1)} and U_{(n)} , respectively. Next, by the transformation Z_{i} = \frac{U(i+1)-U(1)}{U(n)-U(1)} , i = 1, 2, ..., n-2 , a random sample of size n-2 from the U(0, 1) distribution is obtained. Consequently, this conversion changes the testing of U(\alpha, \beta) from a sample size of n to testing U(0, 1) from a sample size of n-2 . Therefore, we apply the chi-squared test for the given data, which returns p-value = 0.7788. Furthermore, to transform the data to fit U(0, 1) using the quantile function, we apply a one-sample Kolmogorov-Smirnov test, which returns p-value = 0.8743, see Figure 4. Figure 5 shows the empirical and theoretical values of the FGCRn_{\gamma} of the data set's uniform and standard uniform distribution. We can see that it decreases as \gamma increases.
To study the test of uniformity for the real set of data we performed 50000 bootstrap samples each of sizes n = 8, 12, 15 . We have illustrated the method by the algorithm as shown in Figure 6.
Similarly, the steps for the rest of the alternatives. Table 3 shows the test power estimations at a significance level of \alpha = 0.05 of the daily smokers of the countries in the Euro Area data. Therefore, we can see that by increasing the sample size, the power increases.
n | Alternative | {\cal T}_{n}(\gamma) | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | ||
8 | U1_{1.5} | 0.0527 | 0.08338 | 0.10576 | 0.13368 | 0.17794 |
U1_{2} | 0.09626 | 0.1982 | 0.27444 | 0.33166 | 0.37112 | |
U2_{1.5} | 0.02212 | 0.02224 | 0.02362 | 0.027 | 0.03286 | |
U2_{2} | 0.01122 | 0.0115 | 0.01382 | 0.01784 | 0.02642 | |
U2_{3} | 0.02082 | 0.0211 | 0.02332 | 0.02592 | 0.03308 | |
U3_{1.5} | 0.08578 | 0.08118 | 0.07516 | 0.07086 | 0.06382 | |
U3_{2} | 0.12052 | 0.11316 | 0.1001 | 0.08984 | 0.07722 | |
12 | U1_{1.5} | 0.0629 | 0.11686 | 0.17464 | 0.22064 | 0.23666 |
U1_{2} | 0.13732 | 0.32538 | 0.45972 | 0.46878 | 0.43582 | |
U2_{1.5} | 0.02594 | 0.02068 | 0.02382 | 0.03112 | 0.0495 | |
U2_{2} | 0.01688 | 0.00934 | 0.01288 | 0.02362 | 0.0607 | |
U2_{3} | 0.03082 | 0.02138 | 0.02398 | 0.03422 | 0.11616 | |
U3_{1.5} | 0.09516 | 0.09156 | 0.08018 | 0.07204 | 0.06132 | |
U3_{2} | 0.1445 | 0.1304 | 0.1131 | 0.09708 | 0.08164 | |
15 | U1_{1.5} | 0.0762 | 0.14634 | 0.2283 | 0.26042 | 0.2381 |
U1_{2} | 0.16618 | 0.421 | 0.57846 | 0.55342 | 0.42958 | |
U2_{1.5} | 0.03224 | 0.01974 | 0.02358 | 0.03448 | 0.05812 | |
U2_{2} | 0.0342 | 0.00918 | 0.01278 | 0.02946 | 0.08528 | |
U2_{3} | 0.07306 | 0.01612 | 0.01852 | 0.04016 | 0.1748 | |
U3_{1.5} | 0.09828 | 0.09844 | 0.08548 | 0.07194 | 0.0597 | |
U3_{2} | 0.1517 | 0.14518 | 0.12472 | 0.10466 | 0.08514 |
This part discusses some features of the FGCRE and uses non-parametric estimation techniques under the exponential distribution.
Example 6.1. If the RV X follows an exponential distribution having parameter \theta (i.e. exp(\theta) ) follows CDF F(x) = 1-e^{-\theta x} . Then, from (1.4), we have FGCRn_{\gamma}(X) = \frac{1}{\theta} .
In the following example, we discuss the first-order statistic of FGCRE under the exponential distribution.
Example 6.2. Based on the order statistics X_{(1)}\leq X_{(2)}\leq...\leq X_{(n)} , and the first order statistic X_{(1)} follows a CDF F(X_{(1)}) = 1-(1-F(x))^{n} . Then, we can see that the FGCRE, under the exponential distribution, is given by FGCRn_{\gamma}(X_{(1)}) = \frac{1}{n \; \theta} .
The primary benefit of the new FGCRE measure is its applicability to heavy-tailed distributions where the mean E(X) < \infty but E(X^2) is infinite. At the same time, the standard deviation does not exist. Yang [23] discusses the cumulative residual entropy as an alternative risk measure. Moreover, Ramsay [16] illustrated that the standard deviation is not an appropriate measure for large insurance risks with long-tailed skewed distributions. The next example discusses this issue.
Example 6.3.3 Let the standard deviation \sqrt{Var(X)} of a risk X be a common risk measure in insurance. Moreover, Wang [20] presents the right-tail deviation risk measure as
R_{t}(X) = \int_{0}^{\infty}\sqrt{\overline{F}(t)} dt- E(X). |
Therefore, under the exponential distribution, we see that
FGCRn_{\gamma}(X) = \sqrt{Var(X)} = R_{t}(X) = \frac{1}{\theta}, |
which is independent of \gamma . Then, we can see no difference among the three measures.
Remark 6.1. In the exponential distribution, where the FGCRn_{\gamma} measure equals \frac{1}{\theta} . Then, it usually refers to the distribution's average or expected value, which offers crucial details regarding the RV's central tendency.
We can illustrate the uses of Remark (6.1) by studying the increasing failure rate average (IFRA) and decreasing failure rate average (DFRA) of the FGCRE. Let X be the lifetime of a component or a system with an absolutely continuous CDF F . We say that F is IFRA (DFRA) if \frac{[-\Theta(x)]}{x} is an increasing (decreasing) function in x > 0 .
Proposition 6.1. If X is IFRA (DFRA), then, from (1.4), we have
\begin{equation*} FGCRn_{\gamma}(X)\leq (\geq) G(\gamma) E\left(X\; [-\Theta(x)]^{\gamma-1} \right), \gamma\geq1, \end{equation*} |
and for the exponential distribution, the equality holds.
Proof. Suppose that X is IFRA (DFRA), then
\overline{F}(x) [-\Theta(x)] \leq (\geq) x f(x), x > 0, |
then, from (1.4) with \gamma\geq1 , we get
\begin{equation*} \begin{split} FGCRn_{\gamma}(X)& = G(\gamma)\int_{0}^{\infty} \overline{F}(x) [-\Theta(x)]^{\gamma} dx \\&\leq (\geq) G(\gamma)\int_{0}^{\infty} x f(x) [-\Theta(x)]^{\gamma-1} dx = G(\gamma) E\left(X\; [-\Theta(x)]^{\gamma-1} \right). \end{split} \end{equation*} |
According to Remark (6.1), equality is held for the exponential distribution.
In the next step, we can use the empirical measure of the FGCRE introduced in (3.2), which depends on the empirical CDF given in (3.1) as {\cal T}_{n}(\gamma) = \sum_{j = 1}^{n-1}{\cal M}_{j}\Omega_j .
Proposition 6.2. Provided that the random sample X_{1}, X_{2}, ..., X_{n} follows exp(\theta) . From (3.2), due to the independence of sample spacings, \Omega_{p} adheres to the exponential distribution with parameter \theta(n - p) , p = 1, 2, ..., n-1 . Therefore, we obtain
(1) The expectation and variance of FGCRn_{\gamma}(F_{n}) are
\begin{equation*} \begin{split} \mathit{\mbox{E}}({\cal T}_{n}(\gamma)) = \frac{1}{\theta}\sum\limits_{p = 1}^{n-1}\frac{{\cal M}_{p}}{n-p}, \; \; \mathit{\mbox{and}}\; \; \mathit{\mbox{Var}}({\cal T}_{n}(\gamma)) = \frac{1}{\theta^{2}}\sum\limits_{p = 1}^{n-1}\left(\frac{{\cal M}_{p}}{n-p}\right)^{2}. \end{split} \end{equation*} |
(2) For any \gamma > 0 , we have
\begin{equation*} \begin{split} \frac{{\cal T}_{n}(\gamma)-E({\cal T}_{n}(\gamma))}{\sqrt{Var({\cal T}_{n}(\gamma))}} { \begin{array}{c} \stackrel{dis}{\longrightarrow}\\ {n\rightarrow \infty}\end{array}}Z. \end{split} \end{equation*} |
Proof. Part (ⅰ) follows directly. In part (ⅱ), we observe that FGCRn_{\gamma}(F_{n}) may be represented as the accumulation of independent exponential RVs \Omega_p having an expected value of \frac{{\cal M}_{p}}{\theta(n-p)} . The remainder of the proof proceeds with analogous reasoning from [12]. Therefore, it is excluded.
Figure 7 shows the empirical and theoretical FGCRn_{\gamma} of exp(\theta) under different values of \theta and a sample size of n = 5000 . We can see that the empirical FGCRn_{\gamma} is far from the theoretical by increasing \theta .
Table 4 shows the expected value and variance of the empirical FGCRn_{\gamma} under different values of \theta and n = 5000 . Therefore, we can see that
\gamma | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=0.9 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=2.5 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=5.5 | |
1.5 | 9.97488 (0.0666245) | 1.10832 (0.000822525) | 0.398995 (0.000106599) | 0.181361 (0.0000220246) |
2 | 9.94607 (0.113996) | 1.10512 (0.00140736) | 0.397843 (0.000182393) | 0.180838 (0.0000376846) |
2.5 | 9.89496 (0.193946) | 1.09944 (0.00239439) | 0.395798 (0.000310313) | 0.179908 (0.0000641142) |
3 | 9.81127 (0.321829) | 1.09014 (0.00397319) | 0.392451 (0.000514926) | 0.178387 (0.00010639) |
3.5 | 9.68342 (0.513669) | 1.07594 (0.00634159) | 0.387337 (0.000821871) | 0.176062 (0.000169808) |
4 | 9.49965 (0.781214) | 1.05552 (0.00964461) | 0.379986 (0.00124994) | 0.172721 (0.000258252) |
5.5 | 8.52349 (1.96644) | 0.947055 (0.0242771) | 0.34094 (0.00314631) | 0.154973 (0.000650064) |
(1) For fixed \gamma , the variance decreases as \theta increases.
(2) For fixed \theta , the variance increases as \gamma increases.
By the end of this paper, we have represented and modified some features of FGCRE and illustrated its weak convergence. Based on the empirical version of our model, we study the stability, and using three approximation methods, we obtain the percentage points whose accuracy depends on the increasing and decreasing of n and \gamma . Moreover, we perform the uniformity test with the power estimates of our test statistic and other tests. We conclude that our test statistic accuracy depends on the value of \gamma to achieve its priority. Under the real data of the daily smokers of the countries in the Euro Area, we have fitted it to uniform distribution and given the algorithm to show how to make the test of uniformity with the power analysis. Finally, we apply the empirical version of our form to the exponential distribution and figure out that the variance depends on the values of \gamma and \theta . In forthcoming research, certain studies related to entropy, such as quantum X-entropy in generalized quantum evidence theory (Xiao [21]), will be explored.
All authors have equally contributed to this work, and all authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This study is supported via funding from Prince sattam bin Abdulaziz University project number (PSAU/2024/R/1445).
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2024-2727-04".
The authors confirm no conflict of interest.
[1] |
S. Abe, Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies: a basis for q-exponential distributions, Phys. Rev. E, 66 (2002), 046134. http://dx.doi.org/10.1103/PhysRevE.66.046134 doi: 10.1103/PhysRevE.66.046134
![]() |
[2] |
S. Abe, G. Kaniadakis, A. M. Scarfone, Stabilities of generalized entropies, J. Phys. A: Math. Gen., 37 (2004), 10513. http://dx.doi.org/10.1088/0305-4470/37/44/004 doi: 10.1088/0305-4470/37/44/004
![]() |
[3] |
G. Alomani, M. Kayid, Stochastic properties of fractional generalized cumulative residual entropy and its extensions, Entropy, 24 (2022), 1041. http://dx.doi.org/10.3390/e24081041 doi: 10.3390/e24081041
![]() |
[4] | B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A First Course in Order Statistics, New York: Wiley, 1992. |
[5] |
A. Di Crescenzo, S. Kayal, A. Meoli, Fractional generalized cumulative entropy and its dynamic version, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105899. http://dx.doi.org/10.1016/j.cnsns.2021.105899 doi: 10.1016/j.cnsns.2021.105899
![]() |
[6] |
A. Di Crescenzo, M. Longobardi, On cumulative entropies, J. Stat. Plann. Infer., 139 (2009), 4072–4087. http://dx.doi.org/10.1016/j.jspi.2009.05.038 doi: 10.1016/j.jspi.2009.05.038
![]() |
[7] | Daily Smokers (indicator), OECD, 2024. http://dx.doi.org/10.1787/1ff488c2-en |
[8] |
E. J. Dudewicz, E. C. Van der Meulen, Entropy-based tests of uniformity, J. Am. Stat. Assoc., 76 (1981), 967–974. http://dx.doi.org/10.1080/01621459.1981.10477750 doi: 10.1080/01621459.1981.10477750
![]() |
[9] |
G. T. Howard, A generalization of the Glivenko-Cantelli theorem, Ann. Math. Stat., 30 (1959), 828–830. http://dx.doi.org/10.1214/aoms/1177706212 doi: 10.1214/aoms/1177706212
![]() |
[10] |
B. Johannesson, N. Giri, On approximations involving the beta distribution, Commun. Stat. Simul. Comput., 24 (1995), 489–503. http://dx.doi.org/10.1080/03610919508813253 doi: 10.1080/03610919508813253
![]() |
[11] |
M. S. Mohamed, H. M. Barakat, S. A. Alyami, M. A. Abd Elgawad, Cumulative residual tsallis entropy-based test of uniformity and some new findings, Mathematics, 10 (2022), 771. http://dx.doi.org/10.3390/math10050771 doi: 10.3390/math10050771
![]() |
[12] |
M. S. Mohamed, H. M. Barakat, S. A. Alyami, M. A. Abd Elgawad, Fractional entropy-based test of uniformity with power comparisons, J. Math., 2021 (2021), 5331260. http://dx.doi.org/10.1155/2021/5331260 doi: 10.1155/2021/5331260
![]() |
[13] |
J. Navarro, Y. del Aguila, M. Asadi, Some new results on the cumulative residual entropy, J. Stat. Plann. Infer., 140 (2010), 310–322. http://dx.doi.org/10.1016/j.jspi.2009.07.015 doi: 10.1016/j.jspi.2009.07.015
![]() |
[14] |
H. A. Noughabi, Cumulative residual entropy applied to testing uniformity, Commun. Stat. Theory Meth., 51 (2022), 4151–4161. http://dx.doi.org/10.1080/03610926.2020.1811339 doi: 10.1080/03610926.2020.1811339
![]() |
[15] |
G. Psarrakos, J. Navarro, Generalized cumulative residual entropy and record values, Metrika, 76 (2013), 623–640. http://dx.doi.org/10.1007/s00184-012-0408-6 doi: 10.1007/s00184-012-0408-6
![]() |
[16] | C. M. Ramsay, Loading gross premiums for risk without using utility theory, Trans. Soc. Actuar., 45 (1993), 305–349. |
[17] |
M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative residual entropy: a new measure of information, IEEE Trans. Inf. Theory, 50 (2004), 1220–1228. http://dx.doi.org/10.1109/TIT.2004.828057 doi: 10.1109/TIT.2004.828057
![]() |
[18] |
M. A. Stephens, EDF statistics for goodness of fit and some comparisons, J. Am. Stat. Assoc., 69 (1974), 730–737. http://dx.doi.org/10.1080/01621459.1974.10480196 doi: 10.1080/01621459.1974.10480196
![]() |
[19] |
A. Toomaj, A. Di Crescenzo, Connections between weighted generalized cumulative residual entropy and variance, Mathematics, 8 (2020), 1072. http://dx.doi.org/10.3390/math8071072 doi: 10.3390/math8071072
![]() |
[20] | S. Wang, An actuarial index of the right-tail risk, N. Am. Actuar. J., 2 (1998), 88–101. |
[21] |
F. Xiao, Quantum X-entropy in generalized quantum evidence theory, Inform. Sci., 643 (2023), 119177. http://dx.doi.org/10.1016/j.ins.2023.119177 doi: 10.1016/j.ins.2023.119177
![]() |
[22] |
H. Xiong, P. Shang, Y. Zhang, Fractional cumulative residual entropy, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104879. http://dx.doi.org/10.1016/j.cnsns.2019.104879 doi: 10.1016/j.cnsns.2019.104879
![]() |
[23] | L. Yang, Study on cumulative residual entropy and variance as risk measure, In: Fifth International Conference on Business Intelligence and Financial Engineering, 2012. |
n | \gamma | {\cal T}_{n}(\gamma) | |||||
Normal procedure | Beta procedure | Monte Carlo procedure | |||||
lower | upper | lower | upper | lower | upper | ||
10 | 1.5 | 0.05111 | 0.26028 | 0.06789 | 0.2748 | 0.08935 | 0.21938 |
2 | 0.02804 | 0.18601 | 0.04206 | 0.19801 | 0.05442 | 0.166307 | |
2.5 | 0.01316 | 0.1316 | 0.0249 | 0.1415 | 0.03198 | 0.12451 | |
3 | 0.00446 | 0.09171 | 0.01414 | 0.09973 | 0.01851 | 0.09109 | |
3.5 | 0.0000131 | 0.0624 | 0.00771 | 0.06876 | 0.010435 | 0.06467 | |
4 | -0.00181 | 0.04146 | 0.00406 | 0.04617 | 0.00573 | 0.04438 | |
20 | 1.5 | 0.08533 | 0.24809 | 0.09508 | 0.2569 | 0.1195 | 0.2108 |
2 | 0.0544 | 0.1789 | 0.06262 | 0.18625 | 0.07662 | 0.15841 | |
2.5 | 0.03322 | 0.1289 | 0.04021 | 0.1351 | 0.04831 | 0.1188 | |
3 | 0.01912 | 0.09252 | 0.02512 | 0.0977 | 0.03005 | 0.08848 | |
3.5 | 0.01014 | 0.0658 | 0.01524 | 0.07022 | 0.018291 | 0.06513 | |
4 | 0.00473 | 0.04619 | 0.00898 | 0.0498 | 0.01096 | 0.04727 | |
30 | 1.5 | 0.1016 | 0.2388 | 0.1084 | 0.2451 | 0.13225 | 0.20597 |
2 | 0.06712 | 0.1722 | 0.0728 | 0.1775 | 0.086707 | 0.15337 | |
2.5 | 0.04315 | 0.1244 | 0.04806 | 0.1289 | 0.05625 | 0.11429 | |
3 | 0.02682 | 0.08985 | 0.03108 | 0.09369 | 0.03592 | 0.08478 | |
3.5 | 0.01596 | 0.06459 | 0.01965 | 0.06787 | 0.02277 | 0.06263 | |
4 | 0.00897 | 0.04609 | 0.0121 | 0.0488 | 0.01417 | 0.04608 | |
40 | 1.5 | 0.1115 | 0.2323 | 0.1168 | 0.2372 | 0.13903 | 0.20322 |
2 | 0.07484 | 0.1674 | 0.0792 | 0.1715 | 0.09237 | 0.15037 | |
2.5 | 0.04922 | 0.12101 | 0.053 | 0.1244 | 0.06073 | 0.11151 | |
3 | 0.0316 | 0.0874 | 0.0348 | 0.0904 | 0.039576 | 0.082705 | |
3.5 | 0.01968 | 0.06312 | 0.0225 | 0.06571 | 0.02547 | 0.061189 | |
4 | 0.01179 | 0.0453 | 0.0142 | 0.0475 | 0.01618 | 0.04496 | |
50 | 1.5 | 0.1184 | 0.2275 | 0.1226 | 0.2315 | 0.143706 | 0.20105 |
2 | 0.08014 | 0.1638 | 0.0837 | 0.1671 | 0.09613 | 0.14799 | |
2.5 | 0.0534 | 0.1183 | 0.05646 | 0.1211 | 0.06382 | 0.10945 | |
3 | 0.03491 | 0.0855 | 0.0375 | 0.088 | 0.04207 | 0.08094 | |
3.5 | 0.02229 | 0.06182 | 0.0246 | 0.0639 | 0.027419 | 0.05976 | |
4 | 0.01381 | 0.04455 | 0.01586 | 0.0464 | 0.01768 | 0.04407 | |
70 | 1.5 | 0.12746 | 0.2207 | 0.1305 | 0.2236 | 0.14923 | 0.19757 |
2 | 0.0871 | 0.1586 | 0.08974 | 0.16115 | 0.10083 | 0.14492 | |
2.5 | 0.0589 | 0.1144 | 0.06112 | 0.1165 | 0.067702 | 0.10659 | |
3 | 0.0392 | 0.0826 | 0.04121 | 0.0845 | 0.045185 | 0.07838 | |
3.5 | 0.0257 | 0.0597 | 0.0274 | 0.0613 | 0.029963 | 0.05775 | |
4 | 0.0165 | 0.04319 | 0.01804 | 0.04457 | 0.019673 | 0.042546 | |
100 | 1.5 | 0.1355 | 0.2142 | 0.1377 | 0.2163 | 0.154169 | 0.194932 |
2 | 0.0933 | 0.1537 | 0.0952 | 0.1555 | 0.105001 | 0.14239 | |
2.5 | 0.0638 | 0.1106 | 0.0653 | 0.1121 | 0.071237 | 0.104129 | |
3 | 0.04316 | 0.07985 | 0.04453 | 0.08115 | 0.048081 | 0.076222 | |
3.5 | 0.02885 | 0.05769 | 0.03006 | 0.05882 | 0.032291 | 0.05591 | |
4 | 0.01901 | 0.04169 | 0.04269 | 0.02008 | 0.02154 | 0.040977 |
n | Alternative | {\cal T}_{n}(\gamma) | Ko-S | Ku | C-v-M | Wn | An-D | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | |||||||
10 | U1_{1.5} | 0.0634 | 0.07052 | 0.07568 | 0.07706 | 0.07736 | 0.12606 | 0.0756 | 0.1456 | 0.07776 | 0.1877 |
U1_{2} | 0.08758 | 0.09094 | 0.0963 | 0.09948 | 0.09904 | 0.30288 | 0.1631 | 0.3551 | 0.16308 | 0.4761 | |
U2_{1.5} | 0.08864 | 0.0684 | 0.05484 | 0.0495 | 0.04642 | 0.07351 | 0.0971 | 0.0741 | 0.1017 | 0.1349 | |
U2_{2} | 0.21018 | 0.14052 | 0.09818 | 0.07792 | 0.05628 | 0.1184 | 0.2307 | 0.1104 | 0.2481 | 0.3269 | |
U2_{3} | 0.53166 | 0.35484 | 0.23366 | 0.1677 | 0.102 | 0.2424 | 0.5394 | 0.2154 | 0.5699 | 0.72308 | |
U3_{1.5} | 0.10784 | 0.09594 | 0.08626 | 0.0802 | 0.07318 | 0.0342 | 0.0974 | 0.0239 | 0.1031 | 0.0222 | |
U3_{2} | 0.18994 | 0.14916 | 0.12638 | 0.1174 | 0.10704 | 0.0402 | 0.2331 | 0.01114 | 0.2475 | 0.00924 | |
20 | U1_{1.5} | 0.06514 | 0.0975 | 0.1265 | 0.14224 | 0.14578 | 0.2179 | 0.1226 | 0.25208 | 0.1225 | 0.3235 |
U1_{2} | 0.08716 | 0.1263 | 0.18412 | 0.2219 | 0.23662 | 0.5616 | 0.3486 | 0.6241 | 0.3358 | 0.7538 | |
U2_{1.5} | 0.14064 | 0.07482 | 0.04944 | 0.04448 | 0.05096 | 0.0869 | 0.1634 | 0.0781 | 0.1786 | 0.1774 | |
U2_{2} | 0.4014 | 0.19424 | 0.10288 | 0.06842 | 0.0597 | 0.1849 | 0.4646 | 0.162 | 0.5067 | 0.52702 | |
U2_{3} | 0.86214 | 0.53432 | 0.2924 | 0.17262 | 0.0921 | 0.4588 | 0.8711 | 0.4615 | 0.8978 | 0.93998 | |
U3_{1.5} | 0.14508 | 0.11046 | 0.0984 | 0.09634 | 0.0899 | 0.0509 | 0.1621 | 0.02406 | 0.1791 | 0.0213 | |
U3_{2} | 0.25556 | 0.16544 | 0.14948 | 0.15748 | 0.16504 | 0.1162 | 0.4633 | 0.0462 | 0.5048 | 0.0338 | |
30 | U1_{1.5} | 0.06984 | 0.13642 | 0.19682 | 0.23342 | 0.23802 | 0.3134 | 0.18002 | 0.366 | 0.1721 | 0.4498 |
U1_{2} | 0.08778 | 0.17868 | 0.29888 | 0.37228 | 0.4017 | 0.7512 | 0.5447 | 0.8105 | 0.5071 | 0.8963 | |
U2_{1.5} | 0.19688 | 0.08316 | 0.0444 | 0.04184 | 0.06452 | 0.1023 | 0.2477 | 0.0873 | 0.2667 | 0.2271 | |
U2_{2} | 0.5831 | 0.24324 | 0.10248 | 0.0608 | 0.08348 | 0.2705 | 0.6695 | 0.25107 | 0.7076 | 0.7002 | |
U2_{3} | 0.97308 | 0.67266 | 0.33416 | 0.1639 | 0.1066 | 0.6701 | 0.97506 | 0.7227 | 0.9818 | 0.99104 | |
U3_{1.5} | 0.16596 | 0.11614 | 0.10976 | 0.11484 | 0.11828 | 0.07 | 0.2492 | 0.0302 | 0.2668 | 0.0271 | |
U3_{2} | 0.28858 | 0.17178 | 0.17122 | 0.20436 | 0.247 | 0.2077 | 0.6711 | 0.1258 | 0.7121 | 0.1105 |
n | Alternative | {\cal T}_{n}(\gamma) | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | ||
8 | U1_{1.5} | 0.0527 | 0.08338 | 0.10576 | 0.13368 | 0.17794 |
U1_{2} | 0.09626 | 0.1982 | 0.27444 | 0.33166 | 0.37112 | |
U2_{1.5} | 0.02212 | 0.02224 | 0.02362 | 0.027 | 0.03286 | |
U2_{2} | 0.01122 | 0.0115 | 0.01382 | 0.01784 | 0.02642 | |
U2_{3} | 0.02082 | 0.0211 | 0.02332 | 0.02592 | 0.03308 | |
U3_{1.5} | 0.08578 | 0.08118 | 0.07516 | 0.07086 | 0.06382 | |
U3_{2} | 0.12052 | 0.11316 | 0.1001 | 0.08984 | 0.07722 | |
12 | U1_{1.5} | 0.0629 | 0.11686 | 0.17464 | 0.22064 | 0.23666 |
U1_{2} | 0.13732 | 0.32538 | 0.45972 | 0.46878 | 0.43582 | |
U2_{1.5} | 0.02594 | 0.02068 | 0.02382 | 0.03112 | 0.0495 | |
U2_{2} | 0.01688 | 0.00934 | 0.01288 | 0.02362 | 0.0607 | |
U2_{3} | 0.03082 | 0.02138 | 0.02398 | 0.03422 | 0.11616 | |
U3_{1.5} | 0.09516 | 0.09156 | 0.08018 | 0.07204 | 0.06132 | |
U3_{2} | 0.1445 | 0.1304 | 0.1131 | 0.09708 | 0.08164 | |
15 | U1_{1.5} | 0.0762 | 0.14634 | 0.2283 | 0.26042 | 0.2381 |
U1_{2} | 0.16618 | 0.421 | 0.57846 | 0.55342 | 0.42958 | |
U2_{1.5} | 0.03224 | 0.01974 | 0.02358 | 0.03448 | 0.05812 | |
U2_{2} | 0.0342 | 0.00918 | 0.01278 | 0.02946 | 0.08528 | |
U2_{3} | 0.07306 | 0.01612 | 0.01852 | 0.04016 | 0.1748 | |
U3_{1.5} | 0.09828 | 0.09844 | 0.08548 | 0.07194 | 0.0597 | |
U3_{2} | 0.1517 | 0.14518 | 0.12472 | 0.10466 | 0.08514 |
\gamma | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=0.9 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=2.5 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=5.5 | |
1.5 | 9.97488 (0.0666245) | 1.10832 (0.000822525) | 0.398995 (0.000106599) | 0.181361 (0.0000220246) |
2 | 9.94607 (0.113996) | 1.10512 (0.00140736) | 0.397843 (0.000182393) | 0.180838 (0.0000376846) |
2.5 | 9.89496 (0.193946) | 1.09944 (0.00239439) | 0.395798 (0.000310313) | 0.179908 (0.0000641142) |
3 | 9.81127 (0.321829) | 1.09014 (0.00397319) | 0.392451 (0.000514926) | 0.178387 (0.00010639) |
3.5 | 9.68342 (0.513669) | 1.07594 (0.00634159) | 0.387337 (0.000821871) | 0.176062 (0.000169808) |
4 | 9.49965 (0.781214) | 1.05552 (0.00964461) | 0.379986 (0.00124994) | 0.172721 (0.000258252) |
5.5 | 8.52349 (1.96644) | 0.947055 (0.0242771) | 0.34094 (0.00314631) | 0.154973 (0.000650064) |
n | \gamma | {\cal T}_{n}(\gamma) | |||||
Normal procedure | Beta procedure | Monte Carlo procedure | |||||
lower | upper | lower | upper | lower | upper | ||
10 | 1.5 | 0.05111 | 0.26028 | 0.06789 | 0.2748 | 0.08935 | 0.21938 |
2 | 0.02804 | 0.18601 | 0.04206 | 0.19801 | 0.05442 | 0.166307 | |
2.5 | 0.01316 | 0.1316 | 0.0249 | 0.1415 | 0.03198 | 0.12451 | |
3 | 0.00446 | 0.09171 | 0.01414 | 0.09973 | 0.01851 | 0.09109 | |
3.5 | 0.0000131 | 0.0624 | 0.00771 | 0.06876 | 0.010435 | 0.06467 | |
4 | -0.00181 | 0.04146 | 0.00406 | 0.04617 | 0.00573 | 0.04438 | |
20 | 1.5 | 0.08533 | 0.24809 | 0.09508 | 0.2569 | 0.1195 | 0.2108 |
2 | 0.0544 | 0.1789 | 0.06262 | 0.18625 | 0.07662 | 0.15841 | |
2.5 | 0.03322 | 0.1289 | 0.04021 | 0.1351 | 0.04831 | 0.1188 | |
3 | 0.01912 | 0.09252 | 0.02512 | 0.0977 | 0.03005 | 0.08848 | |
3.5 | 0.01014 | 0.0658 | 0.01524 | 0.07022 | 0.018291 | 0.06513 | |
4 | 0.00473 | 0.04619 | 0.00898 | 0.0498 | 0.01096 | 0.04727 | |
30 | 1.5 | 0.1016 | 0.2388 | 0.1084 | 0.2451 | 0.13225 | 0.20597 |
2 | 0.06712 | 0.1722 | 0.0728 | 0.1775 | 0.086707 | 0.15337 | |
2.5 | 0.04315 | 0.1244 | 0.04806 | 0.1289 | 0.05625 | 0.11429 | |
3 | 0.02682 | 0.08985 | 0.03108 | 0.09369 | 0.03592 | 0.08478 | |
3.5 | 0.01596 | 0.06459 | 0.01965 | 0.06787 | 0.02277 | 0.06263 | |
4 | 0.00897 | 0.04609 | 0.0121 | 0.0488 | 0.01417 | 0.04608 | |
40 | 1.5 | 0.1115 | 0.2323 | 0.1168 | 0.2372 | 0.13903 | 0.20322 |
2 | 0.07484 | 0.1674 | 0.0792 | 0.1715 | 0.09237 | 0.15037 | |
2.5 | 0.04922 | 0.12101 | 0.053 | 0.1244 | 0.06073 | 0.11151 | |
3 | 0.0316 | 0.0874 | 0.0348 | 0.0904 | 0.039576 | 0.082705 | |
3.5 | 0.01968 | 0.06312 | 0.0225 | 0.06571 | 0.02547 | 0.061189 | |
4 | 0.01179 | 0.0453 | 0.0142 | 0.0475 | 0.01618 | 0.04496 | |
50 | 1.5 | 0.1184 | 0.2275 | 0.1226 | 0.2315 | 0.143706 | 0.20105 |
2 | 0.08014 | 0.1638 | 0.0837 | 0.1671 | 0.09613 | 0.14799 | |
2.5 | 0.0534 | 0.1183 | 0.05646 | 0.1211 | 0.06382 | 0.10945 | |
3 | 0.03491 | 0.0855 | 0.0375 | 0.088 | 0.04207 | 0.08094 | |
3.5 | 0.02229 | 0.06182 | 0.0246 | 0.0639 | 0.027419 | 0.05976 | |
4 | 0.01381 | 0.04455 | 0.01586 | 0.0464 | 0.01768 | 0.04407 | |
70 | 1.5 | 0.12746 | 0.2207 | 0.1305 | 0.2236 | 0.14923 | 0.19757 |
2 | 0.0871 | 0.1586 | 0.08974 | 0.16115 | 0.10083 | 0.14492 | |
2.5 | 0.0589 | 0.1144 | 0.06112 | 0.1165 | 0.067702 | 0.10659 | |
3 | 0.0392 | 0.0826 | 0.04121 | 0.0845 | 0.045185 | 0.07838 | |
3.5 | 0.0257 | 0.0597 | 0.0274 | 0.0613 | 0.029963 | 0.05775 | |
4 | 0.0165 | 0.04319 | 0.01804 | 0.04457 | 0.019673 | 0.042546 | |
100 | 1.5 | 0.1355 | 0.2142 | 0.1377 | 0.2163 | 0.154169 | 0.194932 |
2 | 0.0933 | 0.1537 | 0.0952 | 0.1555 | 0.105001 | 0.14239 | |
2.5 | 0.0638 | 0.1106 | 0.0653 | 0.1121 | 0.071237 | 0.104129 | |
3 | 0.04316 | 0.07985 | 0.04453 | 0.08115 | 0.048081 | 0.076222 | |
3.5 | 0.02885 | 0.05769 | 0.03006 | 0.05882 | 0.032291 | 0.05591 | |
4 | 0.01901 | 0.04169 | 0.04269 | 0.02008 | 0.02154 | 0.040977 |
n | Alternative | {\cal T}_{n}(\gamma) | Ko-S | Ku | C-v-M | Wn | An-D | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | |||||||
10 | U1_{1.5} | 0.0634 | 0.07052 | 0.07568 | 0.07706 | 0.07736 | 0.12606 | 0.0756 | 0.1456 | 0.07776 | 0.1877 |
U1_{2} | 0.08758 | 0.09094 | 0.0963 | 0.09948 | 0.09904 | 0.30288 | 0.1631 | 0.3551 | 0.16308 | 0.4761 | |
U2_{1.5} | 0.08864 | 0.0684 | 0.05484 | 0.0495 | 0.04642 | 0.07351 | 0.0971 | 0.0741 | 0.1017 | 0.1349 | |
U2_{2} | 0.21018 | 0.14052 | 0.09818 | 0.07792 | 0.05628 | 0.1184 | 0.2307 | 0.1104 | 0.2481 | 0.3269 | |
U2_{3} | 0.53166 | 0.35484 | 0.23366 | 0.1677 | 0.102 | 0.2424 | 0.5394 | 0.2154 | 0.5699 | 0.72308 | |
U3_{1.5} | 0.10784 | 0.09594 | 0.08626 | 0.0802 | 0.07318 | 0.0342 | 0.0974 | 0.0239 | 0.1031 | 0.0222 | |
U3_{2} | 0.18994 | 0.14916 | 0.12638 | 0.1174 | 0.10704 | 0.0402 | 0.2331 | 0.01114 | 0.2475 | 0.00924 | |
20 | U1_{1.5} | 0.06514 | 0.0975 | 0.1265 | 0.14224 | 0.14578 | 0.2179 | 0.1226 | 0.25208 | 0.1225 | 0.3235 |
U1_{2} | 0.08716 | 0.1263 | 0.18412 | 0.2219 | 0.23662 | 0.5616 | 0.3486 | 0.6241 | 0.3358 | 0.7538 | |
U2_{1.5} | 0.14064 | 0.07482 | 0.04944 | 0.04448 | 0.05096 | 0.0869 | 0.1634 | 0.0781 | 0.1786 | 0.1774 | |
U2_{2} | 0.4014 | 0.19424 | 0.10288 | 0.06842 | 0.0597 | 0.1849 | 0.4646 | 0.162 | 0.5067 | 0.52702 | |
U2_{3} | 0.86214 | 0.53432 | 0.2924 | 0.17262 | 0.0921 | 0.4588 | 0.8711 | 0.4615 | 0.8978 | 0.93998 | |
U3_{1.5} | 0.14508 | 0.11046 | 0.0984 | 0.09634 | 0.0899 | 0.0509 | 0.1621 | 0.02406 | 0.1791 | 0.0213 | |
U3_{2} | 0.25556 | 0.16544 | 0.14948 | 0.15748 | 0.16504 | 0.1162 | 0.4633 | 0.0462 | 0.5048 | 0.0338 | |
30 | U1_{1.5} | 0.06984 | 0.13642 | 0.19682 | 0.23342 | 0.23802 | 0.3134 | 0.18002 | 0.366 | 0.1721 | 0.4498 |
U1_{2} | 0.08778 | 0.17868 | 0.29888 | 0.37228 | 0.4017 | 0.7512 | 0.5447 | 0.8105 | 0.5071 | 0.8963 | |
U2_{1.5} | 0.19688 | 0.08316 | 0.0444 | 0.04184 | 0.06452 | 0.1023 | 0.2477 | 0.0873 | 0.2667 | 0.2271 | |
U2_{2} | 0.5831 | 0.24324 | 0.10248 | 0.0608 | 0.08348 | 0.2705 | 0.6695 | 0.25107 | 0.7076 | 0.7002 | |
U2_{3} | 0.97308 | 0.67266 | 0.33416 | 0.1639 | 0.1066 | 0.6701 | 0.97506 | 0.7227 | 0.9818 | 0.99104 | |
U3_{1.5} | 0.16596 | 0.11614 | 0.10976 | 0.11484 | 0.11828 | 0.07 | 0.2492 | 0.0302 | 0.2668 | 0.0271 | |
U3_{2} | 0.28858 | 0.17178 | 0.17122 | 0.20436 | 0.247 | 0.2077 | 0.6711 | 0.1258 | 0.7121 | 0.1105 |
n | Alternative | {\cal T}_{n}(\gamma) | ||||
\gamma=1.5 | \gamma=2 | \gamma=2.5 | \gamma=3 | \gamma=4 | ||
8 | U1_{1.5} | 0.0527 | 0.08338 | 0.10576 | 0.13368 | 0.17794 |
U1_{2} | 0.09626 | 0.1982 | 0.27444 | 0.33166 | 0.37112 | |
U2_{1.5} | 0.02212 | 0.02224 | 0.02362 | 0.027 | 0.03286 | |
U2_{2} | 0.01122 | 0.0115 | 0.01382 | 0.01784 | 0.02642 | |
U2_{3} | 0.02082 | 0.0211 | 0.02332 | 0.02592 | 0.03308 | |
U3_{1.5} | 0.08578 | 0.08118 | 0.07516 | 0.07086 | 0.06382 | |
U3_{2} | 0.12052 | 0.11316 | 0.1001 | 0.08984 | 0.07722 | |
12 | U1_{1.5} | 0.0629 | 0.11686 | 0.17464 | 0.22064 | 0.23666 |
U1_{2} | 0.13732 | 0.32538 | 0.45972 | 0.46878 | 0.43582 | |
U2_{1.5} | 0.02594 | 0.02068 | 0.02382 | 0.03112 | 0.0495 | |
U2_{2} | 0.01688 | 0.00934 | 0.01288 | 0.02362 | 0.0607 | |
U2_{3} | 0.03082 | 0.02138 | 0.02398 | 0.03422 | 0.11616 | |
U3_{1.5} | 0.09516 | 0.09156 | 0.08018 | 0.07204 | 0.06132 | |
U3_{2} | 0.1445 | 0.1304 | 0.1131 | 0.09708 | 0.08164 | |
15 | U1_{1.5} | 0.0762 | 0.14634 | 0.2283 | 0.26042 | 0.2381 |
U1_{2} | 0.16618 | 0.421 | 0.57846 | 0.55342 | 0.42958 | |
U2_{1.5} | 0.03224 | 0.01974 | 0.02358 | 0.03448 | 0.05812 | |
U2_{2} | 0.0342 | 0.00918 | 0.01278 | 0.02946 | 0.08528 | |
U2_{3} | 0.07306 | 0.01612 | 0.01852 | 0.04016 | 0.1748 | |
U3_{1.5} | 0.09828 | 0.09844 | 0.08548 | 0.07194 | 0.0597 | |
U3_{2} | 0.1517 | 0.14518 | 0.12472 | 0.10466 | 0.08514 |
\gamma | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=0.9 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=2.5 | \mathbb{E}({\cal T}_{n}(\gamma)) ( Var({\cal T}_{n}(\gamma)) ), \theta=5.5 | |
1.5 | 9.97488 (0.0666245) | 1.10832 (0.000822525) | 0.398995 (0.000106599) | 0.181361 (0.0000220246) |
2 | 9.94607 (0.113996) | 1.10512 (0.00140736) | 0.397843 (0.000182393) | 0.180838 (0.0000376846) |
2.5 | 9.89496 (0.193946) | 1.09944 (0.00239439) | 0.395798 (0.000310313) | 0.179908 (0.0000641142) |
3 | 9.81127 (0.321829) | 1.09014 (0.00397319) | 0.392451 (0.000514926) | 0.178387 (0.00010639) |
3.5 | 9.68342 (0.513669) | 1.07594 (0.00634159) | 0.387337 (0.000821871) | 0.176062 (0.000169808) |
4 | 9.49965 (0.781214) | 1.05552 (0.00964461) | 0.379986 (0.00124994) | 0.172721 (0.000258252) |
5.5 | 8.52349 (1.96644) | 0.947055 (0.0242771) | 0.34094 (0.00314631) | 0.154973 (0.000650064) |