Research article

Some new results involving residual Renyi's information measure for $ k $-record values

  • Received: 26 February 2024 Revised: 22 March 2024 Accepted: 27 March 2024 Published: 10 April 2024
  • MSC : 94A08, 62P99

  • This article dealt with further properties of the Renyi entropy and the residual Renyi entropy of $ k $-record values. First, we discussed the Renyi entropy order and its connection with the usual stochastic and dispersive orders. We then addressed the monotonicity properties of the residual Renyi entropy of $ k $-records, focusing on the aging properties of the component lifetimes. We also expressed the residual $ n $th upper $ k $-records in terms of Renyi entropy when the first dataset exceeded a certain threshold, and then studied various properties of the given formula. Finally, we conducted a parametric estimation of the Renyi entropy of the $ n $th upper $ k $-records. The estimation was performed using both real COVID-19 data and simulated data.

    Citation: Mansour Shrahili. Some new results involving residual Renyi's information measure for $ k $-record values[J]. AIMS Mathematics, 2024, 9(5): 13313-13335. doi: 10.3934/math.2024649

    Related Papers:

  • This article dealt with further properties of the Renyi entropy and the residual Renyi entropy of $ k $-record values. First, we discussed the Renyi entropy order and its connection with the usual stochastic and dispersive orders. We then addressed the monotonicity properties of the residual Renyi entropy of $ k $-records, focusing on the aging properties of the component lifetimes. We also expressed the residual $ n $th upper $ k $-records in terms of Renyi entropy when the first dataset exceeded a certain threshold, and then studied various properties of the given formula. Finally, we conducted a parametric estimation of the Renyi entropy of the $ n $th upper $ k $-records. The estimation was performed using both real COVID-19 data and simulated data.



    加载中


    [1] N. Ebrahimi, F. Pellerey, New partial ordering of survival functions based on the notion of uncertainty, J. Appl. Probab., 32 (1995), 202–211. https://doi.org/10.2307/3214930 doi: 10.2307/3214930
    [2] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [3] R. D. Gupta, A. K. Nanda, $\alpha$-and $\beta$-entropies and relative entropies of distributions, J. Stat. Theor. Appl., 1 (2002), 177–190.
    [4] M. Asadi, N. Ebrahimi, E. S. Soofi, Dynamic generalized information measures, Stat. Probab. Lett., 71 (2005), 85–98. https://doi.org/10.1016/j.spl.2004.10.033 doi: 10.1016/j.spl.2004.10.033
    [5] A. K. Nanda, P. Paul, Some results on generalized residual entropy, Inform. Sciences, 176 (2006), 27–47. https://doi.org/10.1016/j.ins.2004.10.008 doi: 10.1016/j.ins.2004.10.008
    [6] M. Mesfioui, M. Kayid, M. Shrahili, Renyi entropy of the residual lifetime of a reliability system at the system level, Axioms, 12 (2023), 320. https://doi.org/10.3390/axioms12040320 doi: 10.3390/axioms12040320
    [7] K. Chandler, The distribution and frequency of record values, J. Roy. Stat. Soc. B, 14 (1952), 220–228. https://doi.org/10.1111/j.2517-6161.1952.tb00115.x doi: 10.1111/j.2517-6161.1952.tb00115.x
    [8] N. Glick, Breaking records and breaking boards, Am. Math. Mon., 85 (1978), 2–26. https://doi.org/10.1080/00029890.1978.11994501 doi: 10.1080/00029890.1978.11994501
    [9] M. Ahsanullah, Record values-theory and applications, University Press of America, 2004.
    [10] B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, Records, John Wiley and Sons, 2011.
    [11] U. Kamps, A concept of generalized order statistics, J. Stat. Plan. Infer., 48 (1995), 1–23. https://doi.org/10.1016/0378-3758(94)00147-N doi: 10.1016/0378-3758(94)00147-N
    [12] W. Dziubdziela, B. Kopociński, Limiting properties of the k-th record values, Appl. Math., 2 (1976), 187–190. Available from: http://eudml.org/doc/263206.
    [13] S. Zarezadeh, M. Asadi, Results on residual Rényi entropy of order statistics and record values, Inform. Sciences, 180 (2010), 4195–4206. https://doi.org/10.1016/j.ins.2010.06.019 doi: 10.1016/j.ins.2010.06.019
    [14] A. Habibi, N. R. Arghami, J. Ahmadi, Statistical evidence in experiments and in record values, Commun. Stat.-Theor. M., 35 (2006), 1971–1983. https://doi.org/10.1080/03610920600762780 doi: 10.1080/03610920600762780
    [15] M. Abbasnezhad, N. R. Arghami, Potential statistical evidence in experiments and Renyi information, J. Iran. Stat. Soc., 5 (2006), 39–52. Available from: https://sid.ir/paper/567629/en.
    [16] S. Baratpour, J. Ahmadi, N. R. Arghami, Entropy properties of record statistics, Stat. Pap., 48 (2007), 197–213. https://doi.org/10.1007/s00362-006-0326-7 doi: 10.1007/s00362-006-0326-7
    [17] J. Jose, E. A. Sathar, Rényi entropy of k-records: Properties and applications, REVSTAT-Stat. J., 20 (2022), 481–500. https://doi.org/10.57805/revstat.v20i4.385 doi: 10.57805/revstat.v20i4.385
    [18] P. S. Asha, M. Chacko, Residual Renyi entropy of $k$-record values, Commun. Stat.-Theor. M., 45 (2016), 4874–4885. https://doi.org/10.1080/03610926.2014.932806 doi: 10.1080/03610926.2014.932806
    [19] P. S. Asha, M. Chacko, Residual Verma entropy of $k$-record values: Verma entropy of $k$-record values, J. Kerala Stat. Assoc., 28 (2017), 28–45. Available from: https://ojs.ksa.org.in/index.php/JKSA/article/view/22.
    [20] M. Shrahili, M. Kayid, Residual tsallis entropy and record values: Some new insights, Symmetry, 15 (2023), 2040. https://doi.org/10.3390/sym15112040 doi: 10.3390/sym15112040
    [21] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Science and Business Media, 2007. https://doi.org/10.1007/978-0-387-34675-5
    [22] B. E. Khaledi, R. Shojaei, On stochastic orderings between residual record values, Stat. Probab. Lett., 77 (2007), 1467–1472. https://doi.org/10.1016/j.spl.2007.03.033 doi: 10.1016/j.spl.2007.03.033
    [23] M. Abbasnejad, N. R. Arghami, Renyi entropy properties of order statistics, Commun. Stat.-Theor. M., 40 (2010), 40–52. https://doi.org/10.1080/03610920903353683 doi: 10.1080/03610920903353683
    [24] I. Bagai, S. C. Kochar, On tail-ordering and comparison of failure rates, Commun. Stat.-Theor. M., 15 (1986), 1377–1388. https://doi.org/10.1080/03610928608829189 doi: 10.1080/03610928608829189
    [25] M. Z. Raqab, W. A. Amin, A note on reliability properties of k-record statistics, Metrika, 46 (1997), 245–251. https://doi.org/10.1007/BF02717177 doi: 10.1007/BF02717177
    [26] S. C. Kochar, Some partial ordering results on record values, Commun. Stat.-Theor. M., 19 (1990), 299–306. https://doi.org/10.1080/03610929008830201 doi: 10.1080/03610929008830201
    [27] B. E. Khaledi, Some new results on stochastic orderings between generalized order statistics, J. Iran. Stat. Soc., 4 (2022), 35–49. Available from: https://sid.ir/paper/117852/en.
    [28] R. C. Gupta, S. N. U. A. Kirmani, Closure and monotonicity properties of nonhomogeneous Poisson processes and record values, Probab. Eng. Inform. Sci., 2 (1988), 475–484. https://doi.org/10.1017/S0269964800000188 doi: 10.1017/S0269964800000188
    [29] U. Kamps, Reliability properties of record values from non-identically distributed random variables, Commun. Stat.-Theor. M., 23 (1994), 2101–2112. https://doi.org/10.1080/03610929408831373 doi: 10.1080/03610929408831373
    [30] M. Z. Raqab, M. Asadi, On the mean residual life of records, J. Stat. Plan. Infer., 138 (2008), 3660–3666. https://doi.org/10.1016/j.jspi.2007.11.014 doi: 10.1016/j.jspi.2007.11.014
    [31] N. Ebrahimi, S. N. U. A. Kirmani, Some results on ordering of survival functions through uncertainty, Stat. Probab. Lett., 29 (1996), 167–176. https://doi.org/10.1016/0167-7152(95)00170-0 doi: 10.1016/0167-7152(95)00170-0
    [32] D. Kasilingam, S. P. S. Prabhakaran, D. K. Rajendran, V. Rajagopal, T. S. Kumar, A. Soundararaj, Exploring the growth of COVID-19 cases using exponential modelling across 42 countries and predicting signs of early containment using machine learning, Transbound. Emerg. Dis., 68 (2021), 1001–1018. https://doi.org/10.1111/tbed.13764 doi: 10.1111/tbed.13764
    [33] M. S. Mohamed, A. Almohaimeed, M. M. Abd El-Raouf, Some new findings on the survival Rényi entropy and application of COVID-19 data, Results Phys., 31 (2021), 104966. https://doi.org/10.1016/j.rinp.2021.104966 doi: 10.1016/j.rinp.2021.104966
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(490) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog