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Abstract: The fractional generalized cumulative residual entropy, a broader version of the cumulative
residual entropy, holds significance in assessing the uncertainty model of random variables and
maintains straightforward connections with reliability models and crucial information. This article
represents and modifies some novel features of the fractional generalized cumulative residual entropy
and discusses the weak convergence. Additionally, the measure is utilized to assess uniformity,
involving the derivation of the limit distribution and an approximation of the test statistic’s distribution.
Furthermore, the concept of stability is addressed. Moreover, the presentation includes the critical
points and power analysis against alternative distributions of this test statistic. Furthermore, a
simulation study is carried out to compare the power value of the proposed test with that of other
tests of uniformity. Moreover, the uniformity test utilizes real data on daily smokers in the countries of
the Euro Area. Finally, our model’s exponential distribution is applied to our model’s empirical form.
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1. Introduction

Rao et al. [17] presented the concept of cumulative residual entropy (CRE) for a random variable
(RV) X, which plays a significant role across various scientific disciplines for quantifying the
uncertainty measure in the RV X. In this paper, X represents a non-negative RV characterized by the
continuous cumulative distribution function (CDF) F along with its associated probability density
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function (PDF) f . The CRE is expressed as

Rn(X) = −
∫ ∞

0
F(x)Θ(x)dx, (1.1)

where Θ(x) = log(F(x)), x > 0. Numerous extensions of the CRE have been proposed, incorporating
additional parameters to enhance their adaptability to a wide range of probability distribution shapes.
Di Crescenzo and Longobardi [6], as well as Navarro et al. [13], introduced and examined a similar
model known as cumulative entropy. This model is described concerning the CDF F as follows:

Cn(X) = −
∫ d

0
F(x) log(F(x))dx, (1.2)

where X is supported by (0, d). Xiong et al. [22] presented the fractional cumulative residual entropy
in the following manner:

FRn(X) =
∫ ∞

0
F(x)[−Θ(x)]γdx, 0 ≤ γ ≤ 1. (1.3)

Adding a further term can result in a better relationship with other valuable measures. In particular, Di
Crescenzo et al. [5] considered fractional generalized cumulative residual entropy (FGCRE) for any
non-negative RV X. FGCRE is expressed as

FGCRnγ(X) = FGCRnγ(F) = G(γ)
∫ ∞

0
F(x)[−Θ(x)]γdx, (1.4)

where G(γ) = 1
Γ(γ+1) , γ ≥ 0. Moreover, if γ = n ∈ N, thus G(n) = 1

n! which is the case studied by
Psarrakos and Navarro [15] as the generalized cumulative residual entropy. It is evident that
FGCRnγ(X) is regarded as a dispersion measure. Additionally, the measure relates to a
nonhomogeneous Poisson process’s inter-epoch intervals and relevance transformation, as shown in
Toomaj and Di Crescenzo [19]. Moreover, Alomani and Kayid [3] discussed further properties of
the FGCRE.

A helpful manual for goodness-of-fit testing with statistics derived from the empirical CDF was
given by Stephens [18]. Moreover, [18] carried out power comparisons of several uniformity tests.
Dudewicz and Van der Meulen [8] examined the power analysis of the uncertainty when employed for
the uniformity test. Additionally, by contrasting it with other uniformity tests, they demonstrated that
the entropy-based test has strong power attributes for diverse alternatives. Noughabi [14] examined
some of the aspects of the CRE and created a uniformity test based on it. He also contrasted the power
and percentage points of seven different distributions. To test for consistency, Mohamed et al. [11, 12]
employed fractional CRE and cumulative residual Tsallis entropy measurements, respectively.

In this consideration, the FGCRE is employed to conduct a uniformity test. It is found in the study
that the test conducted under FGCRE is being compared with other tests in terms of power. The
succeeding contents of this article are arranged in the subsequent order: In Section 2, we reintroduce
and modify some properties of the FGCRE. Section 3 introduces the FGCRE test statistic for
assessing uniformity and examines specific characteristics, such as stability. In Section 4, we suggest
techniques for determining the percentile values of FGCRE. Moreover, we compute the percentile
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values of FGCRE. Section 5 employs a Monte Carlo method to compare the power of various tests for
uniformity against alternative distributions. Besides, we use the real data of the daily smokers in the
countries of the Euro Area to get the test power estimations. At the end of the article, we apply the
empirical form of the FGCRE to the exponential distribution.

2. Some features of the fractional generalized cumulative residual entropy

This section will discuss some further aspects of the FGCRE. Alomani and Kayid presented the
following theorem [3], and we will represent its proof with more details and modifications.

Theorem 2.1. Provided that the random vector (RVT) X = {X j}
n
j=1 in Rn. Therefore, from (1.4),

we have:

(1) For some m > 1
γ
, X j ∈ L

m, E[|X j|
m] < ∞, 1 ≤ j ≤ n. Thus, for all 0 < γ < 1, FGCRnγ(X) < ∞.

(2) For some m > γ, X j ∈ L
m, E[|X j|

m] < ∞, 1 ≤ j ≤ n. Thus, for all γ ≥ 1, FGCRnγ(X) < ∞.

Proof. We can readily verify that the function defined by h(x; γ) = G(γ)x[−Θ(x)]γ reaches its
maximum value G(γ)γγ

eγ , at x0 = e−γ, for all 0 ≤ x ≤ 1 and γ ≥ 0. In addition, we have

0 ≤ h(x; γ) ≤
G(γ)γγ

eγ
≤ 1, 0 ≤ x ≤ 1, γ ≥ 0. (2.1)

In the sequel, it is important to prove the following inequality:

h(x; γ) ≤
G(γ)γγ

eγ
xλ

(1 − λ)γ
=

G(γ)γγ

eγ
w(x; γ), 0 ≤ x ≤ 1, (2.2)

where w(x; γ) = xλ
(1−λ)γ , λ = γ when 0 ≤ γ ≤ 1, λ = 1

γ
when γ ≥ 1, and in both cases we have 0 ≤ λ ≤ 1.

The inequality (2.2) has two cases: first, if w(x; γ) ≥ 1 it holds, Second, if w(x; γ) < 1, we get
x < (1 − λ)

γ
λ . Therefore, the ratio

h(x; γ)
w(x; γ)

eγ

G(γ)γγ
= G(γ)x1−λ(− log x)γ(1 − λ)γ

eγ

G(γ)γγ

≤ G(γ)(1 − λ)
γ
λ (1−λ)

(
− log

[
(1 − λ)

γ
λ

])γ
(1 − λ)γ

eγ

G(γ)γγ

= G(γ)(1 − λ)
γ
λ

(
− log

[
(1 − λ)

γ
λ

])γ eγ

G(γ)γγ

≤
G(γ)γγ

eγ
eγ

G(γ)γγ
= 1,

where the last line is obtained from (2.1) (i.e. G(γ)(1 − λ)
γ
λ

(
− log

[
(1 − λ)

γ
λ

])γ
≤

G(γ)γγ

eγ , 0 ≤ λ ≤ 1).
Figure 1 shows the behavior of functions.

Next, for each γ ≥ 0, from the inequality (2.2), we have

G(γ)P[|X j| > x j, 1 ≤ j ≤ n][− log P[|X j| > x j, 1 ≤ j ≤ n]]γ ≤
G(γ)γγ

eγ

(
P[|X j| > x j, 1 ≤ j ≤ n]

)λ
(1 − λ)γ

≤
G(γ)γγ

eγ(1 − λ)γ

n∏
j=1

F
λ
n
|X j |

(x j).

(2.3)
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By integrating both sides of (2.3) across Rn
+ = {x j ∈ R

n; x j ≥ 0} and employing the Markov inequality,
the result obtained is:

FGCRnγ(X) ≤
G(γ)γγ

eγ(1 − λ)γ

∫
Rn
+

n∏
j=1

F
λ
n
|X j |

(x j)dx j =
G(γ)γγ

eγ(1 − λ)γ

n∏
j=1

{∫ ∞

0
F̄
λ
n
|X j |

(x j)dx j

}

=
G(γ)γγ

eγ(1 − λ)γ

n∏
j=1

{∫ 1

0
F̄

p
N
|Xi |

(xi)dxi +

∫ ∞

1
F̄
λ
n
|X j |

(x j)dx j

}

≤
G(γ)γγ

eγ(1 − λ)γ

n∏
j=1

1 +
∫ ∞

1

 1
xm

j
E[|X j|

m]
 λn dx j

 ,
if mλ

n > 1, then it is finite. Therefore, for any m > n, we can select λ < 1 (close to one sufficiently) such
that mλ

n > 1, and consequently, the outcome holds. □

Figure 1. The functions behavior h(x; γ) and g(x; γ) = G(γ)γγ

eγ
xλ

(1−λ)γ under different values of γ.

Theorem 2.2. Suppose that the N-dimensional RVTs Xn is converge in distribution to a RVT X (i.e.,
Xn

dis
−→n

X). Moreover, let m > N, Xn ∈ Lm, for all n. Then,

lim
n→+∞

FGCRnγ(Xn) = FGCRnγ(X).

[Weak convergence]

Proof. Since Xn
dis
−→n

X, we have

lim
n→+∞

F̄|Xn |(x)(− log F̄|Xn |(x))γ = F̄|X|(x)(− log F̄θ|X|(x))γ, x ∈ RN
+ .

On the other hand, from (2.3), we have

G(γ)F |Xn |(x)(− log F |Xn |(x))γ ≤
G(γ)γγ

eγ(1 − λ)γ

N∏
j=1

F
λ
N
|X j |

(x j)
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≤
G(γ)γγ

eγ(1 − λ)γ

N∏
j=1

[
I[0,1](x j) + x−m

j I[1,∞)(x j)E(|Xn j |
m)

] λ
N
.

The jth component of the RVT Xn is denoted by Xn j , and IA(x) represents the indicator function,
defined as IA(x) = 1 if x ∈ A, and IA(x) = 0 if x < A. Hence, when mλ

N > 1, the expression
F |Xn|(x)(− log F |Xn|(x))γ is constrained by a function that is integrable. Additionally, for any m > N, it
is possible to select λ < 1 close enough to one such that mλ

N > 1. The proof is concluded by applying
the dominated convergence theorem. □

Alomani and Kayid presented the following theorem [3], and we will represent its proof with
modifications and more details. Below, we demonstrate that the measure FGCRnγ(X) prevails over
the classical Shannon entropy, a condition that can occur when X possesses a density.

Theorem 2.3. Provided that the non-negative RV X follows CDF FX(x), thus, we have

FGCRnγ(X) ≥ T (γ)eS Hn(X), γ ≥ 0,

where T (γ) = e
∫ 1

0 log(G(γ)x(− log x)γ)dx < ∞ and S Hn(X) = −
∫ ∞

0
f (x) log f (x)dx is the classical Shannon

entropy.

Proof. Since, the log-sum inequality indicates for the following expression that∫ ∞

0
f (x) log

 f (x)

G(γ)F(x)(− log F(x))γ

 dx ≥ log
1∫ ∞

0
G(γ)F(x)(− log F(x))γdx

= − log FGCRnγ(X).

(2.4)

Moreover, the expression on the left-hand side in Eq (2.4) is obtained as∫ ∞

0
fX(x) log

 fX(x)

G(γ)F(x)(− log F(x))γ

 dx = −S Hn(X) −
∫ 1

0
log

(
G(γ)x(− log x)γ

)
dx.

Therefore,

log FGCRnγ(X) ≥ S Hn(X) +
∫ 1

0
log

(
G(γ)x(− log x)γ

)
dx. (2.5)

After exponentiating both sides of (2.5) and employing (2.1), the outcome emerges, wherein T (γ) =
e
∫ 1

0 ln(G(γ)x(− log x)γ)dx ≤
G(γ)γγ

eγ ≤ 1 remains finite. This concludes the proof. □

3. Additional theoretical elements and a statistic for testing uniformity

Suppose we have X1, X2, ..., Xn as a random sample following a continuous CDF F supported in the
interval [0, 1]. Additionally, the corresponding order statistics are denoted by X(1) ≤ X(2) ≤ ... ≤ X(n).
For FGCRnγ(F), we can propose its estimator as FGCRnγ(Fn) =

∫ ∞
0

g(F̄n(x); γ)dx, γ > 0, where
F̄n(x) = 1 − Fn(x) and Fn(x) represents the empirical CDF, which is expressed as

Fn(x) =
n−1∑
j=1

j
n

I[X( j),X( j+1))(x) + I[X(n),∞)(x), x ∈ R. (3.1)
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Furthermore, for the purpose of obtaining a consistent test of the uniformity hypothesis, we think of
employing a consistent statistical test as follows:

Tn(γ) = G(γ)
n−1∑
j=1

(
1 −

j
n

) [
− log

(
1 −

j
n

)]γ
(X( j+1) − X( j)) =

n−1∑
j=1

M jΩ j, (3.2)

whereM j = G(γ)
(
1 − j

n

) [
− log

(
1 − j

n

)]γ
, γ > 0, and Ω j = (X( j+1) − X( j)), j = 1, 2, ..., n − 1.

Theorem 3.1. The test relying on the sample estimate Tn(γ) maintains its consistency.

Proof. Based on the Glivenko-Cantelli theorem, as discussed in Howard [9], it can be inferred that
supy |Fn(y) − F(y)| a.s.

−→n
0 (i.e., almost surely as n tends to ∞). Furthermore, it can be readily claimed

that FGCRnγ(Fn) a.s.
−→n

FGCRnγ(F), and the proof holds. □

In order to set up the uniformity test based on the null hypothesis H0, the following theorem is
required.

Theorem 3.2. If the non-negative RV X adheres to a CDF F with support on [0, 1],
then 0 ≤ FGCRnγ(F) ≤ G(γ)γγ

eγ holds. Additionally, the value 1
2γ+1 is exclusively achieved by the

standard uniform distribution (i.e., U(0, 1)) for all γ > 0.

Proof. We can see that the inequality 0 ≤ FGCRnγ(F) ≤ G(γ)γγ

eγ can be readily derived from (2.1).
Simultaneously, leveraging the strict concavity of h(x; γ) = G(γ)x(− log x)γ, we establish that
FGCRnγ(F) returns a distributions of concave function supporting with [0, 1]. Consequently,
FGCRnγ(F) = 1

2γ+1 is exclusively attained by the U(0, 1) distribution. This validates the proof. □

Remark 3.1. Due to the convergence in probability as n approaches to ∞, we have
FGCRnγ(Fn)

p
−→n

FGCRnγ(F), therefore we observe Tn(γ)
p
−→n

1
2γ+1 under the null hypothesis H0.

Conversely, under the hypothesis of alternative (that F represents any CDF supported with the
interval [0, 1], except for the U(0, 1) distribution), Tn(γ)

p
−→n
δ, where δ could be either smaller or

larger than 1
2γ+1 .

Theorem 3.3. If X1, X2, ..., Xn are defined as a random sample taken from an unspecified continuous
CDF F on the interval [0, 1], then T n(γ) satisfies the inequality 0 ≤ T n(γ) ≤ G(γ)γγ

eγ , where γ > 0.

Proof. Considering Eq (2.1), we find that

0 ≤ T n(θ) ≤
n−1∑
j=1

G(γ)γγ

eγ
Ω j =

G(γ)γγ

eγ
(X(n) − X(1)) ≤

G(γ)γγ

eγ
.

This concludes the result. □

Theorem 3.4. Under the null hypothesis H0, the mean and variance of the statistic Tn(γ) are provided,
respectively, by

E(Tn(γ)) =
1

n + 1

n−1∑
j=1

M j, and Var(Tn(γ)) =
n

(n + 1)2(n + 2)

n−1∑
j=1

M2
j .
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Proof. It is evident that for every j = 1, 2, ..., n − 1, the RV Ω j, which follows a U(0, 1) distribution,
possesses a beta distribution based on the (1, n) parameter-vector, denoted as Ω j ∼ Beta(1, n) (cf. [4]).
This concludes the proof. □

Remark 3.2. Under H0, we obtain limn→∞ E(Tn(γ)) = 1
2γ+1 and limn→∞ Var(Tn(γ)) = 0.

The interval [lower, upper] := [FGCRno
γ, α2
, FGCRno

γ,1− α2
] delineates the region crucial for defining

the uniformity test, where α denotes the specified level of significance, and FGCRno
γ,α represents the

α−quantile function of the approximate or asymptotic CDF FGCRnγ(Fn) test statistic under the null
hypothesis H0.

The stability of information measures has been explored in various literature sources, as noted in
references [1,2,22]. Similarly, we introduce the concept of stability for the FGCRnγ in the subsequent
definition.

Definition 3.1. If X1, X2, ..., Xn constitute a random sample following a continuous CDF F, and
χ1, χ2, ..., χn represent any minor alterations from this random sample. The empirical FGCRnγ
remains stable provided that for every τ > 0, ∃ θ > 0, the condition

∑n
k=1 |Xk − χk| < θ implies

|FGCRnγ(F̄n(X)) − FGCRnγ(F̄n(χ))| < τ, where n ∈ Z+.

The following theorem provides a condition sufficient for determining the stability of the empirical
FGCRnγ.

Theorem 3.5. Provided any continuous RV X, the empirical FGCRnγ is stable if X is distributed on
finite, closed, or open intervals.

Proof. Assuming that the RV X is confined within the finite interval [α, β], where α ≥ 0 and β < ∞.
For the brevity sake, denote Wk = g

(
F̄n(X(k)); γ

)
, W ′

k = g
(
F̄n(χ(k)); γ

)
, and Ω′k = χ(k+1) − χ(k), then,

the empirical FGCRnγ can be obtained based on (3.2) as FGCRnγ(F̄n(X)) = G(γ)
∑n−1

k=1 Wk Ωk, γ ≥ 0.
Thus, when

∑n
k=1 |Xk − χk| < θ, we get

∣∣∣FGCRnγ(F̄n(X)) − FGCRnγ(F̄n(χ))
∣∣∣ = ∣∣∣∣∣∣∣

n−1∑
k=1

WkΩk −

n−1∑
k=1

W ′
kΩ
′
k

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n−1∑
k=1

(Wk −W ′
k)Ωk +

n−1∑
k=1

W ′
k
[
Ωk −Ω

′
k
]∣∣∣∣∣∣∣

≤

n−1∑
k=1

∣∣∣Wk −W ′
k

∣∣∣Ωk +

n−1∑
k=1

W ′
k

[
|(X(k+1) − X′(k+1))| +|(X(k) − X′(k))|

]
≤

G(γ)τ
2(β − α)

(X(n) − X(1)) + 2θ.

The validity of the second part in the second inequality line is justified concerning (2.1). Conversely,
the justification for the first part of that inequality stems from the reality that, for any t′, t′′, and
arbitrarily small θ⋆ > 0, there exists τ⋆ > 0 where |F̄n(x′) − F̄n(x′′)| < τ⋆ whenever |t′ − t′′| < θ⋆

(cf. [22]), which implies
∣∣∣Wk −W ′

k

∣∣∣ ≤ τ
2(β−α) whenever

∑
k = 1n

|Xk − χk| < θ. Now, selecting θ = τ
4

yields G(γ) τ
2(b−a) (X(n) − X(1)) + 2θ ≤ τ. This concludes the proof. □
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4. Percentage points of the empirical FGCRnγ test statistic

In this part, we figure out the asymptotic distribution of Tn(γ), assuming the null hypothesis, by
using three different methods. From (3.2), recall the test statistic Tn(γ) =

∑n−1
j=1 R j =

∑n−1
j=1M jΩ j, then

we have ∑n−1
j=1(R j − µ j)√∑n−1

j=1 σ
2
j

=
Tn(γ) − E(Tn(γ))√

Var(Tn(γ))
dis
−→n→∞

Z

where the RV R j has the PDF

fR j(y) =
n
Ω j

(
1 −

y
Ω j

)n−1

, j = 1, 2, ..., n − 1,

the RV Z represents the standard normal distribution (i.e., N(0, 1)), andΩ j ∼ Beta(1, n). Therefore, the

mean and variance ofR j are µ j = E(R j) =M jE(Ω j) =
M j

n+1 andσ2
j = Var(Ri) =M2

i Var(Ω j) =
nM2

i
(n+1)2(n+2) .

Therefore, the first procedure to obtain the percentage point FGCRno
γ,α by using the normal asymptotic

of Tn(γ) (normal approximation percentage points) is given by

̂FGCRn
o
γ,α = E(Tn(γ)) +

√
Var(Tn(γ))Zα. (4.1)

Johannesson and Giri [10] illustrated an approximation method for the CDF of a linear combination
of a limited number of RVs following the beta distribution. Noughabi [14] employed this finding to
approximate and estimate the percentage points of the FGCRnγ for finite values of n. By employing a
comparable approach, an approximation method for Tn(γ) for limited values of n can be derived from
the following expression (beta approximation percentage points):

lower :=

 n−1∑
j=1

M j

 Beta−1
(
α

2
; ν1, ν2

)
and upper :=

 n−1∑
i=1

M j

 Beta−1
(
1 −
α

2
; ν1, ν2

)
, (4.2)

such that Beta−1(ν1, ν2) is the function of quantile of Beta(ν1, ν2) distribution, with

ν1 =
(n + 2)(

∑n−1
j=1M j)2

(n + 1)(
∑n−1

j=1M
2
j)
−

1
n + 1

and ν2 =
n

n + 1

 (n + 2)(
∑n−1

j=1M j)2∑n−1
j=1M

2
j

− 1

 . (4.3)

Moreover, in this second procedure, we have

E(Tn(γ)) =

 n−1∑
j=1

M j

 ν1

ν1 + ν2
and Var(Tn(γ)) =

 n−1∑
j=1

M j


2

ν1 ν2

(ν1 + ν2)2(ν1 + ν2 + 1)
.

We produce 50, 000 with n = 10, 20, 30, 40, 50, 70, 100, samples of sizes from U(0, 1).
Employing (3.2), the test statistic Mn(γ) is assessed through the empirical FGCRE for each sample.
Additionally, FGCRn1.5(U) = 0.1767, FGCRn2(U) = 0.125, FGCRn2.5(U) = 0.0883,
FGCRn3(U) = 0.0625, FGCRn3.5(U) = 0.04419, and FGCRn4(U) = 0.03125, where FGCRnγ(U)
represents the FGCRE of the CDF U(0, 1). Consequently, for Mn(γ), the percentage points of the

AIMS Mathematics Volume 9, Issue 7, 18064–18082.



18072

Monte Carlo procedure, asymptotic normality, and beta approximation are presented. Table 1
indicates that:

(1) Under fixed n and increasing γ, the discrepancy between percentage points diminishes.
(2) Under fixed γ and increasing n, the discrepancy between percentage points diminishes.

Moreover, it transpires that the difference among the three methods is not significant for Mn(γ).
Figure 2 illustrates the empirical PDFs of the test statistics via Monte Carlo simulation samples with
n = 10, 20, 30, 50, 100. It is observed that the test statistics converge closer to the exact values as n
increases, implying a reduction in bias and variance with increasing n.

Table 1. Methods of critical points of the assumed test statistic Tn(γ) at level α = 0.05.
n γ Tn(γ)

Normal procedure Beta procedure Monte Carlo procedure
lower upper lower upper lower upper

10 1.5 0.05111 0.26028 0.06789 0.2748 0.08935 0.21938
2 0.02804 0.18601 0.04206 0.19801 0.05442 0.166307
2.5 0.01316 0.1316 0.0249 0.1415 0.03198 0.12451
3 0.00446 0.09171 0.01414 0.09973 0.01851 0.09109
3.5 0.0000131 0.0624 0.00771 0.06876 0.010435 0.06467
4 -0.00181 0.04146 0.00406 0.04617 0.00573 0.04438

20 1.5 0.08533 0.24809 0.09508 0.2569 0.1195 0.2108
2 0.0544 0.1789 0.06262 0.18625 0.07662 0.15841
2.5 0.03322 0.1289 0.04021 0.1351 0.04831 0.1188
3 0.01912 0.09252 0.02512 0.0977 0.03005 0.08848
3.5 0.01014 0.0658 0.01524 0.07022 0.018291 0.06513
4 0.00473 0.04619 0.00898 0.0498 0.01096 0.04727

30 1.5 0.1016 0.2388 0.1084 0.2451 0.13225 0.20597
2 0.06712 0.1722 0.0728 0.1775 0.086707 0.15337
2.5 0.04315 0.1244 0.04806 0.1289 0.05625 0.11429
3 0.02682 0.08985 0.03108 0.09369 0.03592 0.08478
3.5 0.01596 0.06459 0.01965 0.06787 0.02277 0.06263
4 0.00897 0.04609 0.0121 0.0488 0.01417 0.04608

40 1.5 0.1115 0.2323 0.1168 0.2372 0.13903 0.20322
2 0.07484 0.1674 0.0792 0.1715 0.09237 0.15037
2.5 0.04922 0.12101 0.053 0.1244 0.06073 0.11151
3 0.0316 0.0874 0.0348 0.0904 0.039576 0.082705
3.5 0.01968 0.06312 0.0225 0.06571 0.02547 0.061189
4 0.01179 0.0453 0.0142 0.0475 0.01618 0.04496

50 1.5 0.1184 0.2275 0.1226 0.2315 0.143706 0.20105
2 0.08014 0.1638 0.0837 0.1671 0.09613 0.14799
2.5 0.0534 0.1183 0.05646 0.1211 0.06382 0.10945
3 0.03491 0.0855 0.0375 0.088 0.04207 0.08094
3.5 0.02229 0.06182 0.0246 0.0639 0.027419 0.05976
4 0.01381 0.04455 0.01586 0.0464 0.01768 0.04407

70 1.5 0.12746 0.2207 0.1305 0.2236 0.14923 0.19757
2 0.0871 0.1586 0.08974 0.16115 0.10083 0.14492
2.5 0.0589 0.1144 0.06112 0.1165 0.067702 0.10659
3 0.0392 0.0826 0.04121 0.0845 0.045185 0.07838
3.5 0.0257 0.0597 0.0274 0.0613 0.029963 0.05775
4 0.0165 0.04319 0.01804 0.04457 0.019673 0.042546

100 1.5 0.1355 0.2142 0.1377 0.2163 0.154169 0.194932
2 0.0933 0.1537 0.0952 0.1555 0.105001 0.14239
2.5 0.0638 0.1106 0.0653 0.1121 0.071237 0.104129
3 0.04316 0.07985 0.04453 0.08115 0.048081 0.076222
3.5 0.02885 0.05769 0.03006 0.05882 0.032291 0.05591
4 0.01901 0.04169 0.04269 0.02008 0.02154 0.040977
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Figure 2. The PDFs estimates ofTn(γ) under U(0, 1) for n = 10, 20, 30, 50, 100, and different
values of γ.

5. Uniformity test via power analysis

In this section, we investigate the power analysis of the Monte Carlo simulation procedure across
different distributions. The value of the power of Tn(γ) is gauged by the ratio of generated samples
falling within the critical region. Across the distributions of seven alternatives, the power analysis of
Tn(γ) is evaluated using the Monte Carlo procedure with 50,000 generated samples for each sample
size of n = 10, 20, 30. The alternative distributions, as outlined by Stephens [18] in the investigation of
uniformity tests, are utilized for this analysis by

U1p : F(t) = 1 − (1 − t)p, 0 ≤ t ≤ 1, p = 1.5, 2,

U2p : F(t) =

2p−1tp, 0 ≤ t ≤ 0.5,
1 − 2p−1(1 − t)p, 0.5 ≤ t ≤ 1, p = 1.5, 2, 3,

U3p : F(t) =

0.5 − 2p−1(0.5 − t)p, 0 ≤ t ≤ 0.5,
0.5 + 2p−1(t − 0.5)p, 0.5 ≤ t ≤ 1, p = 1.5, 2.

(5.1)
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According to Stephens’ report [18], family U1p yields points closer to zero than expected under the
assumption of uniformity, understood as a shift in the mean. Alternative U2p produces points near 0.5,
indicating a trend towards reduced variance, while family U3p exhibits two clusters near 0 and 1,
suggesting an increase in variance. Consequently, Stephens proposed that alternatives U1 and U2
yield points near 0 and 1, respectively, while alternative U3 produces points near 0 and 1. Our test’s
performance is compared to several omnibus tests, including Kolmogorov-Smirnov (Ko-S), Kuiper
(Ku), Cramer-von Mises (C-v-M), Watson (Wn), and Anderson-Darling (An-D). These tests enjoy
widespread popularity among practitioners in various fields. Based on the information presented in
Table 2, the following conclusions can be drawn:

(1) Under fixed n and increasing γ, the power of the FGCRnγ test increases for alternative U1 and
decreases for alternatives U2 and U3.

(2) The power of the FGCRnγ test increases by increasing n as γ is fixed.

Table 2. Test power estimations at a significance level of α = 0.05.
n Alternative Tn(γ) Ko-S Ku C-v-M Wn An-D

γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 4
10 U11.5 0.0634 0.07052 0.07568 0.07706 0.07736 0.12606 0.0756 0.1456 0.07776 0.1877

U12 0.08758 0.09094 0.0963 0.09948 0.09904 0.30288 0.1631 0.3551 0.16308 0.4761
U21.5 0.08864 0.0684 0.05484 0.0495 0.04642 0.07351 0.0971 0.0741 0.1017 0.1349
U22 0.21018 0.14052 0.09818 0.07792 0.05628 0.1184 0.2307 0.1104 0.2481 0.3269
U23 0.53166 0.35484 0.23366 0.1677 0.102 0.2424 0.5394 0.2154 0.5699 0.72308
U31.5 0.10784 0.09594 0.08626 0.0802 0.07318 0.0342 0.0974 0.0239 0.1031 0.0222
U32 0.18994 0.14916 0.12638 0.1174 0.10704 0.0402 0.2331 0.01114 0.2475 0.00924

20 U11.5 0.06514 0.0975 0.1265 0.14224 0.14578 0.2179 0.1226 0.25208 0.1225 0.3235
U12 0.08716 0.1263 0.18412 0.2219 0.23662 0.5616 0.3486 0.6241 0.3358 0.7538
U21.5 0.14064 0.07482 0.04944 0.04448 0.05096 0.0869 0.1634 0.0781 0.1786 0.1774
U22 0.4014 0.19424 0.10288 0.06842 0.0597 0.1849 0.4646 0.162 0.5067 0.52702
U23 0.86214 0.53432 0.2924 0.17262 0.0921 0.4588 0.8711 0.4615 0.8978 0.93998
U31.5 0.14508 0.11046 0.0984 0.09634 0.0899 0.0509 0.1621 0.02406 0.1791 0.0213
U32 0.25556 0.16544 0.14948 0.15748 0.16504 0.1162 0.4633 0.0462 0.5048 0.0338

30 U11.5 0.06984 0.13642 0.19682 0.23342 0.23802 0.3134 0.18002 0.366 0.1721 0.4498
U12 0.08778 0.17868 0.29888 0.37228 0.4017 0.7512 0.5447 0.8105 0.5071 0.8963
U21.5 0.19688 0.08316 0.0444 0.04184 0.06452 0.1023 0.2477 0.0873 0.2667 0.2271
U22 0.5831 0.24324 0.10248 0.0608 0.08348 0.2705 0.6695 0.25107 0.7076 0.7002
U23 0.97308 0.67266 0.33416 0.1639 0.1066 0.6701 0.97506 0.7227 0.9818 0.99104
U31.5 0.16596 0.11614 0.10976 0.11484 0.11828 0.07 0.2492 0.0302 0.2668 0.0271
U32 0.28858 0.17178 0.17122 0.20436 0.247 0.2077 0.6711 0.1258 0.7121 0.1105

In this section, we will study the uniformity of the FGCRE among the daily smokers of the countries
in the Euro Area, see [7]. Figure 3 shows the data analysis, where the daily smokers are individuals
aged 15 and above who report smoking daily. The goodness-of-fit test problem is for the U(α, β)
distribution. The PDF of the U(α, β) distribution is expressed as f (r) = 1

β−α
; where α < r < β.

If (α, β) are provided, then the transformation Z = U−α
β−α

provides a random sample from the U(0, 1)
distribution. Thus, tests can be readily applied by converting them into standard uniform samples.
The power analysis of these tests remains unaffected for assessing the U(α, β) distribution when (α, β)
are given. In cases where the parameters are unknown, they can be estimated from the data using
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maximum likelihood estimators. Let U1,U2, ...,Un be an n size random sample that follows the U(α, β)
distribution. The maximum likelihood estimators for α and β are the first and nth order statistics U(1)

and U(n), respectively. Next, by the transformation Zi =
U(i+1)−U(1)
U(n)−U(1) , i = 1, 2, ..., n − 2, a random sample

of size n − 2 from the U(0, 1) distribution is obtained. Consequently, this conversion changes the
testing of U(α, β) from a sample size of n to testing U(0, 1) from a sample size of n− 2. Therefore, we
apply the chi-squared test for the given data, which returns p-value= 0.7788. Furthermore, to transform
the data to fit U(0, 1) using the quantile function, we apply a one-sample Kolmogorov-Smirnov test,
which returns p-value= 0.8743, see Figure 4. Figure 5 shows the empirical and theoretical values of
the FGCRnγ of the data set’s uniform and standard uniform distribution. We can see that it decreases
as γ increases.

Figure 3. The daily smokers of the countries in the Euro Area.

Figure 4. Analysis of the transformed daily smokers of the countries in the Euro Area data.
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Figure 5. The empirical and theoretical values of the FGCRnγ of the daily smokers of the
countries in the Euro Area data.

To study the test of uniformity for the real set of data we performed 50000 bootstrap samples each
of sizes n = 8, 12, 15. We have illustrated the method by the algorithm as shown in Figure 6.

Start

Identify the real data which fitted to U(α, β) distribution.

Order each bootstrap sample.

Determine the max and min values, which
represent the maximum likelihood estimators.

Transform into standard uniform distribution U(0, 1)
by Zi =

U(i+1)−U(1)
U(n)−U(1) , i = 1, 2, ..., n − 2.

For alternative U1p, generate the data from the form t = 1 −
(1 − Z)

1
p , where Z is obtained from step (3), then order it.

Calculate the empirical FGCRnγ.

Obtain the percentage of the critical points using the Monte Carlo procedure.

Repeat 50000 times, then, determine the power.

End

Figure 6. Test of uniformity for the real set of data algorithms.

Similarly, the steps for the rest of the alternatives. Table 3 shows the test power estimations at a
significance level of α = 0.05 of the daily smokers of the countries in the Euro Area data. Therefore,
we can see that by increasing the sample size, the power increases.

AIMS Mathematics Volume 9, Issue 7, 18064–18082.



18077

Table 3. Test power estimations at a significance level of α = 0.05 of the daily smokers of
the countries in the Euro Area data.

n Alternative Tn(γ)
γ = 1.5 γ = 2 γ = 2.5 γ = 3 γ = 4

8 U11.5 0.0527 0.08338 0.10576 0.13368 0.17794
U12 0.09626 0.1982 0.27444 0.33166 0.37112
U21.5 0.02212 0.02224 0.02362 0.027 0.03286
U22 0.01122 0.0115 0.01382 0.01784 0.02642
U23 0.02082 0.0211 0.02332 0.02592 0.03308
U31.5 0.08578 0.08118 0.07516 0.07086 0.06382
U32 0.12052 0.11316 0.1001 0.08984 0.07722

12 U11.5 0.0629 0.11686 0.17464 0.22064 0.23666
U12 0.13732 0.32538 0.45972 0.46878 0.43582
U21.5 0.02594 0.02068 0.02382 0.03112 0.0495
U22 0.01688 0.00934 0.01288 0.02362 0.0607
U23 0.03082 0.02138 0.02398 0.03422 0.11616
U31.5 0.09516 0.09156 0.08018 0.07204 0.06132
U32 0.1445 0.1304 0.1131 0.09708 0.08164

15 U11.5 0.0762 0.14634 0.2283 0.26042 0.2381
U12 0.16618 0.421 0.57846 0.55342 0.42958
U21.5 0.03224 0.01974 0.02358 0.03448 0.05812
U22 0.0342 0.00918 0.01278 0.02946 0.08528
U23 0.07306 0.01612 0.01852 0.04016 0.1748
U31.5 0.09828 0.09844 0.08548 0.07194 0.0597
U32 0.1517 0.14518 0.12472 0.10466 0.08514

6. Features on fractional cumulative residual entropy via exponential distribution

This part discusses some features of the FGCRE and uses non-parametric estimation techniques
under the exponential distribution.

Example 6.1. If the RV X follows an exponential distribution having parameter θ (i.e. exp(θ)) follows
CDF F(x) = 1 − e−θx. Then, from (1.4), we have FGCRnγ(X) = 1

θ
.

In the following example, we discuss the first-order statistic of FGCRE under the exponential
distribution.

Example 6.2. Based on the order statistics X(1) ≤ X(2) ≤ ... ≤ X(n), and the first order statistic X(1)

follows a CDF F(X(1)) = 1 − (1 − F(x))n. Then, we can see that the FGCRE, under the exponential
distribution, is given by FGCRnγ(X(1)) = 1

n θ .

The primary benefit of the new FGCRE measure is its applicability to heavy-tailed distributions
where the mean E(X) < ∞ but E(X2) is infinite. At the same time, the standard deviation does not
exist. Yang [23] discusses the cumulative residual entropy as an alternative risk measure. Moreover,
Ramsay [16] illustrated that the standard deviation is not an appropriate measure for large insurance
risks with long-tailed skewed distributions. The next example discusses this issue.

Example 6.3. Let the standard deviation
√

Var(X) of a risk X be a common risk measure in insurance.
Moreover, Wang [20] presents the right-tail deviation risk measure as

Rt(X) =
∫ ∞

0

√
F(t)dt − E(X).
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Therefore, under the exponential distribution, we see that

FGCRnγ(X) =
√

Var(X) = Rt(X) =
1
θ
,

which is independent of γ. Then, we can see no difference among the three measures.

Remark 6.1. In the exponential distribution, where the FGCRnγ measure equals 1
θ
. Then, it usually

refers to the distribution’s average or expected value, which offers crucial details regarding the RV’s
central tendency.

We can illustrate the uses of Remark (6.1) by studying the increasing failure rate average (IFRA)
and decreasing failure rate average (DFRA) of the FGCRE. Let X be the lifetime of a component or a
system with an absolutely continuous CDF F. We say that F is IFRA (DFRA) if [−Θ(x)]

x is an increasing
(decreasing) function in x > 0.

Proposition 6.1. If X is IFRA (DFRA), then, from (1.4), we have

FGCRnγ(X) ≤ (≥)G(γ)E
(
X [−Θ(x)]γ−1

)
, γ ≥ 1,

and for the exponential distribution, the equality holds.

Proof. Suppose that X is IFRA (DFRA), then

F(x)[−Θ(x)] ≤ (≥)x f (x), x > 0,

then, from (1.4) with γ ≥ 1, we get

FGCRnγ(X) = G(γ)
∫ ∞

0
F(x)[−Θ(x)]γdx

≤ (≥)G(γ)
∫ ∞

0
x f (x)[−Θ(x)]γ−1dx = G(γ)E

(
X [−Θ(x)]γ−1

)
.

According to Remark (6.1), equality is held for the exponential distribution. □

In the next step, we can use the empirical measure of the FGCRE introduced in (3.2), which depends
on the empirical CDF given in (3.1) as Tn(γ) =

∑n−1
j=1M jΩ j.

Proposition 6.2. Provided that the random sample X1, X2, ..., Xn follows exp(θ). From (3.2), due to the
independence of sample spacings, Ωp adheres to the exponential distribution with parameter θ(n − p),
p = 1, 2, ..., n − 1. Therefore, we obtain

(1) The expectation and variance of FGCRnγ(Fn) are

E(Tn(γ)) =
1
θ

n−1∑
p=1

Mp

n − p
, and Var(Tn(γ)) =

1
θ2

n−1∑
p=1

(
Mp

n − p

)2

.

(2) For any γ > 0, we have

Tn(γ) − E(Tn(γ))√
Var(Tn(γ))

dis
−→n→∞

Z.
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Proof. Part (i) follows directly. In part (ii), we observe that FGCRnγ(Fn) may be represented as the
accumulation of independent exponential RVs Ωp having an expected value of Mp

θ(n−p) . The remainder
of the proof proceeds with analogous reasoning from [12]. Therefore, it is excluded. □

Figure 7 shows the empirical and theoretical FGCRnγ of exp(θ) under different values of θ and
a sample size of n = 5000. We can see that the empirical FGCRnγ is far from the theoretical by
increasing θ.

Figure 7. The empirical and theoretical FGCRnγ of exponential distribution under different
values of θ and n = 5000.

Table 4 shows the expected value and variance of the empirical FGCRnγ under different values of
θ and n = 5000. Therefore, we can see that

(1) For fixed γ, the variance decreases as θ increases.

(2) For fixed θ, the variance increases as γ increases.

Table 4. Mean and variance of the empirical FGCRnγ under different values of θ and n =
5000.

γ
E(Tn(γ)) (Var(Tn(γ))),

θ = 0.9
E(Tn(γ)) (Var(Tn(γ))),

θ = 2.5
E(Tn(γ)) (Var(Tn(γ))),

θ = 5.5

1.5 9.97488 (0.0666245) 1.10832 (0.000822525) 0.398995 (0.000106599) 0.181361 (0.0000220246)
2 9.94607 (0.113996) 1.10512 (0.00140736) 0.397843 (0.000182393) 0.180838 (0.0000376846)
2.5 9.89496 (0.193946) 1.09944 (0.00239439) 0.395798 (0.000310313) 0.179908 (0.0000641142)
3 9.81127 (0.321829) 1.09014 (0.00397319) 0.392451 (0.000514926) 0.178387 (0.00010639)
3.5 9.68342 (0.513669) 1.07594 (0.00634159) 0.387337 (0.000821871) 0.176062 (0.000169808)
4 9.49965 (0.781214) 1.05552 (0.00964461) 0.379986 (0.00124994) 0.172721 (0.000258252)
5.5 8.52349 (1.96644) 0.947055 (0.0242771) 0.34094 (0.00314631) 0.154973 (0.000650064)
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7. Conclusions

By the end of this paper, we have represented and modified some features of FGCRE and
illustrated its weak convergence. Based on the empirical version of our model, we study the stability,
and using three approximation methods, we obtain the percentage points whose accuracy depends on
the increasing and decreasing of n and γ. Moreover, we perform the uniformity test with the power
estimates of our test statistic and other tests. We conclude that our test statistic accuracy depends on
the value of γ to achieve its priority. Under the real data of the daily smokers of the countries in the
Euro Area, we have fitted it to uniform distribution and given the algorithm to show how to make the
test of uniformity with the power analysis. Finally, we apply the empirical version of our form to the
exponential distribution and figure out that the variance depends on the values of γ and θ. In
forthcoming research, certain studies related to entropy, such as quantum X-entropy in generalized
quantum evidence theory (Xiao [21]), will be explored.
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