Research article

Uncertainty quantification based on residual Tsallis entropy of order statistics

  • Received: 25 February 2024 Revised: 19 May 2024 Accepted: 30 May 2024 Published: 04 June 2024
  • MSC : 62N05, 94A17

  • In this study, we focused on investigating the properties of residual Tsallis entropy for order statistics. The reliability of engineering systems is highly influenced by order statistics, for example, when modeling the lifetime of a series system and the lifetime of a parallel system. The residual Tsallis entropy of the ith order statistic from a continuous distribution function and its deviation from the residual Tsallis entropy of the ith order statistics from a uniform distribution were investigated. In the mathematical framework, a method was provided to represent the residual Tsallis entropy of the ith order statistic in the continuous case with respect to the case where the distribution was uniform. This approach can provide insight into the behavior and properties of the residual Tsallis entropy for order statistics. We also investigated the monotonicity of the new uncertainty measure under different conditions. An investigation of these properties leads to a deeper understanding of the relationship between the position of the order statistics and the resulting Tsallis entropy. Finally, we presented the computational results and proposed estimators for estimating the residual Tsallis entropy of an exponential distribution. For this purpose, we derived a maximum likelihood estimator.

    Citation: Mansour Shrahili, Mohamed Kayid. Uncertainty quantification based on residual Tsallis entropy of order statistics[J]. AIMS Mathematics, 2024, 9(7): 18712-18731. doi: 10.3934/math.2024910

    Related Papers:

  • In this study, we focused on investigating the properties of residual Tsallis entropy for order statistics. The reliability of engineering systems is highly influenced by order statistics, for example, when modeling the lifetime of a series system and the lifetime of a parallel system. The residual Tsallis entropy of the ith order statistic from a continuous distribution function and its deviation from the residual Tsallis entropy of the ith order statistics from a uniform distribution were investigated. In the mathematical framework, a method was provided to represent the residual Tsallis entropy of the ith order statistic in the continuous case with respect to the case where the distribution was uniform. This approach can provide insight into the behavior and properties of the residual Tsallis entropy for order statistics. We also investigated the monotonicity of the new uncertainty measure under different conditions. An investigation of these properties leads to a deeper understanding of the relationship between the position of the order statistics and the resulting Tsallis entropy. Finally, we presented the computational results and proposed estimators for estimating the residual Tsallis entropy of an exponential distribution. For this purpose, we derived a maximum likelihood estimator.



    加载中


    [1] M. Abbasnejad, N. R. Arghami, Renyi entropy properties of order statistics, Commun. Stat.-Theory M., 40 (2010), 40–52. https://doi.org/10.1080/03610920903353683 doi: 10.1080/03610920903353683
    [2] S. Abe, Axioms and uniqueness theorem for Tsallis entropy, Phys. Lett. A, 271 (2000), 74–79. https://doi.org/10.1016/S0375-9601(00)00337-6 doi: 10.1016/S0375-9601(00)00337-6
    [3] G. Alomani, M. Kayid, Further properties of Tsallis entropy and its application, Entropy, 25 (2023), 199. https://doi.org/10.3390/e25020199 doi: 10.3390/e25020199
    [4] B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A first course in order statistics, SIAM, 2008. https://doi.org/10.1137/1.9780898719062
    [5] M. Asadi, N. Ebrahimi, E. S. Soofi, Dynamic generalized information measures, Stat. Probab. Lett., 71 (2005), 85–98. https://doi.org/10.1016/j.spl.2004.10.033 doi: 10.1016/j.spl.2004.10.033
    [6] M. Asadi, N. Ebrahimi, E. S. Soofi, Connections of Gini, Fisher, and Shannon by Bayes risk under proportional hazards, J. Appl. Probab., 54 (2017), 1027–1050. https://doi.org/10.1017/jpr.2017.51 doi: 10.1017/jpr.2017.51
    [7] S. Baratpour, J. Ahmadi, N. R. Arghami, Entropy properties of record statistics, Stat. Pap., 48 (2007), 197–213. https://doi.org/10.1007/s00362-006-0326-7 doi: 10.1007/s00362-006-0326-7
    [8] S. Baratpour, J. Ahmadi, N. R. Arghami, Characterizations based on Rényi entropy of order statistics and record values, J. Stat. Plan. Infer., 138 (2008), 2544–2551. https://doi.org/10.1016/j.jspi.2007.10.024 doi: 10.1016/j.jspi.2007.10.024
    [9] J. E. Contreras-Reyes, D. I. Gallardo, O. Kharazmi, Time-dependent residual Fisher information and distance for some special continuous distributions, Commun. Stat. Simul. Comput., 2022, 1–21. https://doi.org/10.1080/03610918.2022.2146136
    [10] H. A. David, H. N. Nagaraja, Order statistics, John Wiley and Sons, 2004. https://doi.org/10.1002/0471722162
    [11] N. Ebrahimi, How to measure uncertainty in the residual life time distribution, Sankhyā: Indian J. Stat., Ser. A, 50 (1996), 48–56. Available from: http://www.jstor.org/stable/25051082.
    [12] N. Ebrahimi, E. S. Soofi, H. Zahedi, Information properties of order statistics and spacings, IEEE T. Inform. Theory, 50 (2004), 177–183. https://doi.org/10.1109/TIT.2003.821973 doi: 10.1109/TIT.2003.821973
    [13] N. Ebrahimi, E. S. Soofi, R. Soyer, Information measures in perspective, Int. Stat. Rev., 78 (2010), 383–412. https://doi.org/10.1111/j.1751-5823.2010.00105.x doi: 10.1111/j.1751-5823.2010.00105.x
    [14] N. Ebrahimi, E. S. Soofi, R. Soyer, Fractional cumulative residual inaccuracy information measure and its extensions with application to chaotic maps, Int. J. Bifurcat. Chaos, 34 (2024), 2450006. https://doi.org/10.1142/S0218127424500068 doi: 10.1142/S0218127424500068
    [15] E. Maasoumi, The measurement and decomposition of multi-dimensional inequality, Econometrica: J. Economet. Soc., 54 (1986), 991–997. https://doi.org/10.2307/1912849 doi: 10.2307/1912849
    [16] A. M. Mariz, On the irreversible nature of the Tsallis and Renyi entropies, Phys. Lett. A, 78 (1992), 409–411. https://doi.org/10.1016/0375-9601(92)90339-N doi: 10.1016/0375-9601(92)90339-N
    [17] A. K. Nanda, P. Paul, Some results on generalized residual entropy, Inf. Sci., 176 (2006), 27–47. https://doi.org/10.1016/j.ins.2004.10.008 doi: 10.1016/j.ins.2004.10.008
    [18] O. Nicolis, J. Mateu, J. E. Contreras-Reyes, Wavelet-based entropy measures to characterize two-dimensional fractional Brownian fields, Entropy, 22 (2020), 196. https://doi.org/10.3390/e22020196 doi: 10.3390/e22020196
    [19] S. Park, The entropy of consecutive order statistics, IEEE T. Inform. Theory, 41 (1995), 2003–2007. https://doi.org/10.1109/18.476325 doi: 10.1109/18.476325
    [20] S. Park, A goodness-of-fit test for normality based on the sample entropy of order statistics, Stat. Prob. Lett., 44 (1999), 359–363. https://doi.org/10.1016/S0167-7152(99)00027-9 doi: 10.1016/S0167-7152(99)00027-9
    [21] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer Science and Business Media, 2007. https://doi.org/10.1007/978-0-387-34675-5
    [22] R. Shanker, F. Hagos, S. Sujatha, On modeling of lifetimes data using exponential and Lindley distributions, Biom. Biostat. Int. J., 2 (2015), 1–9. https://doi.org/10.15406/bbij.2015.02.00042 doi: 10.15406/bbij.2015.02.00042
    [23] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [24] M. Shrahili, M. Kayid, Uncertainty quantification based on residual Tsallis entropy of order statistics, Preprints, 2023. https://doi.org/10.20944/preprints202309.1495.v1
    [25] M. Shrahili, M. Kayid, Excess lifetime extropy of order statistics, Axioms, 12 (2023), 1024. https://doi.org/10.3390/axioms12111024 doi: 10.3390/axioms12111024
    [26] M. Shrahili, M. Kayid, Some new results involving past Tsallis entropy of order statistics, Entropy, 25 (2023), 1581. https://doi.org/10.3390/e25121581 doi: 10.3390/e25121581
    [27] R. L. Smith, J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, J. Roy. Stat. Soc. C-Appl., 36 (1987), 358–369. https://doi.org/10.2307/2347795 doi: 10.2307/2347795
    [28] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. https://doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [29] K. M. Wong, S. Chen, The entropy of ordered sequences and order statistics, IEEE T. Inform. Theory, 36 (1990), 276–284. https://doi.org/10.1109/18.52473 doi: 10.1109/18.52473
    [30] S. Zarezadeh, M. Asadi, Results on residual Rényi entropy of order statistics and record values, Inf. Sci., 180 (2010), 4195–4206. https://doi.org/10.1016/j.ins.2010.06.019 doi: 10.1016/j.ins.2010.06.019
    [31] Z. Zhang, Uniform estimates on the Tsallis entropies, Lett. Math. Phys., 80 (2007), 171–181. https://doi.org/10.1007/s11005-007-0155-1 doi: 10.1007/s11005-007-0155-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(514) PDF downloads(31) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog