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Abstract: In this study, we focused on investigating the properties of residual Tsallis entropy for order
statistics. The reliability of engineering systems is highly influenced by order statistics, for example,
when modeling the lifetime of a series system and the lifetime of a parallel system. The residual
Tsallis entropy of the ith order statistic from a continuous distribution function and its deviation from
the residual Tsallis entropy of the ith order statistics from a uniform distribution were investigated. In
the mathematical framework, a method was provided to represent the residual Tsallis entropy of the
ith order statistic in the continuous case with respect to the case where the distribution was uniform.
This approach can provide insight into the behavior and properties of the residual Tsallis entropy for
order statistics. We also investigated the monotonicity of the new uncertainty measure under different
conditions. An investigation of these properties leads to a deeper understanding of the relationship
between the position of the order statistics and the resulting Tsallis entropy. Finally, we presented
the computational results and proposed estimators for estimating the residual Tsallis entropy of an
exponential distribution. For this purpose, we derived a maximum likelihood estimator.
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1. Introduction

Information theory is a rich and wide-ranging field that has laid the foundation for new mathematical
questions and advances in mathematical techniques. Various information measures seem useful for
deriving insightful results in many areas of mathematics. In the literature, the quantification of
uncertainty that exists in random phenomena is largely enabled by the information theory. The
extensive range of its applications is expounded upon in Shannon’s seminal work [23]. When a non-
negative random variable (rv) X, representing the lifetime of a system, or a unit or living organism, is
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given for a continuous cumulative distribution function (cdf) F(x) and a probability density function
(pdf) f (x), as stated in [28], the Tsallis entropy of order α becomes a pertinent metric which is defined
as follows:

Hα(X) =
1

1 − α

[∫ ∞

0
f α(x)dx − 1

]
,

=
1

1 − α
[E( f α−1(F−1(U))) − 1], (1.1)

in which α > 0, α , 1, E(·) signifies the expectation, F−1(u) = inf{x; F(x) ≥ u}, for u ∈ [0, 1], amounts
to the quantile function, and U is uniformly distributed on [0, 1]. It is worth pointing out that the Tsallis
entropy is a nondecreasing function of the Renyi one given by: Rα(X) = 1/(1−α) log(1+(1−α)Hα(X)),
where Rα(X) is the Renyi entropy of order α, (see [16]). The Tsallis entropy can generally take negative
values, but by selecting the right values for α, it can be nonnegative. One crucial finding is that H(X) =

limα→1 Hα(X), demonstrating how Tsallis entropy and Shannon differential entropy converge. The
Tsallis entropy shows nonadditivity in contrast to the additivity of the Shannon entropy. Specifically,
under the Shannon framework, H(X,Y) = H(X) + H(Y) holds for two independent random variables
X and Y . By contrast, the Tsallis framework yields Hα(X,Y) = Hα(X) + Hα(Y) + (1 − α)Hα(X)Hα(Y).
Because it is not additive like the Shannon entropy, the Tsallis entropy is more versatile and can be
applied to a wide range of subjects such as information theory, physics, chemistry, and technology;
see, e.g., [18]. It is worth noting that the Tsallis entropy finds extensive applications in parameter
estimation problems, including areas like seismic imaging and natural information. This demonstrates
the significant utility of Tsallis entropy as an effective tool for addressing complexity and nonadditivity
challenges encountered in parameter estimation across diverse fields.

Assuming that the lifetime of a recently introduced system is denoted by the rv X, the Tsallis entropy
Hα(X) function is a measure of the system’s intrinsic uncertainty. However, there exist scenarios in
which the actors are aware of the system’s age. For example, let us assume that one knows that the
system is operational at time t and wishes to assess future uncertainty, that is, the uncertainty in the rv
Xt = X − t | X > t ([9]). In these circumstances, the traditional Tsallis entropy Hα(X) is no longer able
to offer the desired insight. Consequently, a new measure known as the residual Tsallis entropy (RTE)
is implemented, defined as follows:

Hα(X; t) =
1

1 − α

[∫ ∞

0
f αt (x)dx − 1

]
=

1
1 − α

[∫ ∞

t

(
f (x)
S (t)

)α
dx − 1

]
, (1.2)

where
ft(x) =

f (x + t)
S (t)

, x, t > 0,

is the pdf of Xt and S (t) = P(X > t) is the survival function (sf) of X. Numerous studies have
been conducted in the literature to investigate different facets of Tsallis entropy, which can be seen
in [2, 5, 6, 15, 17, 31].

Engineers widely acknowledge that highly uncertain components or systems possess inherent
unreliability. However, they often face challenges in quantifying this uncertainty. For instance,
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during the system design phase, engineers typically rely on available information about deterioration,
part wear, and other relevant factors to generate hazard rate functions or mean residual lifetime
functions. These functions offer insights into the expected behavior of the system based on the
provided information (see [11] for more details). So, the purpose of this paper is to investigate RTE
of order statistics which measures the concentration of conditional probabilities. The results include
expressions, bounds, and monotonicity properties of RTE of order statistics.

We take a random sample of size n from a distribution F represented by the sample X1, X2, . . . , Xn.
The ordered values of the sample are called order statistics of the sample, which are denoted by:
X1:n ≤ X2:n ≤ . . . ≤ Xn:n. Since they can be used to explain probability distributions, evaluate how well
a dataset fits a particular model, regulate the quality of a process or product, assess the reliability of a
system or component, and for a variety of other purposes, these statistics are crucial for many different
fields.

Numerous applications of order statistics include robust estimation, outlier detection, and
probability distribution characterization [4]. The information qualities of order statistics have been
studied by a number of writers. It was demonstrated by [29] that there is a constant difference between
the parent random variable and the average entropy of order statistics. For order statistics, [19] derived
a few recurrence relations. Using order statistics, [12] investigated Kullback-Leibler information
measure and Shannon entropy. Renyi entropy is known to not uniquely determine the underlying
distribution function. [7] used order statistics to study Renyi entropy and demonstrated that, for certain
values of n, this measure characterizes the distribution function. Using the Renyi entropy of ith order
statistics, Abbasnejad and [1] examined a few stochastic comparisons and talked about some bounds
for this measure. For ith order statistics, [30] proposed the residual Renyi entropy. They have derived
certain bounds for the residual Renyi entropy of order statistics and record values, and they have
simplified the definition of the residual Renyi entropy of the ith order statistics. [25] studied the residual
extropy as a measure of uncertainty of order statistics. [26] considered some aspects of past Tsallis
entropy of order statistics.

Furthermore, they play a crucial role in reliability theory, particularly in the analysis of coherent
systems and lifespan testing of data acquired through different censorship techniques. Several scholars
have made good use of the information properties of ordered variables; these findings are reported
in [13, 19, 29], as well as their references. Properties of Renyi entropy of excess amounts of ordered
variables and record values were examined by [30]; also see [8]. By examining elements of residual
Tsallis entropy in terms of ordered variables, our study seeks to advance the field. [3] has investigated
the characteristics of a coherent and mixed system’s Tsallis entropy in more recent times.

The outline of the rest of the paper is as follows: The RTE form for order statistics, Xi:n, is shown
in Section 2. It is based on a sample taken from any arbitrary continuous distribution function F.
We translate these RTE into terms of RTE for order statistics derived from a unit-distributed sample.
We derive upper and lower bounds to approximate the RTE, since closed-form equations for the RTE
of order statistics are frequently unavailable for many statistical models. To illustrate these bounds’
applicability and practicality, we offer multiple illustrative instances. Furthermore, we examine the
monotonicity characteristics of RTE for a sample’s extremum in mild circumstances. As the sample
size grows, we observe that the RTEs at the extremum of a random sample follow a monotonic
pattern. We refute this observation, however, with a counterexample showing that RTE for other order
statistics Xi:n is non-monotonic concerning sample size. We investigate the RTE of order statistics
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Xi:n concerning the index of order statistics to further explore the monotonic behavior i. Our findings
demonstrate that over the whole support of F, the RTE of Xi:n is not a monotonic function of i.

In Section 4, we conclude by presenting some computational results that validate some of
the conclusions drawn from this paper. We also offer estimators for calculating the exponential
distribution’s RTE. For this reason, the maximum likelihood estimator (MLE) is derived. Section 4
concludes the article with some open problems for the future.

Let us assume random lifetimes X and Y with probability density functions (pdfs) f and g, and
survival functions S X and S Y , respectively. We recall that X is less than Y in the usual stochastic order,
denoted by X ≤st Y, if S X(x) ≤ S Y(x) for all x > 0, and X is less than Y in the likelihood ratio order,
denoted by X ≤lr Y if g(x)/ f (x) is increasing in x > 0.

2. Residual Tsallis entropy of order statistics

The RTE of order statistics dependent on the RTE of ordered uniformly distributed variables is thus
expressed here. Considering i = 1, . . . , n, the pdf and sf of Xi:n are denoted by fi:n(x) and S i:n(x),
respectively. It can be written that

fi:n(x) =
1

B(i, n − i + 1)
(F(x))i−1 (S (x))n−i f (x), x > 0, (2.1)

S i:n(x) =

i−1∑
k=0

(
n
k

)
(1 − S (x))k (S (x))n−k , x > 0, (2.2)

where

B(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx, a > 0, b > 0,

is known as the complete beta function; see, e.g., [10]. Furthermore, we can express the survival
function S i:n(x) as follows:

S i:n(x) =
B̄F(x)(i, n − i + 1)

B(i, n − i + 1)
, (2.3)

where

B̄x(a, b) =

∫ 1

x
ua−1(1 − u)b−1du, 0 < x < 1,

is known as the incomplete beta functions. In this section, we shortly write Y ∼ B̄t(a, b) to denote that
the random variable Y follows the pdf:

fY(y) =
1

B̄t(a, b)
ya−1(1 − y)b−1, t ≤ y ≤ 1. (2.4)

The study of Xi:n’s residual Tsallis entropy, which is based on the conditional rv [Xi:n− t|Xi:n > t], is the
focus of this paper. It measures the degree of uncertainty regarding the predictability of the system’s
residual lifespan. When i = 1, 2, . . . , n, the (n − i + 1)-out-of-n systems are important structures in the
field of reliability engineering. An (n−i+1)-out-of-n system functions in this scenario if, and only if, at
least (n−i+1) components are active. We consider a system consisting of identical components that are
dispersed independently; these components’ lifetimes are represented by the notation X1, X2, . . . , Xn.
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The random lifetime of the system is equal to Xi:n, where i denotes the ordered variable’s position.
When i = 1, a parallel system is shown, and a serial system is indicated by i = n. The RTE of Xi:n

functions as a measure of entropy related to the system’s residual lifetime in the context of (n − i + 1)-
out-of-n systems running at time t. System designers can learn important information about the entropy
of (n − i + 1)-out-of-n structures connected to systems that are operating at a specific time t from this
dynamic entropy metric.

The following lemma establishes a connection between the incomplete beta function and the RTE
of ordered variables from a uniform distribution, thus improving computational efficiency. From a
practical perspective, this link is essential since it makes the computation of RTE easier. Since it only
requires a few simple calculations, the proof of this lemma—which is obtained by the definition of the
RTE—is not included here.

Lemma 2.1. Let Ui:n be the ith ordered value of a random sample with uniformly distributed units on
(0,1). Then,

Hα(Ui:n; t) =
1

1 − α

[
B̄t(α(i − 1) + 1, α(n − i) + 1)

B̄α
t (i, n − i + 1)

− 1
]
, 0 < t < 1,

for all α > 0, α , 1.

Proof. The pdf and survival function of Ui:n are represented by

gi:n(u) =
1

B(i, n − i + 1)
ui−1(1 − u)n−i, (2.5)

S Ui:n(x) =
B̄u(i, n − i + 1)
B(i, n − i + 1)

, (2.6)

for all 0 < u < 1. From (1.2), (2.5), and (2.6), one gets

Hα(Ui:n; t) =
1

1 − α

[∫ 1

t

(
gi:n(u)
S Ui:n(t)

)α
du − 1

]
=

1
1 − α

[∫ 1

t

(
ui−1(1 − u)n−i(x)
B̄t(i, n − i + 1)

)α
du − 1

]
=

1
1 − α

[
1

B̄α
t (i, n − i + 1)

∫ 1

t
uα(i−1)(1 − u)α(n−i)du − 1

]
=

1
1 − α

[
B̄t(α(i − 1) + 1, α(n − i) + 1)

B̄α
t (i, n − i + 1)

− 1
]
.

Hence, the theorem is proved.
�

This lemma makes use of the well-known incomplete beta function to make it simple for scholars
and practitioners to compute the RTE of order statistics from a uniform distribution. The application
and usability of RTE are enhanced in a variety of scenarios by this computational simplification. In
Figure 1, the plot of Hα(Ui:n; t) is depicted for different values of α and i = 1, 2, · · · , 5 when the total
number of observations is n = 5. It is expected from the figure that there is no inherent monotonicity
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between the order statistics. However, in the following Lemma 2.3, we establish conditions under
which a monotonic relationship can be established between the index i and the number of components.
This lemma will provide valuable insight into the arrangement of the system components and the
resulting effect on the reliability of the system.
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Figure 1. The amounts of Hα(Ui:n; t) for α = 0.2 (left panel) and α = 2 (right panel) when
0 < t < 1.

The utilization of the probability integral transformation Ui:n
d
= F(Xi:n), i = 1, 2, · · · , n, where d

=

means equality in distribution and F is a continuous distribution function, is widely recognized in the
literature. It is a well-established fact that this transformation yields a beta distribution with parameters
i and n − i + 1. This fundamental property plays a pivotal role in the achievement of our results. Using
this, the upcoming theorem establishes a relationship between the RTE of order statistics Xi:n and the
RTE of order statistics from a uniform distribution.

Theorem 2.1. For all α > 0, α , 1, we have:

Hα(Xi:n; t) =
1

1 − α

[
((1 − α)Hα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))] − 1

]
, t > 0, (2.7)

where Yi ∼ B̄F(t)(α(i − 1) + 1, α(n − i) + 1).

Proof. By making the change of variable as u = F(x), from (1.2), (2.1), and (2.3), one gets

Hα(Xi:n; t) =
1

1 − α

[∫ ∞

t

(
fi:n(x)
S i:n(t)

)α
dx − 1

]
=

1
1 − α

[∫ ∞

t

(
F i−1(x)S n−i(x) f (x)
B̄F(t)(i, n − i + 1)

)α
dx − 1

]
AIMS Mathematics Volume 9, Issue 7, 18712–18731.
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=
1

1 − α

 B̄F(t)(α(i − 1) + 1, α(n − i) + 1)
B̄α

F(t)(i, n − i + 1)

∫ ∞

t

Fα(i−1)(x)S α(n−i)(x) f α(x)
B̄F(t)(α(i − 1) + 1, α(n − i) + 1)

dx − 1


=

1
1 − α

 B̄F(t)(α(i − 1) + 1, α(n − i) + 1)
B̄α

F(t)(i, n − i + 1)

∫ 1

F(t)

uα(i−1)(1 − u)α(n−i) f α−1(F−1(u))
B̄F(t)(α(i − 1) + 1, α(n − i) + 1)

du − 1


=

1
1 − α

[
((1 − α)Hα(Ui:n; F(t)) + 1)E[ f α−1(F−1(Yi))] − 1

]
, t > 0. (2.8)

The last equality is obtained from Lemma 2.1, and this completes the proof. �

It is worth pointing out that Eq (2.7) demonstrates how the RTE of [Xi:n − t|Xi:n > t] can be
expressed as the product of two distinct terms, both of which are dependent on time t. However,
the first term is influenced by the RTE of order statistics from a uniform distribution, while the second
term is dependent on the distribution of the component lifetimes. By explicitly acknowledging this
decomposition, we provide a deeper understanding of the factors influencing entropy and shed light on
the role of the RTE and component lifetimes in the analysis. After some calculation, it can be seen that
when in (2.7) the order α goes to unity, the Shannon entropy of the ith order statistic from a sample of
F can be written as follows:

H(Xi:n; t) = H(Ui:n; F(t)) − E[log f (F−1(Yi))], (2.9)

where Yi ∼ B̄F(t)(i, n − i + 1). The particular case where t = 0, has already been derived by [13]. It is
clear that Eq (2.9) demonstrates how the residual entropy of [Xi:n − t|Xi:n > t] can be expressed as the
differences of two distinct terms, both of which are dependent on time t. The first term is the residual
entropy of order statistics consisting of (independent and identically distributed) i.i.d. random variables
of uniform distribution on [0, 1] while the second term depends on the truncated beta distribution.

Even if we have been able to construct a closed equation for the RTE of the initially ordered variable
in the exponential case, considering the higher order statistics in some other distributions makes the
process much more challenging. Regretfully, there are typically no closed-form equations available
for the RTE of higher-order statistics in these distributions or in many other distributions. We are
encouraged to investigate different methods for characterizing the RTE of order statistics in light of
this constraint. In light of this, we offer the following theorem as a convincing demonstration that
sheds light on the characteristics of these constraints and their use in real-world situations.

Theorem 2.2. Let X and Xi:n have RTEs Hα(X; t) and Hα(Xi:n; t), respectively.

(a) Let Mi = fYi(mi) where mi = max{F(t), i−1
n−1 } is the mode of the distribution of Yi, then for α > 1, we

have

Hα(Xi:n; t) ≥
1

1 − α
[((1 − α)Hα(Ui:n; F(t)) + 1)((1 − α)Hα(X; t) + 1)MiS α(t) − 1] ,

and for 0 < α < 1, we have

Hα(Xi:n; t) ≤
1

1 − α
[((1 − α)Hα(Ui:n; F(t)) + 1)((1 − α)Hα(X; t) + 1)MiS α(t) − 1] .
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(b) Suppose that we have M = f (m) < ∞, thus m is the mode of f and f (x) ≤ M. Then, for any α > 0,
we obtain

Hα(Xi:n; t) ≥
1

1 − α

[
((1 − α)Hα(Ui:n; F(t)) + 1)Mα−1 − 1

]
.

Proof. (a) By applying Theorem 2.3, we only need to establish a bound for E[ f α−1(F−1(Yi))]. To do
this, for α > 1 one has

E[ f α−1(F−1(Yi))] =

∫ 1

F(t)

uα(i−1)(1 − u)α(n−i)

B̄F(t)(α(i − 1) + 1, α(n − i) + 1)
f α−1(F−1(u))du

≥ Mi

∫ 1

F(t)
f α−1(F−1(u))du

= Mi

∫ ∞

t
f α(x)dx

= Mi[(1 − α)Hα(X; t) + 1]S α(t).

The result now is easily obtained by recalling (2.7). The proof for 0 < α < 1 is easily obtained by
reversing the inequality.

(b) Since for α > 1 it holds that

f α−1(F−1(u)) ≤ Mα−1,

one can write

E[ f α−1(F−1(Yi))]Mα−1.

The result now is easily obtained from relation (2.7) and this completes the proof. By reversing the
inequality, it is easy to obtain the proof for 0 < α < 1. �

The preceding theorem splits into two parts. The RTE associated with Xi:n, Hα(Xi:n; t) is lower
bound in the first subdivision, represented by (a). Note that under some facts, the specified lower
bound can be changed to an upper bound. This bound is generated by combining the RTE in the
original situation with the incomplete beta function. On the other hand, we proposed a lower bound
on the RTE of Xi:n in part (b) of the theory, which we refer to as Hα(Xi:n; t). This lower bound is
expressed via the RTE of ordered uniformly distributed variables and the mode, represented by m, of
the underlying distribution. This finding provides interesting insights into the information properties
of Xi:n and provides a quantifiable measure of the lower bound of RTE with respect to the mode of the
distribution. In Table 1, we list the bounds of the RTE of the order statistics based on Theorem 2.2 for
some well-known distributions.
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Table 1. Bounds on Hα(Xi:n; t) derived from Theorem 2.2 (parts (i) and (ii)).
Probability Density Function Bounds
Standard half-Cauchy distribution

f (x) = 2
π(1+x2) , x > 0, ≥ (≤) 1

1−α

[
Mi2α−1

πα
((1 − α)Hα(Ui:n; F(t)) + 1)B̄ t2

1+t2
(α − 1

2 ,
1
2 ) − 1

]
≥ 1

1−α

[
((1 − α)Hα(Ui:n; F(t)) + 1)

(
2
π

)α−1
− 1

]
Standard half-normal distribution

f (x) = 2
σ
√

2π
e−(x−µ)2/2σ2

, x > µ > 0, ≥ (≤) 1
1−α

[
Mi
√

2α+1

σα−1πα
((1 − α)Hα(Ui:n; F(t)) + 1)Φ(

√
α
2 ( t−µ

σ
)) − 1

]
≥ 1

1−α

[
((1 − α)Hα(Ui:n; F(t)) + 1)

(
2

σ
√

2π

)α−1
− 1

]
Generalized exponential distribution

f (x) = λ
β
e−

(x−µ)
β (1 − e−

(x−µ)
β )λ−1, x > µ > 0, ≥ (≤) 1

1−α

[
Miλ

α

βα−1 ((1 − α)Hα(Ui:n; F(t)) + 1)B̄
1−e
−

(x−µ)
β

(α(λ − 1) + 1, α) − 1
]

≥ 1
1−α

[
((1 − α)Hα(Ui:n; F(t)) + 1)(β(1 − 1

λ
)1−λ)1−α − 1

]
Generalized gamma distribution

f (x) = bc

Γ(c) xc−1e−bx, x > 0, ≥ (≤) 1
1−α

[
Mibα−1

(Γ(c))ααα(c−1)+1 ((1 − α)Hα(Ui:n; F(t)) + 1)Γ(α(c − 1) + 1, αbt) − 1
]

≥ 1
1−α

[
((1 − α)Hα(Ui:n; F(t)) + 1)( b(c−1)c−1e1−c

Γ(c) )α−1 − 1
]

We address the monotonic behavior of the RTE of order statistics in the ensuing lemma. We first
offer a core lemma which is fundamental to our research and serves as a foundation for our later
discoveries.

Lemma 2.2. Consider two nonnegative functions, q(x) and sβ(x), where q(x) increases in x. Let t and
c be real numbers such that 0 ≤ t < c < ∞. Additionally, let the random variable Zβ follow pdf fβ(z),
where β > 0, as

fβ(z) =
qrβ(z)sβ(z)∫ c

t
qrβ(x)sβ(x)dx

, z ∈ (t, c). (2.10)

Suppose r is real-valued and let Kα be defined as:

Kα(r) =
1

1 − α


∫ c

t
qrα(x)sα(x)dx(∫ c

t
qr(x)s1(x)dx

)α − 1

 , α > 0, α , 1. (2.11)

(i) If for α > 1 (0 < α < 1), Zα ≤st (≥st)Z1, then Kα(r) increases in r.

(ii) If for α > 1 (0 < α < 1), Zα ≥st (≤st)Z1, then Kα(r) decreases in r.

Proof. Proof of part (i) is similar to part (ii). Assuming that Kα(r) is differentiable in r, one obtains

∂Kα(r)
∂r

=
1

1 − α
∂gα(r)
∂r

,

where

gα(r) =

∫ c

t
qrα(x)sα(x)dx(∫ c

t
qr(x)s1(x)dx

)α .
AIMS Mathematics Volume 9, Issue 7, 18712–18731.
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It is evident that

∂gα(r)
∂r

=
α(∫ c

t
qr(x)s1(x)dx

)α+1

×

[∫ c

t
log q(x)qrα(x)sα(x)dx

∫ c

t
qr(x)s1(x)dx −

∫ c

t
log q(x)qr(x)s1(x)dx

∫ c

t
qrα(x)sα(x)dx

]
=

α
∫ c

t
qr(x)s1(x)dx

∫ c

t
qrα(x)sα(x)dx(∫ c

t
qr(x)s1(x)dx

)α+1

[
E[log q(Zα)] − E[log q(Z1)]

]
≤ (≥)0. (2.12)

Since Zα ≤st (≥st)Z1 and, further, since log(·) is increasing, thus one can show that E[log q(Zα)] ≤
(≥)E[log q(Z1)]. This implies that (2.12) is nonpositive (nonnegative). Therefore, Kα(r) increases
in r. �

Corollary 2.1. In the setting of Lemma 2.2, if q(x) decreases in x, then

(i) For α > 1 (0 < α < 1), Zα ≤st (≥st)Z1, then Kα(r) decreases when r increases.

(ii) If for α > 1 (0 < α < 1), Zα ≥st (≤st)Z1, then Kα(r) increases when r increases.

Due to Lemma 2.2, the next corollary can be regarded in the context of (n− i+1)-out-of-n structures
where components have uniformly distributed random lifetimes.

Lemma 2.3. (i) Take into account a parallel (series) system with n components with uniformly
distributed lifetime on (0,1). The RTE of the system’s lifetime decreases as the number of
components rises.

(ii) If i1 ≤ i2 ≤ n, are integers, then Hα(Ui1:n; t) ≤ Hα(Ui2:n; t) for t ≥ i2−1
n−1 .

Proof. (i) The presumption is that the system operates in parallel. Analogous reasoning can be applied
to a series system to authenticate the outcome via Remark 2.9. From Lemma 2.1, we get

Hα(Un:n; t) =
1

1 − α


∫ 1

t
xα(n−1)dx∫ 1

t
xn−1dx

− 1

 , 0 < t < 1.

Therefore, Lemma 2.2 readily reveals that Hα(Ui:n; t) can be depicted as (2.11) where q(x) = x and
sα(x) = xα. We adopt the assumption, devoid of any generality loss, that n ≥ 1 is continuous.
Considering α > 1 (0 < α < 1), ∫ 1

t
xα(n−1)dx∫ 1

t
xn−1dx

,

increases (decreases) in t. Hence, we can establish the inequality

Zα ≥st (≤st)Z1,

where the pdf of Zβ, β > 0, is defined in Eq (2.10). By applying Lemma 2.2, we can deduce that the
RTE for the parallel structure decreases as more components are included in the system.
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(ii) To start, we observe that

Hα(Ui:n; t) =
1

1 − α


∫ 1

t
xα(i−1)(1 − x)α(n−i)dx(∫ 1

t
xi−1(1 − x)n−idx

)α − 1


=

1
1 − α


∫ 1

t

(
x

1−x

)αi (1−x)nα

xα dx(∫ 1

t

(
x

1−x

)i (1−x)n

x dx
)α − 1

 .
Furthermore, the pdf of Zα as stated in (2.10) is

fα(z) =

(
z

1−z

)αi (1−z)nα

zα∫ 1

t

(
x

1−x

)αi (1−x)nα

xα dx
, z ∈ (t, 1),

where q(x) = x
1−x and sα(x) =

(1−x)nα

xα . Hence, for 1 ≥ z ≥ t ≥ i2−1
n−1 and α > 1 (or 0 < α < 1), we can

write
Zα ≤st (≥st)Z1.

In conclusion, it can be inferred for i1 ≤ i2 ≤ n that

Hα(Ui1:n; t) ≤ Hα(Ui2:n; t), t ≥
i2 − 1
n − 1

,

and this completes the proof. �

Theorem 2.3. Let f (pdf of lifetime components of a parallel (series) system) be increasing
(decreasing). Then, the associated RTE of the systems’s lifetime decreases as n increases.

Proof. Assuming that Yn ∼ B̄F(t)(α(n − 1) + 1, 1), fYn(y) indicates the pdf of Yn. It is clear that

fYn+1(y)
fYn(y)

=
B̄F(t)(α(n − 1) + 1, 1)

B̄F(t)(αn + 1, 1)
yα, F(t) < y < 1,

increases in y. Consequently, Yn ≤lr Yn+1 and, therefore, Yn ≤st Yn+1. Moreover, for α > 1 (0 < α < 1),
it is shown that f α−1(F−1(x)) increases (decreases) in x. Therefore,

E[ f α−1(F−1(Yn))] ≤ (≥)E[ f α−1(F−1(Yn+1)]. (2.13)

From Theorem 2.1, for α > 1 (0 < α < 1), we have

(1 − α)Hα(Xn:n; t) + 1 = [(1 − α)Hα(Un:n; F(t)) + 1]E[ f α−1(F−1(Yn))]
≤ (≥) [(1 − α)Hα(Un:n; F(t)) + 1]E[ f α−1(F−1(Yn+1))]
≤ (≥) [(1 − α)Hα(Un+1:n+1; F(t)) + 1]E[ f α−1(F−1(Yn+1))]

= (1 − α)Hα(Xn+1:n+1; t) + 1.

The first inequality is obtained by noting that (1−α)Hα(Un:n; F(t))+1 is nonnegative. The last inequality
is obtained from Part (i) of Lemma 2.3. Thus, one can conclude that Hα(Xn:n; t) ≥ Hα(Xn+1:n+1; t) for
all t > 0. �
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According to the reliability theory, if a series system has more components, we can envision a
situation where the pdf decreases and the RTE of the system decreases as well. This occurs when we
have a lifespan model with a time-dependent failure rate (h(t) = f (t)/S (t)). The density function of
the data distribution must therefore likewise decrease. There are certain lifetime distributions in the
dependability domain, where RTE becomes down as the scale parameter is up. This is the case, for
instance, when the shape parameter for the Weibull distribution is a ≤ 1, while the shape parameter
for the Gamma distribution is b ≤ 1. Consequently, as the number of components increases, the RTE,
which is related to the random lifespan brought about by the series structure and where the component
lifetimes follow the Gamma (or Weibull) distribution, gets lower.

Now, we want to observe how the RTE of order statistics Xi:n changes with i. We use Part (ii) of
Lemma 2.3, which gives us a formula for the RTE of Xi:n in terms of i.

Theorem 2.4. Let f be a decreasing function. Let i1 and i2 be two integers such that i1 ≤ i2 ≤ n. Then,
the RTE of the i1-th smallest value of X among n samples, Xi1:n, is less than or equal to the RTE of the
i2-th smallest value, Xi2:n, for all values of X that are greater than or equal to the F−1( i2−1

n−1 )th percentile
of F.

Proof. For i1 ≤ i2 ≤ n, one can verify that Yi1 ≤lr Yi2 . Thus, Yi1 ≤st Yi2 . Now, we have

(1 − α)Hα(Xi1:n; t) + 1 = [(1 − α)Hα(Ui1:n; t) + 1]E[ f α−1(F−1(Yi1))]
≥ (≤) [(1 − α)Hα(Ui1:n; t) + 1]E[ f α−1(F−1(Yi2))]
≥ (≤) [(1 − α)Hα(Ui2:n; t) + 1]E[ f α−1(F−1(Yi2))]

= (1 − α)Hα(Xi2:n; t) + 1.

Using Part (ii) of Lemma 2.3 and by a similar discussion as in the proof of Theorem 2.3, we can obtain
the result. �

We can get a useful result from Theorem 2.4.

Corollary 2.2. Let f be a decreasing function. Let i be a whole number that is less than or equal to
half of n + 1. Then, the RTE of Xi:n increases in i as t exceeds the distribution median.

Proof. Suppose i1 ≤ i2 ≤
n+1

2 . This means that

m ≥ F−1(
i2 − 1
n − 1

),

in which m = F−1( 1
2 ) is the middle value of F. By Theorem 2.4, we get for t ≥ m that Hα(Xi1:n; t) ≤

Hα(Xi2:n; t). �

3. Numerical results

In this section, we provide some numerical examples in order to showcase the applicability of the
obtained results in the previous section and estimate the value of Hα(Xi:n; t), i = 1, 2, · · · , n, for an
exponential distribution with mean 1/λ. Below, we provide an example for illustration of Theorem 2.1.
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Example 3.1. Let X be a standard exponential distribution with mean one. Then, f (F−1(u)) = 1 −
u, 0 < u < 1, and

E[ f α−1(F−1(Yi))] =
B̄1−e−t(α(i − 1) + 1, α(n − i + 1))
B̄1−e−t(α(i − 1) + 1, α(n − i) + 1)

. (3.1)

Thus, from (2.7), we obtain

Hα(Xi:n; t) =
1

1 − α

 B̄1−e−t(α(i − 1) + 1, α(n − i + 1))
B̄α

1−e−t(i, n − i + 1)
− 1

 , i = 1, 2, · · · , n. (3.2)

In Figure 2, we plotted Hα(Xi:n; t) for some values of α and i = 1, 2, · · · , 5 when n = 5. When i = 1,
we can use (3.2) to get

Hα(X1:n; t) =
nα−1 − α

(1 − α)α
, t > 0.

Also, it is known that

Hα(X; t) =
1 − α

(1 − α)α
, t > 0.

Therefore, we have

Hα(X1:n; t) − Hα(X; t) =
nα−1 − 1
α(1 − α)

, t > 0.

This result exposes an interesting property: Time has no effect on the disparity between the RTE of
the lifetime of the series system and the RTE of its constituent parts. Rather, it depends only on two
variables: The total number of components in the system and, in the exponential case, the parameter α.
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)
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i = 1 i = 2 i = 3 i = 4 i = 5

α = 2

Figure 2. The exact values of Hα(Xi:n; t) for α = 0.2 (left panel) and α = 2 (right panel) with
respect to t.

Decreasing pdfs are found in many distributions, including mixtures of Pareto and exponential
distributions. Conversely, some distributions such as the power distribution and associated density
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function have increasing pdfs. For distributions whose pdfs increase or decrease, we can establish a
theorem using part (i) of the Corollary 2.1. However, as the following example demonstrates, this
theory is not applicable to all types of (n − i + 1)-out-of-n systems, thus caution is advised.

Example 3.2. Let us consider the system operates if, at least, (n − 1) of its n components are in
action. Then, the system’s lifetime is the second smallest component lifetime, X2:n. The components
have the same distribution, uniform on (0, 1). In Figure 3, we see how the RTE of X2:n changes with n
when a = 2 and t = 0.02. The graph shows that the RTE of the system does not always decrease as n
increases. For example, it reveals that Hα(X2:2; 0.02) is less than that of Hα(X2:3; 0.02).

−8

−6

−4

−2

0

10 20 30
n

H
α(

U
2:

n,
 0

.0
2)

Figure 3. The RTE values for different n in a (n − 1)-out-of-n system with a uniform parent
distribution and α = 2 when t = 0.02.

Here, we demonstrate that the condition t ≥ F−1( i2−1
n−1 ) is a necessary condition in Theorem 2.4.

Example 3.3. Assume the sf of X is as

S (x) =
1

(1 + x)2 , x > 0.

In Figure 4, we see how the RTE of order statistics Xi:5, for i = 3, 4 and α = 2, changes with t, t ∈ (0, 5).
The plots show that the RTE of the ordered variables does not always increase or decrease as i goes up
for all values of t. For example, for t < F−1(3

4 ), the RTE is not monotonic in i.
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F−1(
3

4
)−1.0

−0.5

0.0
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t
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X
i:n

, t
)

i = 3 i = 4

Figure 4. The plot of RTE of Xi:5, for i = 3, 4 and α = 2 based on the survival function given
in Example 3.3.

Hereafter, we carry out a simulation study for illustrating the estimation procedures developed in
previous sections. To begin, we obtain the MLE of RTE. Using (2.7), we obtain the residual Tsallis
entropy of order statistics based on an exponential distribution with mean 1/λ as follows:

Hα(Xi:n; t) =
1

1 − α

λα−1B̄1−e−λt(α(i − 1) + 1, α(n − i + 1))
B̄α

1−e−λt(i, n − i + 1)
− 1

 , i = 1, 2, · · · , n.

Particularly for the case of α = 1, and based on Eq (2.9), the Shannon entropy of the ith order
statistic can be expressed as follows:

H(Xi:n; t) = H(Ui:n; 1 − e−λt) − E[log(1 − Yi))],

where Yi ∼ B̄1−e−λt(i, n − i + 1).
To estimate Hα(Xi:n; t) for simulated exponential data, we use the MLE of λ and we analyze its

average bias and root mean square error (RMSE). We compute the bias and RMSE for various number
of components (n = 5, 10, 15), different parameter values of λ = 1, 2, and t = 0.5, 1, 1.5, 2. The
estimates are based on 5000 repetitions, and the results are shown in Tables 2 and 3. Suppose we have
a random sample X1, X2, · · · , Xm drawn from an exponential distribution with mean 1/λ. Then, the
MLE of λ is given by λ̂ = m∑m

i=1 Xi
= 1

X
. It is worth noting that the statistical data is generated based on

the Monte-Carlo simulation. We estimate the values based on 5000 samples with different sample sizes
m = n = 5, 10 and different values of the parameters λ, α, and t. Since MLE is an invariant estimator,
we can estimate Hα(Xi:n; t) for an exponential distribution via the MLE given by

Ĥα(Xi:n; t) =
1

1 − α

 λ̂α−1B̄1−e−λ̂t(α(i − 1) + 1, α(n − i + 1))

B̄α

1−e−λ̂t
(i, n − i + 1)

− 1
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=
1

1 − α


B̄

1−e
− t

X
(α(i − 1) + 1, α(n − i + 1))

X
α−1

B̄α

1−e
− t

X
(i, n − i + 1)

− 1

 ,
for i = 1, 2, · · · , n.

Furthermore, an estimation of the residual entropy of the ith order statistic can be formulated as
follows:

H(Xi:n; t) = H(Ui:n; 1 − e−λ̂t) − E[log(1 − Yi))] = H(Ui:n; 1 − e−
t
X ) − E[log(1 − Yi))],

where Yi ∼ B̄
1−e

− t
X

(i, n − i + 1).

For simplicity, we only present the results for series and parallel systems for values of α =

0.2, 1, 1.2, 2.However, similar trends have been observed for other values of the parameters and sample
sizes. The results are displayed in Tables 2 and 3.

Table 2. The bias and RMSE of the estimate of Hα(Xi:n; t) for α = 0.2, 1 with i = 1 and
i = n.

H0.2(X1:n; t) H0.2(Xn:n; t) H(X1:n; t) H(Xn:n; t)
n λ t Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20 1 0.0 -0.004111 0.101963 0.023669 1.400607 -0.024673 0.232202 -0.023956 0.224504
0.5 -0.002940 0.100067 -0.015000 1.364974 -0.025537 0.226118 -0.026153 0.229583
1.0 -0.001218 0.100482 -0.022491 1.452236 -0.029445 0.227282 -0.028627 0.237049
1.5 -0.005024 0.101233 -0.048425 1.515576 -0.024896 0.231191 -0.044507 0.279241
2.0 -0.001714 0.102707 -0.013366 1.513197 -0.019139 0.224888 -0.057983 0.336823

30 1 0.0 -0.001575 0.060328 -0.021352 1.138932 -0.020142 0.184149 -0.011940 0.188139
0.5 -0.000900 0.060146 -0.021600 1.151689 -0.015972 0.181127 -0.020274 0.183855
1.0 0.000489 0.060145 -0.049570 1.154575 -0.014018 0.185117 -0.018327 0.185383
1.5 -0.002124 0.060362 -0.079052 1.233653 -0.015212 0.183027 -0.022842 0.205462
2.0 -0.001410 0.059558 -0.051625 1.276884 -0.014601 0.184373 -0.045161 0.252842

40 1 0.0 -0.000932 0.041486 -0.006984 0.973690 -0.013025 0.158373 -0.014442 0.157876
0.5 -0.000291 0.041090 0.010585 0.988650 -0.010680 0.160016 -0.012075 0.160450
1.0 -0.000965 0.041978 -0.028449 1.012318 -0.010349 0.158212 -0.012004 0.162294
1.5 -0.001168 0.041333 -0.034202 1.053832 -0.010614 0.161088 -0.016247 0.163795
2.0 0.000397 0.041325 -0.027568 1.110563 -0.011821 0.157864 -0.025932 0.197784

20 2 0.0 -0.002446 0.058226 -0.007118 0.824543 -0.026646 0.228696 -0.020955 0.227106
0.5 -0.001087 0.058753 -0.038594 0.833928 -0.025026 0.226999 -0.030133 0.233960
1.0 -0.001123 0.057952 -0.012696 0.869793 -0.031726 0.224602 -0.055647 0.330609
1.5 -0.001031 0.059087 0.027672 0.804698 -0.022875 0.227325 -0.025042 0.332517
2.0 -0.002530 0.058846 0.020016 0.720627 -0.016961 0.230532 -0.014888 0.297939

30 2 0.0 -0.000432 0.034163 -0.012610 0.655555 -0.013714 0.183895 -0.016170 0.189696
0.5 -0.000803 0.034582 -0.029846 0.676429 -0.012091 0.182673 -0.017238 0.183837
1.0 -0.000402 0.035017 -0.015309 0.736819 -0.018067 0.183517 -0.043436 0.253968
1.5 -0.000598 0.034962 -0.005882 0.714880 -0.018234 0.185157 -0.017685 0.301256
2.0 -0.000930 0.034343 0.027765 0.641635 -0.016395 0.182450 -0.006860 0.268161

40 2 0.0 -0.000400 0.023527 -0.009999 0.574911 -0.008702 0.158877 -0.013224 0.162924
0.5 -0.001212 0.023618 -0.004161 0.584604 -0.011959 0.160160 -0.012536 0.157172
1.0 -0.001119 0.023521 -0.015661 0.646895 -0.013997 0.160547 -0.031483 0.197244
1.5 -0.000656 0.023497 -0.004489 0.632596 -0.014761 0.156546 -0.028053 0.265230
2.0 0.000276 0.024035 0.019073 0.588827 -0.013667 0.155949 -0.005080 0.251386
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Table 3. The bias and RMSE of the estimate of Hα(Xi:n; t) for α = 1.2, 2 with i = 1 and
i = n.

H1.2(X1:n; t) H1.2(Xn:n; t) H2(X1:n; t) H2(Xn:n; t)
n λ t Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20 1 0.0 -0.036685 0.348336 -0.023340 0.173762 -0.452599 2.466906 -0.013824 0.064536
0.5 -0.042676 0.353032 -0.022528 0.170276 -0.496878 2.514799 -0.012206 0.065292
1.0 -0.051450 0.351932 -0.028482 0.178117 -0.484141 2.532462 -0.014892 0.067977
1.5 -0.042779 0.349915 -0.043827 0.216008 -0.505927 2.552919 -0.025610 0.092888
2.0 -0.040903 0.356226 -0.054122 0.260015 -0.526016 2.547214 -0.041800 0.131094

30 1 0.0 -0.040302 0.307586 -0.013597 0.136502 -0.550497 2.972020 -0.008951 0.049803
0.5 -0.027936 0.308898 -0.015890 0.137044 -0.521227 3.066964 -0.009581 0.050169
1.0 -0.031743 0.307648 -0.013536 0.137030 -0.578099 3.001601 -0.009409 0.051671
1.5 -0.035009 0.308558 -0.020906 0.151498 -0.566610 2.933522 -0.010304 0.054673
2.0 -0.042133 0.309328 -0.035845 0.198142 -0.560626 2.969982 -0.021695 0.082308

40 1 0.0 -0.026488 0.280460 -0.011294 0.119258 -0.493912 3.465678 -0.007291 0.042477
0.5 -0.029448 0.281887 -0.012519 0.115980 -0.475527 3.386782 -0.005798 0.042768
1.0 -0.025177 0.271100 -0.009937 0.118043 -0.484233 3.316020 -0.006592 0.043252
1.5 -0.024838 0.286013 -0.014468 0.123224 -0.537798 3.378410 -0.006441 0.044033
2.0 -0.023824 0.280455 -0.021237 0.146304 -0.479358 3.363165 -0.011877 0.054860

20 2 0.0 -0.056318 0.411699 -0.022944 0.198262 -1.072021 4.977434 -0.028913 0.128285
0.5 -0.050415 0.398105 -0.027264 0.202833 -0.993129 5.071529 -0.029730 0.134172
1.0 -0.056414 0.397686 -0.062243 0.301835 -1.138403 4.961945 -0.082598 0.266717
1.5 -0.032251 0.401509 -0.043805 0.321194 -1.028292 5.080591 -0.074257 0.323894
2.0 -0.053717 0.398513 -0.021448 0.283873 -0.955008 5.100835 -0.045678 0.303842

30 2 0.0 -0.038296 0.352777 -0.018590 0.160516 -1.072724 5.855002 -0.018836 0.098837
0.5 -0.043430 0.351647 -0.016782 0.160062 -0.966672 5.946254 -0.017346 0.102989
1.0 -0.033139 0.349205 -0.039773 0.223367 -1.060875 5.911871 -0.039096 0.168524
1.5 -0.039873 0.352490 -0.030791 0.279365 -0.999007 5.851596 -0.063707 0.255772
2.0 -0.040241 0.358401 -0.014475 0.250281 -1.062045 6.059834 -0.039921 0.256821

40 2 0.0 -0.038086 0.322851 -0.011819 0.137116 -1.005885 6.886099 -0.013194 0.083738
0.5 -0.029491 0.319172 -0.012025 0.135845 -1.052631 6.825047 -0.010727 0.084993
1.0 -0.032562 0.318250 -0.023726 0.172899 -1.043127 6.809147 -0.021793 0.109989
1.5 -0.036946 0.326066 -0.032002 0.243537 -1.036542 6.796656 -0.053233 0.214256
2.0 -0.030189 0.321165 -0.006727 0.231400 -0.995804 6.914287 -0.033001 0.230448

In order to evaluate the performance of the suggested estimators, we present a practical application
using real-world data, allowing us to analyze and validate their performance in a real-life context.

Example 3.4. We utilize a dataset obtained from [27], which comprises measurements of the strength
of 1.5 cm glass fibers conducted at the National Physical Laboratory in England. This dataset serves
as the basis for our empirical analysis, which is given as follows:

Data Set: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27,
1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62,
1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84,
1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89

In a study conducted by [22], it was verified that an exponential distribution provides a good
fit for the available data. Using this dataset, we computed the MLE of the parameter λ as
λ̂ = 0.663647. Consequently, for n = 5 and t = 2, we obtained the following estimates:
Ĥ0.2(X1:5; 2) = 1.144167, Ĥ0.2(X5:5; 2) = 8.037384, Ĥ1.2(X1:5; 2) = −0.2962707, Ĥ1.2(X5:5; 2) =

1.367607, Ĥ2(X1:5; 2) = −0.6591172, and Ĥ2(X5:5; 2) = 0.7645877.
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4. Conclusions

The concept of RTE for order statistics was discussed in this article. In the context of the RTE
of the order statistics of a random sample with uniformly distributed units, we introduce a new
method to express the RTE of the order statistics of a continuous random variable. This relationship
sheds light on the properties and behavior of the RTE for various distributions. In addition, we
have constructed boundary conditions that allow a better understanding of the properties and provide
a realistic approximation since it is difficult to find closed-form equations for the RTE of ordered
variables. These boundary conditions are useful tools to study and compare the RTE values in different
contexts. In addition, we examined how the total number of observations n and the index of order
statistics i affect the RTE. We were able to better understand the relationship between the entropy of
the general distribution and the position of the order statistic by looking at the variations of the RTE
with respect to i and n. We provide illustrative examples to support our results and demonstrate the
application of our method. These examples emphasize the usefulness of the RTE for order statistics
and show how adaptable our method is for other distributions. In summary, this study improves
our understanding of RTE for order statistics by establishing relationships, generating bounds, and
examining the effects of index and sample size. The results of this study can be applied to other
information measures commonly addressed in the literature, such as historical cumulative Tsallis
entropy and dynamic cumulative residual Tsallis entropy.
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