Theory article

Model averaging with causal effects for partially linear models

  • Received: 04 January 2024 Revised: 30 April 2024 Accepted: 06 May 2024 Published: 09 May 2024
  • MSC : 62F40, 62G20, 62G99

  • Treatment effects with heterogeneity and heteroskedasticity are widely studied and applied in many fields, such as statistics and econometrics. The conditional average treatment effect provides an excellent measure of the heterogeneous treatment effect. In this paper, we propose a model averaging estimation for the conditional average treatment effect with partially linear models based on the jackknife-type criterion under heteroscedastic error. Within this context, we provide theoretical justification for our model averaging approach, and we establish asymptotic optimality and weight convergence properties for our model under certain conditions. The performance of our proposed estimator is compared with that of classical estimators by using a Monte Carlo study and empirical analysis.

    Citation: Xiaowei Zhang, Junliang Li. Model averaging with causal effects for partially linear models[J]. AIMS Mathematics, 2024, 9(6): 16392-16421. doi: 10.3934/math.2024794

    Related Papers:

  • Treatment effects with heterogeneity and heteroskedasticity are widely studied and applied in many fields, such as statistics and econometrics. The conditional average treatment effect provides an excellent measure of the heterogeneous treatment effect. In this paper, we propose a model averaging estimation for the conditional average treatment effect with partially linear models based on the jackknife-type criterion under heteroscedastic error. Within this context, we provide theoretical justification for our model averaging approach, and we establish asymptotic optimality and weight convergence properties for our model under certain conditions. The performance of our proposed estimator is compared with that of classical estimators by using a Monte Carlo study and empirical analysis.



    加载中


    [1] B. A. Brumback, Fundamentals of causal inference: With R, CRC Press, 2021. https://doi.org/10.1080/01621459.2023.2287599
    [2] R. K. Crump, V. J. Hotz, G. W. Imbens, O. A. Mitnik, Nonparametric tests for treatment effect heterogeneity, Rev. Econ. Stat., 90 (2008), 389–405. https://doi.org/10.1162/rest.90.3.389 doi: 10.1162/rest.90.3.389
    [3] R. F. Engle, C. W. J. Granger, J. Rice, A. Weiss, Semiparametric estimates of the relation between weather and electricity sales, J. Am. Stat. Assoc., 81 (1986), 247–269. https://doi.org/10.1080/01621459.1986.10478274 doi: 10.1080/01621459.1986.10478274
    [4] J. Fan, Y. Ma, W. Dai, Nonparametric independence screening in sparse ultra-high-dimensional varying coefficient models, J. Am. Stat. Assoc., 109 (2014), 1270–1284. https://doi.org/10.1080/01621459.2013.879828 doi: 10.1080/01621459.2013.879828
    [5] Y. Gao, W. Long, Z. Wang, Estimating average treatment effect by model averaging, Econ. Lett., 135 (2015), 42–45. https://doi.org/10.1016/j.econlet.2015.08.002 doi: 10.1016/j.econlet.2015.08.002
    [6] B. E. Hansen, Least squares model averaging, Econometrica, 75 (2007), 1175–1189. https://doi.org/10.1111/j.1468-0262.2007.00785.x doi: 10.1111/j.1468-0262.2007.00785.x
    [7] B. E. Hansen, J. S. Racine, Jackknife model averaging, J. Econ., 167 (2012), 38–46. https://doi.org/10.1016/j.jeconom.2011.06.019 doi: 10.1016/j.jeconom.2011.06.019
    [8] G. W. Imbens, J. M. Wooldridge, Recent developments in the econometrics of program evaluation, J. Econ. Lit., 47 (2009), 5–86. https://doi.org/10.1257/jel.47.1.5 doi: 10.1257/jel.47.1.5
    [9] K. Imai, M. Ratkovic, Estimating treatment effect heterogeneity in randomized program evaluation, Ann. Appl. Stat., 7 (2013), 443–470. https://doi.org/10.1214/12-AOAS593 doi: 10.1214/12-AOAS593
    [10] H. Jo, M. A. Harjoto, The causal effect of corporate governance on corporate social responsibility, J. Bus. Ethics., 106 (2012), 53–72. https://doi.org/10.1007/s10551-011-1052-1 doi: 10.1007/s10551-011-1052-1
    [11] T. Kitagawa, C. Muris, Model averaging in semiparametric estimation of treatment effects, J. Econ., 193 (2016), 271–289. https://doi.org/10.1016/j.jeconom.2016.03.002 doi: 10.1016/j.jeconom.2016.03.002
    [12] K. C. Li, Asymptotic optimality for $C_p$, $C_L$, cross-validation and generalized cross-validation: Discrete index set, Ann. Stat., 15 (1987), 958–975. https://doi.org/10.1214/aos/1176350486 doi: 10.1214/aos/1176350486
    [13] Q. Liu, R. Okui, Heteroskedasticity-robust $C_p$ model averaging, Econom. J., 16 (2013), 463–472. https://doi.org/10.1111/ectj.12009 doi: 10.1111/ectj.12009
    [14] M. Müller, Estimation and testing in generalized partial linear models–-A comparative study, Stat. Comput., 11 (2001), 299–309. https://doi.org/10.1023/A:1011981314532 doi: 10.1023/A:1011981314532
    [15] C. A. Rolling, Y. Yang, Model selection for estimating treatment effects, J. R. Stat. Soc. B, 76 (2014), 749–769. https://doi.org/10.1111/rssb.12043 doi: 10.1111/rssb.12043
    [16] C. A. Rolling, Y. Yang, D. Velez, Combining estimates of conditional treatment effects, Economet. Theor., 35 (2019), 1089–1110. https://doi.org/10.1017/S0266466618000397 doi: 10.1017/S0266466618000397
    [17] P. R. Rosenbaum, D. B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika, 70 (1983), 41–55. https://doi.org/10.2307/2335942 doi: 10.2307/2335942
    [18] D. B. Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies, J. Educ. Psychol., 66 (1974), 688–701. https://doi.org/10.1037/h0037350 doi: 10.1037/h0037350
    [19] D. B. Rubin, Assignment to treatment group on the basis of a covariate, J. Educ. Behav. Stat., 2 (1977), 1–26. https://doi.org/10.2307/1164933 doi: 10.2307/1164933
    [20] T. A. Severini, J. G. Staniswalis, Quasi-likelihood estimation in semiparametric models, J. Am. Stat. Assoc., 89 (1994), 501–511. https://doi.org/10.2307/2290852 doi: 10.2307/2290852
    [21] C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Stat., 10 (1982), 1040–1053. https://doi.org/10.1214/aos/1176345969 doi: 10.1214/aos/1176345969
    [22] L. Tian, A. A. Alizadeh, A. J. Gentles, R. Tibshirani, A simple method for estimating interactions between a treatment and a large number of covariates, J. Am. Stat. Assoc., 109 (2014), 1517–1532. https://doi.org/10.1080/01621459.2014.951443 doi: 10.1080/01621459.2014.951443
    [23] W. Whittle, Bounds for the moments of linear and quadratic forms in independent variables, Theory Probab. Appl., 5 (1960), 302–305. https://doi.org/10.1137/1105028 doi: 10.1137/1105028
    [24] Z. Tan, On doubly robust estimation for logistic partially linear models, Stat. Probab. Lett., 155 (2019), 108577. https://doi.org/10.1016/j.spl.2019.108577 doi: 10.1016/j.spl.2019.108577
    [25] J. Zeng, W. Cheng, G. Hu, Y. Rong, Model selection and model averaging for semiparametric partially linear models with missing data, Commun. Stat.-Theor. M., 48 (2019), 381–395. https://doi.org/10.1080/03610926.2017.1410717 doi: 10.1080/03610926.2017.1410717
    [26] X. Zhang, A. T. Wan, G. Zou, Model averaging by jackknife criterion in models with dependent data, J. Econ., 174 (2013), 82–94. https://doi.org/10.1016/j.jeconom.2013.01.004 doi: 10.1016/j.jeconom.2013.01.004
    [27] X. Zhang, W. Wang, Optimal model averaging estimation for partially linear models, Stat. Sin., 29 (2019), 693–718. https://doi.org/10.2139/ssrn.2948380 doi: 10.2139/ssrn.2948380
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(501) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog