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Abstract: Treatment effects with heterogeneity and heteroskedasticity are widely studied and applied
in many fields, such as statistics and econometrics. The conditional average treatment effect provides
an excellent measure of the heterogeneous treatment effect. In this paper, we propose a model
averaging estimation for the conditional average treatment effect with partially linear models based
on the jackknife-type criterion under heteroscedastic error. Within this context, we provide theoretical
justification for our model averaging approach, and we establish asymptotic optimality and weight
convergence properties for our model under certain conditions. The performance of our proposed
estimator is compared with that of classical estimators by using a Monte Carlo study and empirical
analysis.
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1. Introduction

Causal effects are fundamental to project evaluation across various fields, such as economics,
finance, and biomedicine. It is well known that the central issue in project evaluation in these fields
is to identify the “causal relationships” that exist between project treatments and project outcomes
and to quantify the “causal effects”. For example, pharmaceutical companies are interested in the
effect of a new drug or device developed to treat a disease, and investment banks are concerned
with the profitability of companies that have received significant capital investment. These research
questions rely on estimating treatment effects; thus, studying the identification, estimation, and
empirical application of treatment effects is crucial and meaningful. Causal effects are also referred to
as treatment effects in the literature.
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It is essential, in some cases, to accurately capture heterogeneous treatment effects. For example,
a new medicine could be more beneficial for children than for adults; an advertising strategy for
sanitary napkins may be more persuasive for women than for men. These results indicate that using
knowledge of heterogeneous treatment effects can maximize the value and effectiveness of treatment
programs [15]. A commonly used heterogeneous treatment effects measurement is the conditional
average treatment effect (CATE), to which much recent attention has been given.

In several studies, CATE has been estimated by fitting a parametric model to the relationship
between observations and baseline covariates, in conjunction with treatment assignment. Alternatively,
CATE can be estimated by modeling the conditional mean of potential outcomes using a parametric
model based on the baseline covariates for each treatment group. Examples include [2, 9, 19, 22].
However, in practice, practitioners generally have datasets in which not all covariates show a linear
relationship with each other. Instead, the data may be nonparametric. In this context, partially linear
models (PLMs) are more applicable to such datasets, which combine the interpretability of linear
models with the flexibility of nonparametric models.

Therefore, we consider a partially linear regression framework [3] in which the distribution of
the response Yi may depend on a binary treatment assignment indicator δi ∈ {0, 1} and the baseline
covariates (Xi,Ui). To segregate the treatment differences of the primary interest, we assume for the
observations that

Yt,i − Yc,i = µi + ei =

∞∑
j=1

xi jβ j + g(Ui) + ei, i = 1, . . . , n, (1.1)

where {Yt,i,Yc,i} denote the Yi associated pair of potential outcomes and δi represents the treatment
indicator variable, taking δi = 1 if the individual belongs to the treatment group and δi = 0 otherwise.
Xi = (xi1, xi2, . . . )T is covariate and Ui is univariate covariate. β is an unknown coefficient vector
associated with Xi, g(·) is an unknown smooth nonlinear function, and e1, . . . , en are unobservable
heteroscedastic random errors independent of {Xi,Ui}

n
i=1 with conditional mean E(ei|Xi,Ui) = 0 and

conditional variance E(e2
i |Xi,Ui) = σ2

i . A fundamental problem in statistics and causal inference is to
improve predictive accuracy based on observable datasets {Yi, Xi,Ui, δi}

n
i=1.

Researchers, however, usually have multiple candidate models assumed based on various
understandings of the observed data. Thus, Polling and Yang [15] proposed the treatment effect
across-validation (TECV) method. It is a model selection method for studying CATE, which is able
to identify a model that is most suitable for estimating CATE among multiple candidate models.
However, there is a risk of model uncertainty, and it is impossible to know whether the model is
the most suitable for the dataset. If researchers cannot select the optimal model, they will face missing
useful information, leading to unstable estimation. The model averaging method can reduce the risk
of regression estimation and the bias introduced by selecting a single model, avoid ignoring the useful
information contained in the remaining candidate models, and thereby improve prediction accuracy.

Model averaging methods have been applied to handle causal inference problems. For example,
Gao et al., [5] developed a model averaging method based on the JMA of [7] to estimate the
average treatment effect (ATE). [11] proposed a data-driven approach to averaging the estimators
over candidate specifications to address the specification uncertainty in the weighted estimation of
propensity scores for the average treatment effect on treated (ATT). Rolling et al., [16] introduced a
model combination technique, treatment effect estimation by mixing (TEEM), which was designed
to amalgamate estimators from various programs. This approach is used to generate more accurate
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CATE estimations. Although TEEM is compatible with parametric, nonparametric, or semiparametric
statistical models, as well as nonstatistical machine learning processes and even subjective expert
judgment, the approach proposed by [16] may encounter difficulties in finding treatment-control pairs
in each cell after partitioning. This is especially true when dealing with a large or even moderate
number of covariates. Thus, we discussed a model averaging estimation for the CATE with multiple
candidate partially linear regression models.

To the best of our knowledge, no optimal model averaging estimation has been developed for PLMs
based on the jackknife-type criterion to address causal inference problems. Motivated by this, under
heteroscedastic error, the primary goal of the current article is to develop a model averaging estimation
for the conditional average treatment effect with PLMs based on a jackknife-type criterion called the
CPLJMA method, where C, PL, and JMA represent causal effects, partially linear, and jackknife model
averaging, respectively. However, it is difficult to directly extend the available results to our idea for the
following reasons: For existing optimal model averaging estimations for PLMs, important examples
include [27], who proposed optimal model averaging estimation for PLMs with the Mallows-type
criterion based on kernel estimation (MAPLM). Zeng et al., [25] proposed focused information criteria
and frequentist model averaging estimators for semiparametric partially linear models with missing
responses and established their theoretical properties. We utilize a different jackknife-type weight
choice criterion from theirs, and, additionally, we add an extra theorem of weight convergence. Our
main contributions to these challenges are as follows: (i) On a theoretical basis, the proposed estimator
is asymptotically optimal in terms of minimizing the squared error loss. (ii) The convergence property
of the weights is investigated, and we prove that the sum of the weights assigned to the correct candidate
model is one as the sample size increases to infinity. This is true, provided that there is at least one
correctly specified candidate model. In the simulation section, numerical simulations and empirical
analysis are applied to verify the validity of the proposed model averaging approach and the analytical
framework; this proves theoretical support for the wide application of such model averaging methods.

The remainder of this paper is organized as follows. In Section 2, we describe the estimation
procedure of the jackknife criterion for CATE based on PLMs, and we study its theoretical properties
in Section 3. Section 4 illustrates the performance of our proposal via simulations and data examples.
Concluding remarks are made in Section 5. Technical proofs are deferred to the Supplementary.

2. Model and estimation procedure

2.1. Preliminaries

First, we use the potential outcomes framework [8,18] to define the CATE as the expectation of the
random variable conditional on the observed value of the baseline covariates (Xi,Ui), that is

µi = E
(
Yt,i − Yc,i|Xi,Ui

)
,

where Yt,i−Yc,i indicates the treatment effect for the ith individual; this is also labeled the “fundamental
problem of causal inference” because Yt,i and Yc,i are infeasible to observe simultaneously. The main
goal of this study is to estimate µi based on the model averaging method.

Under the causal inference framework, we make the following identifiability assumptions [1]:

Assumption 1. Consistency: Yi = δiYt,i + (1 − δi)Yc,i;

AIMS Mathematics Volume 9, Issue 6, 16392–16421.



16395

Assumption 2. Unconfoundedness: {Yt,i,Yc,i} ⊥ δi | {Xi,Ui};

Assumption 3. Positivity: 0 < cπ ≤ π(Xi,Ui) ≤ 1 − cπ < 1 almost surely, where π(Xi,Ui) = P(δi =

1|Yt,i,Yc,i, Xi,Ui) = P(δi = 1|Xi,Ui) denotes the propensity score and cπ is a positive constant.

Assumption 1 links potential outcomes to observed outcomes and requires the potential outcomes
to be well defined. Assumption 2 is conditional independence, which implies that the treatment
assignment indicator δi is independent of the potential outcome {Yt,i,Yc,i} given covariates Xi and Ui,
and it requires that all potential confounding information on the relationship between treatments and
potential outcomes is observed in the covariates; it precludes potential confounding between treatment
assignments and outcomes. Assumption 3 implies that treatment assignments are not deterministic,
which is crucial for controlling confounding bias and systematic differences between the treatment
and control groups. This assumption also guarantees π(Xi,Ui) and 1 − π(Xi,Ui) are invertible with
probability one. [17] referred to the combination of Assumptions 2 and 3 as a “strongly ignorable
treatment assignment”.

Inverse probability weighting (IPW) based on the potential outcome framework is a powerful tool
for correcting confounding bias. The IPW approach utilizes the inverse of the propensity scores to
construct weights for observed outcomes to balance baseline covariates between groups [10]. Under
the strongly ignorable treatment assignment assumption, suppose

Zπ,i =
δiYi

π(Xi,Ui)
−

(1 − δi)Yi

1 − π(Xi,Ui)

to construct the unbiased estimator of µi given the conditions Xi, Ui. Then, after careful calculation,
we have

E(Zπ,i|Xi,Ui) =E
[

δiYi

π(Xi,Ui)
−

(1 − δi)Yi

1 − π(Xi,Ui)

∣∣∣∣Xi,Ui

]
=

E(δi|Xi,Ui)
π(Xi,Ui)

E(Yt,i|Xi,Ui) −
E(1 − δi|Xi,Ui)

1 − π(Xi,Ui)
E(Yc,i|Xi,Ui)

=E(Yt,i|Xi,Ui) − E(Yc,i|Xi,Ui)
=µi. (2.1)

The unreasonable model selected to estimate the CATE may yield uncertain estimations. To provide
a more reasonable and robust CATE estimator, we develop a model averaging estimation for CATE with
multiple candidate PLMs.

2.2. Estimation procedure

As discussed earlier, we can obtain computationally feasible PLMs of heterogeneous causal effects
based on treatment-control pairs. In accordance with Eq (2.1) and model (1.1), we let eπ,i = Zπ,i − µi.
Then, we have

Zπ,i = µi + eπ,i =

∞∑
j=1

xi jβ j + g(Ui) + eπ,i, (2.2)

where µi denotes the CATE for the ith individual, E(eπ,i|Xi,Ui) = 0, and E(e2
π,i|Xi,Ui) = σ2

π,i. Let us
note that {Zπ,i, Xi,Ui}

n
i=1 is fully observed when π(Xi,Ui) is known.
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Specifically, we consider multiple candidate models for model (2.2) of the form

µ(m)
i =

km∑
j=1

x(m)
i j β

(m)
j + g(Ui), m = 1, . . . ,Mn, (2.3)

used for evaluating µi, where x(m)
i j is the jth entry of X(m)

i , X(m)
i is an km-dimensional subvector of Xi,

β(m)
j is the corresponding regression coefficient vector, g(·) is an unknown function in the nonparametric

part, and Mn denotes the total number of candidate models allowed to go to infinity.
Define Zπ = (Zπ,1, . . . ,Zπ,n)T ∈ Rn, X(m) = (X(m)

1 , . . . , X(m)
n )T ∈ Rn×km , where {x(m)T

i j }
n
i=1 is an 1 × km

column vector, g(U) = (g(U1), . . . , g(Un))T ∈ Rn, and eπ = (eπ,1, . . . , eπ,n)T ∈ Rn. Then, the mth
candidate model in matrix form is

Zπ = X(m)β(m) + g(U) + eπ.

To estimate the nonparametric function, we use the B-spline regression method. Let Sn be the space
of polynomial splines of degree l ≥ 1, and let {ψk, k = 1, . . . , dn} denote a normalized B-spline basis.
For any gn ∈ Sn, we have

gn(U) =

dn∑
k=1

ψk(U)αk = ΨT(U)α,

for some coefficients {αk}
dn
k=1, where Ψ(U) = (ψ1(U), . . . , ψdn(U))T, α = (α1, . . . , αdn)

T. Here, dn

increases with n. We define the n × dn matrix K = (Ψ(U1), . . . ,Ψ(Un))T. Then, we assume that
the n × (p + dn) matrix X(m)∗ = (X(m),K) is nonsingular and associated with the unknown (p + dn)-
dimensional parameter vector γ(m) = (β(m)T

,αT)T. Thus, we have

µ(m)
π,n = X(m)∗γ(m) = X(m)β(m) + Kα.

By regressing Zπ on X(m)∗ , the least squares estimator of β(m) and α can be obtained as

β̂
(m)

= {X(m)T
(I −Q)X(m)}−1X(m)T

(I −Q)Zπ,

and
α̂ = (KTK)−1KT(Zπ − X(m)β̂

(m)
),

where Q = K(KTK)−1KT is a symmetric idempotent matrix. Then

µ̂(m)
π = X(m)β̂

(m)
+ Kα̂ = {Q + X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T
}Zπ = P(m)Zπ,

where X̃(m) = (I − Q)X(m) is a symmetric idempotent matrix and P(m) = Q + X̃(m)(X̃(m)TX̃(m))−1X̃(m)T
.

Then the corresponding model averaging estimator of µ can be formulated as

µ̂π(ω) =

Mn∑
m=1

ωmµ̂
(m)
π = P(ω)Zπ, (2.4)

where P(ω) =
∑Mn

m=1 ωmP(m) and ω = (ω1, . . . , ωMn)
T is a weight vector belonging to the continuous set

Hn =
{
ω ∈ [0, 1]Mn :

∑Mn
m=1 ωm = 1

}
.
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Notably, the choice of weight vector is crucial in the model averaging method. Thus, we consider the
jackknife-type criterion to choose the weight vector ω for (2.4) in the PLMs framework. Specifically,
leave-one-out cross-validation (LOO-CV) is used to estimate µ, and then the estimator in the mth
candidate model is given by

µ̃(m)
π = P̃(m)Zπ and P̃(m) = P(m) − D(m)A(m),

where D(m) = diag(D(m)
11 , . . . ,D

(m)
nn ) ∈ Rn×n with the ith diagonal element D(m)

ii = hm,ii/(1 − hm,ii), A(m) =

In − P(m), and hm,ii is the ith diagonal entry of P(m). Thus, the jackknife-type model averaging estimator
is

µ̃π(ω) =

Mn∑
m=1

ωmµ̃
(m)
π = P̃(ω)Zπ,

where P̃ =
∑Mn

m=1 ωmP̃(m). Then, the weight choice criterion is

CVπ(ω) = ‖Zπ − µ̃π(ω)‖2. (2.5)

The optimal weight vector is obtained by minimizing the criterion in (2.5) over the spaceHn. However,
such a minimization process in real-world data analysis is computationally infeasible because π(Xi,Ui)
is generally unknown. In our modeling framework, we estimate it by adopting the logistic partially
linear models (LPLMs) in [24],

π̂(Xi,Ui) =
eXT

i θ+κ(Ui)

1 + eXT
i θ+κ(Ui)

, i = 1, . . . , n (2.6)

which relies on generalized partially linear models (GPLMs) in [14], where the coefficients θ for the
linear part and the nonparametric part κ(·) are estimated using B-spline basis estimation. This method
is facilitated by the “sgplm1” function within the R package “gplm”, with the degrees of freedom
set to “d f = 3”. Further elucidation of this choice is provided in the subseqent numerical simulations.
Then, π̂(Xi,Ui) is substituted for π(Xi,Ui) with Zπ to obtain Zπ̂. Then, a feasible counterpart of CVπ(ω)
in (2.5) becomes

CVπ̂(ω) = ‖Zπ̂ − µ̃π̂(ω)‖2.

The optimal weights ω̂cv are obtained by selecting ω ∈ Hn to minimize the jackknife-type criterion in

ω̂cv = arg min
ω∈Hn

CVπ̂(ω).

Given ω̃cv, substituting it into (2.4) yields the optimal model averaging estimator of µ as µ̂π̂(ω̂cv) in
the case where π̂(Xi,Ui). CVπ̂(ω) is a quadratic programming problem with respect to ω, that is,
CVπ̂(ω) = ωTHT

π̂Hπ̂ω, where Hπ = (Zπ̂ − P̃(1)Zπ̂, . . . ,Zπ̂ − P̃(Mn)Zπ̂).

3. Theoretical properties

In this section, we focus on some theoretical properties of our proposed model averaging method.
In Subsection 3.1, we prove the asymptotic optimality of the model averaging estimator µ̂(ω̂cv) by
illustrating that the selected weight vector ω̂cv yields a squared error that is asymptotically identical to
that of the infeasible optimal weight vector. Subsection 3.2 concerns the convergence property of the
optimal weight vector ω̂cv. When the sample size tends to infinity, the sum of the weights assigned to
the correct model by the optimal weight vector obtained by the proposed method converges to one in
probability.
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3.1. Asymptotic optimality

Before introducing the theoretical properties, we first define some notations. Let µt,i = E(Yt,i|Xi,Ui)
and et,i = Yt,i − µt,i denote the conditional expectation and the random error of the treatment group,
respectively, in which σ2

t,i = E(e2
t,i|Xi,Ui). The loss function and the corresponding risk function of

µ̂π(ω) are defined as

Lπ(ω) = ‖µ − µ̂π(ω)‖2 and Rπ(ω) = E{Lπ(ω)|Xi,Ui},

respectively, where ‖ · ‖ is the Euclidean norm. Let ξπ = infω∈Hn Rπ(ω), k̄ = max1≤m≤Mn km, and
h̄ = max1≤m≤Mn max1≤i≤n hm,ii. The following conditions are assumed with respect to n→ ∞.

(C1)
√

n‖θ̂n − θ0‖ = Op(1) and ‖κ̂θ̂n
− κ0‖ = op(n−1/4), in which θ0 and κ0 are the true values of θ and κ,

respectively, and the first derivatives of π̂(Xi,Ui; θ, κ) with respect to θ and κ are continuous and
bounded.

(C2) For some integers G ≥ 1,

max
i

{
E(e4G

i |Xi,Ui), E(e4G
t,i |Xi,Ui), |µi|, |µt,i|

}
≤ C̄ < ∞, a.s.

where i = 1, . . . , n, and C̄ is a positive constant.

(C3) For some integers 1 ≤ G ≤ ∞,

Mnξ
−2G
π

Mn∑
m=1

{Rπ(ωo
m)}G

a.s.
→ 0.

(C4) h̄
a.s.
→ 0 and (d̄ + k̄)ξ−2

π

a.s.
→ 0.

(C5) The functions {g j(U)}nj=1 belong to a class of functions F , whose rth derivative g(r)
j exists and is

Lipschitz of order η,

F =
{
g j(·) : |g(r)

j (s) − g(r)
j (t)| ≤ G|s − t|η for s, t ∈ [a, b]

}
,

for some positive constant G, where r is a nonnegative integer and η ∈ (0, 1], such that υ = r+η >

0.5.

Condition (C1), a commonly used restriction for GPLMs, requires
√

n-consistent estimates for the
parametric component θ̂n. The nonparametric component κ̂θ̂n

is viewed as a function of the parametric
component to achieve consistency. This restriction is reasonable [20]. Condition (C2) is a moment
condition concerning random errors, and it is satisfied by {µi, µt,i}

n
i=1, which are bounded. Condition

(C3) is a convergence condition that imposes certain restrictions on the circumstances for applying
our asymptotic outcome. A prerequisite for Condition (C3) to hold is ξπ → ∞, which requires
that no finite-dimensional correct model exists in the class of candidate models [6]. It also requires
that Mn and max1≤m≤Mn Rπ(ωo

m) go to infinity slowly enough. Condition (C4), an assumption that
excludes the case of extremely unbalanced design matrices as candidate models, is widely imposed
in studies of optimal model averaging based on cross-validation, such as [7,12], among others. The B-
spline approximation in PLMs requires Condition (C5) with references to [4,21], which is a regularity
condition that necessitates the nonparametric coefficient function to be sufficiently smooth.
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Theorem 1. If Conditions (C1)–(C5) are satisfied, then

Lπ̂(ω̂cv)
infω∈Hn Lπ̂(ω)

P
−→ 1.

Theorem 1 demonstrates its asymptotic optimality by minimizing the approximate risk with squared
error loss. This theorem illustrates that the square error with selected model weights ω̂cv minimized by
the LOO-CV criterion is asymptotically equal to that of the infeasible optimal weight vector.

3.2. Weight convergence

In this subsection, we concentrate on the convergence properties of the optimal weights in model
averaging. It should be noted that, in this article, the mth candidate model in (2.3) is deemed correctly
specified or a correct model if there exists β(m)∗ such that µ = X(m)β(m)∗ + g(U); otherwise, model (2.3)
is said to be mispecified or an incorrect model.

We first introduce some notation. ŝcv is defined as the sum of the weights assigned to the
correct candidate models using our proposed method, which can be denoted as ŝcv =

∑m0
m=1 ω̂cv,m in

mathematical notation, where m0 indicates that the first m0 candidate models are all correctly specified.
Let HF = {ω ∈ [0, 1]Mn :

∑Mn
m=m0+1 ωm = 1} be the weight set of all incorrect candidate models and

ξπ,F = infω∈HF Rπ(ω) is the optimal risk when the weights are assigned to all the mispecified candidate
models. We specify some necessary conditions for further analysis based on n→ ∞.

(C6) For some integers 1 ≤ G ≤ ∞,

ξ−2G
π,F max

m0(d̄ + k̄)2G, (Mn − m0)
Mn−m0∑
m=m0

{Rπ(ωo
m)}G

 a.s.
→ 0.

(C7) h̄ = O(n−1/2).

Condition (C6) requires ξ−2G
π,F to grow at a rate no slower than m0(d̄ + k̄)2G and (Mn −

m0)
∑Mn−m0

m=m0
{Rπ(ωo

m)}G. It is worth noting that if (Mn − m0)
∑Mn−m0

m=m0
{Rπ(ωo

m)}G is larger than m0(d̄ + k̄)2G,
then Condition (C6) is identical to (Mn − m0)ξ−2G

π,F
∑Mn−m0

m=m0
{Rπ(ωo

m)}G
a.s.
→ 0 and is thus analogous

to Condition (C3). Condition (C7), excluding the case of peculiar models as candidate models, is
from [13].

Theorem 2. If Conditions (C1)–(C7) are satisfied, then

ŝcv
p
−→ 1.

Theorem 2 indicates that the model averaging estimator µ̂(ω̂cv) of our proposal is sufficient for the
sum of the weights assigned to the correct models to converge to one in probability as the sample size
goes to infinity and automatically excludes the incorrect models.

4. Numerical studies

To demonstrate the theoretical properties of Section 3, in this section we conduct two Monte Carlo
experiments on the finite-sample performance, where Case 1 verifies the asymptotic optimality of
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Theorem 1 with the candidate models all misspecified, and Case 2 justifies the weight convergence
property of Theorem 2 with at least one correct model specified. In addition, the superiority of
our method is illustrated by applying it to the Diabetes dataset. For a better analysis, we also
consider several relevant existing methods as competitors to our CPLJMA approach, including the
model selection methods for AIC, BIC, and treatment effect cross-validation (TECV) proposed
by [15]; Information criterion-based model averaging methods such as SAIC and SBIC; the equal
weight method (EW); and treatment effect estimation by mixing (TEEM) and the Mallows averaging
of partially linear models (MAPLM). We calculate the mean squared error (MSE) to assess the
performances of the estimators, defined as MSE = 1

nD

∑D
d=1 ‖{µ̂(ω)}(d) − µ(d)‖2, where µ(d) and {µ̂(ω)}(d)

are the CATE and model averaging estimator in the dth replicate, respectively. D denotes the number of
replicates of the simulation. Additionally, we calculated MSEmedian in the empirical analysis, defined as
MSEmedian = mediand=1,...,DMSE(d), and the optimal rate, which is the percentage of the smallest MSE
value. In complement to the rigorous numerical investigations detailed earlier, we embark on the task
of determining the number of (interior) knots. Like the pivotal role of bandwidth in kernel smoothing,
these knots, akin to tuning parameters, have a remarkable influence on the smoothness and adaptability
of our spline models. The details of the numerical study and its results are described in the following
subsections.

4.1. Monte Carlo study

Case 1: Without correct candidate models

The data-generating process (DGP) is as follows:

Yt,i − Yc,i = µi + ei =

500∑
j=1

Xi jβ j + g(Ui) + 0.5X2
i2 + et,i − ec,i,

where Xi1 = 1. {Xi j}
J
j=2, the covariates of the linear part, are generated from a multivariate normal

distribution with mean 0 and covariance 0.5| j1− j2 | between xi j1 and xi j2 . The associated coefficients
in the linear component are taken as β j = 1/ j. The coefficient function g(Ui) = sin(2πUi), where
Ui ∼ Uniform[0, 1]. {et,i, ec,i} are independent random errors distributed from N(0, σ2X2

i2), where the
parameter σ2 is chosen by R2 = var(µi)/var(Yt,i − Yc,i), which varies on a grid between 0.1 and 0.9.
Then

µi =

500∑
j=1

j−1Xi j + sin(2πUi) + 0.5X2
i2 and ei = et,i − ec,i. (4.1)

We rescaled µi to have unit variance so that the expected R2 equals 1
1+σ2 for the unknown model. It is

clear from (4.1) that the class of candidate models considered in this case is misspecified. In addition,
to obtain {δ}ni=1, the propensity score is taken as

π(Xi,Ui) =
exp(0.75Xi2 + sin(2πUi))

1 + exp(0.75Xi2 + sin(2πUi))
.

Thus, we obtain {Yi}
n
i=1. For π̂(Xi,Ui), we use the GPLMs in (2.6) to approximate the coefficients of the

linear part and the form of the nonparametric part.
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First, we delve into the influence of interior knots within the B-spline basis on the performance
of our proposed CPLJMA approach. By employing the “bs(·, d f )” function from the R package
“splines”, we generate an appropriate B-spline basis matrix. Here, the degree of freedom parameter,
denoted as d f , is a crucial factor, determined by “d f = 3 + the number o f knots”.

Figure 1 shows the variation in MSE as the number of interior knots varies, considering a sample
size of n = 300 and R2 = 0.5, and for both nested and nonnested setting scenarios. In the nested setting,
the mth candidate model comprises the first m linear variables in {Xi j}

500
j=1. The number of candidate

models Mn is determined as the nearest integer from 3n1/3, resulting in Mn = 20. In the nonnested
setting, the linear components of all candidate models are a subset of {Xi1, . . . , Xi5}, disregarding the
remaining Xi variables, thereby yielding a total of 25 − 1 = 31 candidate models. As depicted in
the figure, the MSE increases with an increase in the number of knots, potentially exacerbating the
phenomenon of overfitting. Consequently, we opt for “d f = 3” as the degree of freedom for the
CPLJMA method, ensuring a balance between model flexibility and susceptibility to overfitting.

3 4 5 6 7 8 9 10

0.3

0.35

0.4

0.45

0.5
Nested Non-nested

Figure 1. The curves of the median of MSE with the number of knots for Case 1 over n = 300
and R = 0.5 simulations.

The greater the number of covariates, the more tedious the computation. Therefore, in substantiating
the theoretical properties outlined in Theorem 1 through numerical simulations, we adopt a nested
setting. Accordingly, when the sample sizes are n = 75, 150, 300, and 600, then Mn = 12, 15, 20,
and 25, respectively.

Figure 2 illustrates a numerical inspection for the asymptotic optimality of µ̂π̂(ω̂cv) in Theorem 1 by
showing the mean of LR, defined as LR = Lπ̂(ω̂cv)/ infω∈Hn Lπ̂(ω), for different samples and various R.
In a simulation trial based on 100 replications, we observe that the mean curve of LR decreases and
converges to one as n increases. This intuitively demonstrates the asymptotic optimality of CPLJMA.
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Figure 2. Evaluating the asymptotic optimality of µ̂π̂(ω̂cv) under nested models: The class of
candidate models is all misspecified.

Figure 3 shows the MSE ratio curves for the seven CATE µ estimators we considered, where we
used the AIC as the denominator to yield the MSE ratio with an entry of 1.00. Generally, our proposed
CPLJMA outperforms its competitors on the MSE ratios when R2 or n is small or moderate, particularly
because it is difficult to identify the optimal model when there is considerable noise in the model. The
advantage of model averaging without relying on a single model is that it provides protection against
poor model selection. As expected, SAIC and SBIC invariably yielded more accurate results than did
their respective model selection rivals. In short, to some extent, CPLJMA is superior to its competitors.
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Figure 3. Performances of various method estimators under nested models: The classes of
candidate models are all misspecified.
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Case 2: With correct candidate models

The DGP is generated from

Yt,i − Yc,i = µi + ei =

5∑
j=1

Xi jβ j + g(Ui) + et,i − ec,i

where the vector of covariates Xi = (Xi1, . . . , Xi5)T is from an independent standard normal distribution
N(0, 1), Ui is distributed as U[−1, 1], and the corresponding coefficient and nonparametric function
are β j = 1/ j and 1.2Ui, respectively. The settings for {et,i, ec,i}, σ, R2, and b f are the same as those in
Case 1. Thus, we can obtain

µi =

5∑
j=1

j−1Xi j + 1.2Ui.

The propensity score is taken as

π(Xi,Ui) =
exp(0.75Xi3 + 1.2Ui)

1 + exp(0.75Xi3 + 1.2Ui)
.

Based on the LPLMs in (2.6), we can obtain {π̂(Xi,Ui)}ni=1 and thus {Zπ,i}ni=1. In this case, we consider the
nonnested models. The linear parts of all candidate models are constructed by varying combinations
of {Xi1, Xi2, Xi3, Xi4, Xi5}; thus, Mn = 25 − 1. The sample size is taken as n = 75, 150, 300, 600. The
results for the convergence of the model weights ω̂cv and the MSE ratio of the above methods are given
in Figures 4 and 5, respectively, based on 100 replications.

Figure 4 clearly shows that the sum of the weights corresponding to the correct candidate models
tends to one as the sample sizes n and R2 increase. This intuitively confirms the convergence of ω̂cv

presented in Theorem 2 via numerical inspection.
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Figure 4. Evaluating the convergence of the model weights ω̂cv under nonnested models:
The class of candidate models contains correct models.

As shown in Figure 5, we still derive the MSE ratio using AIC as the denominator. In most cases,
the results of the MSE ratio demonstrate the merits of our approach over its competitors. Obviously, as
R2 increases progressively, the MSE ratio for all scenarios tends to decrease, as expected. Increasing
the sample size also improved the performance for all approaches. Overall, CPLJMA still outperforms
several existing methods.
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Figure 5. MSE ratio curves for the various methods under nonnested models: The class of
candidate models contains correct models.

4.2. Empirical analysis

Our proposed method is applied to the Diabetes dataset from Dr. John Schorling, Department of
Medicine, University of Virginia School of Medicine. The original data consisted of 19 covariates on
403 subjects from 1046 subjects interviewed in a study. However, due to the availability of missing
data, we selected 16 covariates and 366 respondents as the dataset for the current case study, 175 of
whom respondents resided in Buckingham and 191 of whom did not.

Our analysis considers the outcome variable Y to be stabilized glucose. The treatment indicator
variable δ takes the value of 1 if people reside in Buckingham, and 0 otherwise. We calculated
the Pearson correlation coefficients of the 14 baseline covariates X and U with Y and ranked them
in descending order of correlation strength. Let us note that all continuous covariates X and Y are
standardized to have a mean of zero and a variance of one, and U is scaled to [0, 1]. See Table 1 for
details.
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Table 1. Pearson correlation coefficient of each linear covariate with Y.

Symbol Description Correlation with Y
X1 glycosolated hemoglobin 0.7409
X2 cholesterol/HDL ratio 0.2989
X3 waist 0.2337
X4 weight 0.1888
X5 high density lipoprotein -0.1801
X6 frame (0 if large,1 if medium, 2 otherwise) -0.1726
X7 first systolic blood pressure 0.1654
X8 total cholesterol 0.1514
X9 hip 0.1448
X10 gender (0 if male, 1 if otherwise) -0.0861
X11 height 0.0825
X12 postprandial time when labs were drawn -0.0485
X13 first diastolic blood pressure 0.0257

We assume that the candidate models consist of nested models constructed from the covariates in
{X1, . . . , X13,U} with intercept terms, where the baseline covariates are X for the linear part, and we
consider that age is a covariate U for the nonparametric part. Accordingly, there are 13 well-prepared
candidate models. To implement our proposal, the propensity score π(Xi,Ui) is still solved by LPLMs.

We conduct a “guided simulation experiment” to evaluate the performance of our proposal and
that of its competitors. In particular, we use the largest candidate model containing all covariates as
a guided model, and m∗ denotes the index of that model in the class of candidate models. Based on
the m∗th candidate model and the original dataset {Yi, Xi,Ui, δi}

n
i=1, we can obtain a simulation dataset

{Y (m∗)
i , Xi, δi,Ui}

n
i=1. Thus,

Y (m∗)
i = δiY

(m∗)
t,i + (1 − δi)Y

(m∗)
c,i ,

Y (m∗)
t,i = X(m∗)T

i ρ̂(m∗) + f (m∗)(U (m∗)
i ) + e(m∗)

t,i ,

Y (m∗)
c,i = X(m∗)T

i η̂(m∗) + h(m∗)(U (m∗)
i ) + e(m∗)

c,i , (4.2)

where ρ̂(m∗) and η̂(m∗) are the regression coefficient estimators for the linear part, f (m∗)(U (m∗)
i ) and

h(m∗)(U (m∗)
i ) are the estimators for the nonparametric part, and {e(m∗)

t,i , e(m∗)
c,i }

n
i=1 is from N(0, 1). Therefore,

the “true” µi, CATE, is known in this analysis dataset, namely,

µi = X(m∗)T

i ρ̂(m∗) + f (m∗)(U (m∗)
i ) −

[
X(m∗)T

i η̂(m∗) + h(m∗)(U (m∗)
i )

]
.

We randomly selected samples from 20%, 40%, 60%, 80%, and 100% of the dataset to describe the
performance of the proposed CPLJMA and its competitors by MSE, MS Emedian, and the optimal rate
based on 100 replications.

The results are displayed in Table 2. Our approach produced a lower MSE and median and a higher
optimal rate than those of its competitors across all sample sizes considered. As expected, the average
methods based on the information criterion perform better than the model selection methods. To some
extent, our proposal has a clear advantage over its competitors in solving practical problems.
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Table 2. The MSE, Median and the Optimal rate across 100 repetitions under nested models.

n Method AIC BIC SAIC SBIC EW TECV TEEM MAPLM CPLJMA
20% MSE 2.0044 1.9531 1.8427 1.8182 1.9216 1.9145 1.8024 1.8539 1.5563

Median 0.7534 0.7321 0.6935 0.6824 0.7322 0.7035 0.5806 0.6822 0.5255
Optimal rate 0.13 0.04 0.01 0.11 0.05 0.02 0.11 0.13 0.40

40% MSE 1.1867 1.6152 1.0405 1.0329 0.9579 0.9649 0.8924 0.9416 0.8520
Median 0.4276 0.4165 0.3666 0.3624 0.3522 0.3435 0.2892 0.3237 0.2876
Optimal rate 0.13 0.00 0.02 0.07 0.01 0.04 0.15 0.18 0.40

60% MSE 1.0056 0.9915 0.8794 0.8749 0.9020 0.8820 0.8467 0.8835 0.7948
Median 0.3621 0.3549 0.3106 0.3078 0.3243 0.3020 0.2557 0.3069 0.2598
Optimal rate 0.06 0.04 0.02 0.07 0.03 0.04 0.15 0.14 0.45

80% MSE 0.8512 0.8336 0.7542 0.7513 0.7522 0.7500 0.7219 0.7282 0.6955
Median 0.3055 0.2970 0.2600 0.2591 0.2576 0.2479 0.2306 0.2392 0.2272
Optimal rate 0.05 0.00 0.00 0.11 0.02 0.04 0.24 0.16 0.38

100% MSE 0.8357 0.8247 0.7105 0.7082 0.7013 0.7173 0.7669 0.6824 0.6628
Median 0.2997 0.2935 0.2478 0.2465 0.2426 0.2375 0.2667 0.2283 0.2184
Optimal rate 0.06 0.00 0.01 0.03 0.05 0.13 0.01 0.12 0.59

5. Conclusions

Considering the heterogeneity and heteroskedasticity information embedded in the dataset, the
problem of model uncertainty, and the flexibility and interpretability of PLMs, a jackknife-type method
based on the weight selection criterion and its feasible form, called the CPLJMA method, are proposed
for estimating the CATE. Within this context, we consider the optimal model weights chosen by
minimizing the LOO-CV criterion, in which the B-splines approximate the nonparametric function,
and we demonstrate its asymptotic optimality in accordance with a minimization of the approximate
risk with squared error loss. In addition, since the choice of weights is crucial to the model averaging
method, we considered the convergence properties of the weights, that is, when the sample size goes
to infinity and at least one candidate model is correctly specified, the sum of weights obtained by
our approach for the correct candidate models converges to one in probability. In the simulation
section, we examine the finite-sample performance of our estimator and compare it with several other
model selection and averaging methods. We illustrate our method by using a real-world dataset. The
simulation results indicated that our method possessed some advantages relative to its competitors.

There are still many issues worthy of further discussion. First, our proposed CPLJMA method is
valid only for one-dimensional covariates with respect to the nonparametric part, and it can be further
refined and extended to multiple dimensions. Second, the least squares loss used as the loss function in
our analysis is more sensitive to outliers. Thus, quantile regression, which is less sensitive to outliers,
is considered as a loss function because developing the model averaging process and establishing its
asymptotic properties remains challenging; this area deserves future research.
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Supplementary

This Supplementary provides detailed proofs of the main theorems stated in the above.

Lemmas and their proofs

We introduce some lemmas and their proofs before proving the Theorems in Section 3.

Lemma 1. Provided that Conditions (C1)-(C2) hold, we have ‖Zπ̂ − Zπ‖2 = Op(1).

Proof. According to the monotonicity of the Lr-norm and the Holder inequality, we have

max
{
max
1≤i≤n

σ2
i ,max

1≤i≤n
σ2

t,i

}
= max

{
max
1≤i≤n

E(e2
i |Xi,Ui),max

1≤i≤n
E(e2

t,i|Xi,Ui)
}

≤ max
[
max
1≤i≤n
{E(e4G

i |Xi,Ui)}
1

2G ,max
1≤i≤n
{E(e4G

t,i )|Xi,Ui)}
1

2G

]
≤ C̄

almost surely, where the second inequality and the last inequality are attributed to the Holder inequality
and Condition (C2), respectively. Thus, we know that for any ε > 0, there exists an integer Nε such
that P(max1≤i≤n σ

2
i > C̄) ≤ ε/2 for all n ≥ Nε . Let Mε = 2C̄/ε. Then we have

sup
n≥1

P

1
n

n∑
i=1

e2
i > Mε


= sup

n≥1

P

1
n

n∑
i=1

e2
i > Mε ,max

1≤i≤n
σ2

i ≤ C̄

 + P

1
n

n∑
i=1

e2
i > Mε ,max

1≤i≤n
σ2

i > C̄




≤ sup
n≥1

E

I

1
n

n∑
i=1

e2
i > Mε

 I
(
max
1≤i≤n

σ2
i ≤ C̄

) + sup
n≥Nε

P
(
max
1≤i≤n

σ2
i > C̄

)
≤ sup

n≥1
E

E
I

1
n

n∑
i=1

e2
i > Mε

 ∣∣∣∣Xi,Ui

 I
(
max
1≤i≤n

σ2
i ≤ C̄

) +
ε

2

= sup
n≥1

E

P

1
n

n∑
i=1

e2
i > Mε

∣∣∣∣Xi,Ui

 I
(
max
1≤i≤n

σ2
i ≤ C̄

) +
ε

2
.

≤ sup
n≥1

E

M−1
ε E

1
n

n∑
i=1

e2
i

∣∣∣∣Xi,Ui

 I
(
max
1≤i≤n

σ2
i ≤ C̄

) +
ε

2

= sup
n≥1

E

M−1
ε

1
n

n∑
i=1

σ2
i I

(
max
1≤i≤n

σ2
i ≤ C̄

) +
ε

2

≤M−1
ε C̄ +

ε

2
=ε. (5.1)

Thus, we have
1
n

n∑
i=1

e2
i = Op(1). (5.2)
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Similarly, it can be obtained that
1
n

n∑
i=1

e2
t,i = Op(1). (5.3)

By the Cauchy-Schwarz inequality, we obtain

‖Zπ̂ − Zπ‖2

=

n∑
i=1

{
δi

π̂(Xi,Ui)
Yt,i −

1 − δi

1 − π̂(Xi,Ui)
Yc,i −

(
δi

π(Xi,Ui)
Yt,i −

1 − δi

1 − π(Xi,Ui)
Yc,i

)}2

=

n∑
i=1

[{
δi − π̂(Xi,Ui)

π̂(Xi,Ui)(1 − π̂(Xi,Ui))
−

δi − π(Xi,Ui)
π(Xi,Ui)(1 − π(Xi,Ui))

}
Yt,i

+

{
1 − δi

1 − π̂(Xi,Ui)
−

1 − δi

1 − π(Xi,Ui)

}
(Yt,i − Yc,i)

]2

≤c

{√n max
1≤i≤n

∣∣∣∣∣ δi − π̂(Xi,Ui)
π̂(Xi,Ui)(1 − π̂(Xi,Ui))

−
δi − π(Xi,Ui)

π(Xi,Ui)(1 − π(Xi,Ui))

∣∣∣∣∣}2 1
n

n∑
i=1

Y2
t,i

+

{
√

n max
1≤i≤n

∣∣∣∣∣ 1 − δi

1 − π̂(Xi,Ui)
−

1 − δi

1 − π(Xi,Ui)

∣∣∣∣∣}2 1
n

n∑
i=1

(Yt,i − Yc,i)2


≤c

{√n max
1≤i≤n

∣∣∣∣∣ δi − π̂(Xi,Ui)
π̂(Xi,Ui)(1 − π̂(Xi,Ui))

−
δi − π(Xi,Ui)

π(Xi,Ui)(1 − π(Xi,Ui))

∣∣∣∣∣}2 1
n

n∑
i=1

µ2
t,i +

1
n

n∑
i=1

e2
t,i


+

{
√

n max
1≤i≤n

∣∣∣∣∣ 1 − δi

1 − π̂(Xi,Ui)
−

1 − δi

1 − π(Xi,Ui)

∣∣∣∣∣}2 1
n

n∑
i=1

µ2
i +

1
n

n∑
i=1

e2
i


≤

{
√

n max
1≤i≤n

∣∣∣∣∣ δi − π̂(Xi,Ui)
π̂(Xi,Ui)(1 − π̂(Xi,Ui))

−
δi − π(Xi,Ui)

π(Xi,Ui)(1 − π(Xi,Ui))

∣∣∣∣∣}2

Op(1)

+

{
√

n max
1≤i≤n

∣∣∣∣∣ 1 − δi

1 − π̂(Xi,Ui)
−

1 − δi

1 − π(Xi,Ui)

∣∣∣∣∣}2

Op(1),

where the last equation is due to Condition (C2), (5.2) and (5.3). Lemma 1 holds, if we can prove that

√
n max

1≤i≤n

∣∣∣∣∣ δi − π̂(Xi,Ui)
π̂(Xi,Ui)(1 − π̂(Xi,Ui))

−
δi − π(Xi,Ui)

π(Xi,Ui)(1 − π(Xi,Ui))

∣∣∣∣∣ = Op(1), (5.4)

√
n max

1≤i≤n

∣∣∣∣∣ 1 − δi

1 − π̂(Xi,Ui)
−

1 − δi

1 − π(Xi,Ui)

∣∣∣∣∣ = Op(1). (5.5)

By the Taylor expansion, one has

√
n max

1≤i≤n

∣∣∣∣∣ δi − π̂(Xi,Ui)
π̂(Xi,Ui)(1 − π̂(Xi,Ui))

−
δi − π(Xi,Ui)

π(Xi,Ui)(1 − π(Xi,Ui))

∣∣∣∣∣
≤c

{
min
1≤i≤n

π̂(Xi,Ui; θ∗i , κ
∗
i )
}−2 {

1 −max
1≤i≤n

π̂(Xi,Ui; θ∗i , κ
∗
i )
}−2

·max
1≤i≤n

{∥∥∥∥∂π̂(Xi,Ui; θi, κi)
∂θT

∣∣∣∣
θ=θ∗i

∥∥∥∥√n‖θ̂n − θ0‖ +
∥∥∥∥∂π̂(Xi,Ui; θi, κi)

∂κT

∣∣∣∣
κ=κ∗i

∥∥∥∥‖κθ̂n
− κ0‖

}
,
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where θ∗i is a vector between θ̂n and θ0, and κ∗i is a vector between κθ̂n
and κ0. Expanding π̂(Xi,Ui; θ∗i , κ

∗
i )

in a Taylor series and considering the property of π(Xi,Ui), we have

min
1≤i≤n

π̂(Xi,Ui; θ∗i , κ
∗
i ) ≥ cπ −max

1≤i≤n

{∥∥∥∥∂π̂(Xi,Ui; θi, κi)
∂θT

∥∥∥∥
θ=θ∗∗i

‖θ̂n − θ0‖ +
∥∥∥∥∂π̂(Xi,Ui; θi, κi)

∂κT

∥∥∥∥
κ=κ∗∗i

‖κθ̂n
− κ0‖

}
,

1 −max
1≤i≤n

π̂(Xi,Ui; θ∗i , κ
∗
i ) ≥ cπ −max

1≤i≤n

{∥∥∥∥∂π̂(Xi,Ui; θi, κi)
∂θT

∥∥∥∥
θ=θ∗∗i

‖θ̂n − θ0‖ +
∥∥∥∥∂π̂(Xi,Ui; θi, κi)

∂κT

∥∥∥∥
κ=κ∗∗i

‖κθ̂n
− κ0‖

}
,

where θ∗∗i is a vector between θ̂∗i and θ0, and κ∗∗i is a vector between κ̂∗i and κ0. Together with Condition
(C2), this shows that (5.4) is valid. Likewise, we determine that (5.5) is valid. Therefore, the proof of
Lemma 1 is completed. �

Lemma 2. By Condition (10) of Theorem 2.1 in [26], we have

sup
ω∈Hn

∣∣∣∣∣∣ R̃π(ω)
Rπ(ω)

− 1

∣∣∣∣∣∣ a.s.
−→ 0. (5.6)

With Assumption 3, for some integer 1 ≤ G ≤ ∞, there exists

Mnξ̃
−2G
π

Mn∑
m=1

{R̃π(ωo
m)}G

a.s.
−→ 0. (5.7)

Lemma 3. Let ω̃ = argminω∈Hn
{Ln(ω) + an(ω) + bn}, where an(ω) is a term related to ω and bn is a

term unrelated to ω. Let Rn(ω) = E{Ln(ω)|X,U}. If

sup
ω∈Hn

|an(ω)|
Rn(ω)

= op(1), (5.8)

sup
ω∈Hn

|Rn(ω) − Ln(ω)|
Rn(ω)

= op(1), (5.9)

and there exists a constant c and a positive integer N∗ so that when n ≥ N∗, infω∈Hn Rn(ω) ≥ c > 0
almost surely, then Ln(ω̃)/ infω∈Hn Ln(ω)→ 1 in probability.

Lemma 4. For any n1 × n2 matrices B1 and B2,

λmax{B1B2} ≤ λmax{B1}λmax{B2}, λmax{B1 + B2} ≤ λmax{B1} + λmax{B2}.

Theorems and theirs proofs

Proof of Theorem 1:

λmax(·) is denoted as the largest singular value of a matrix. From Condition (C2), we have

λmax(Ωπ) = O(1). (5.10)

By the definition of Rπ(ω), it can be shown that

Rπ(ω) = ‖A(ω)µ‖2 + tr{P(ω)ΩπP(ω)T}, (5.11)

AIMS Mathematics Volume 9, Issue 6, 16392–16421.



16412

where A(ω) = In − P(ω). Define the loss function of µ̃π(ω) as L̃π(ω) = ‖µ − µ̃π(ω)‖2 and its
corresponding risk function as R̃π(ω) = E{L̃π(ω)|X,U}. Similarly, we have R̃π(ω) = ‖Ã(ω)µ‖2 +

tr{P̃(ω)ΩπP̃(ω)T} in which Ã(ω) = In − P̃(ω). Define

Vπ(ω) = ‖A(ω)µ‖2 + tr{P(ω)ΩπP(ω)T} and Ṽπ(ω) = ‖Ã(ω)µ‖2 + tr{P̃(ω)ΩπP̃(ω)T}.

Then we have

Lπ̂(ω̂cv)
infω∈Hn Lπ̂(ω)

− 1 = sup
ω∈Hn

{
Lπ̂(ω̂cv)
Lπ̂(ω)

− 1
}

= sup
ω∈Hn

{
Lπ̂(ω̂cv)
Vπ(ω̂cv)

Vπ(ω̂cv)
Ṽπ(ω̂cv)

Ṽπ(ω̂cv)
L̃π(ω̂cv)

L̃π(ω̂cv)
L̃π(ω)

L̃π(ω)
R̃π(ω)

R̃π(ω)
Rπ(ω)

Rπ(ω)
Lπ̂(ω)

− 1
}

≤ sup
ω∈Hn

(
Lπ̂(ω)
Rπ(ω)

)
sup
ω∈Hn

(
Rπ(ω)
R̃π(ω)

)
sup
ω∈Hn

(
R̃π(ω)
L̃π(ω)

)
sup
ω∈Hn

(
L̃π(ω)
R̃π(ω)

)
× sup
ω∈Hn

(
R̃π(ω)
Rπ(ω)

)
sup
ω∈Hn

(
Rπ(ω)
Lπ̂(ω)

)
L̃π(ω̂cv)

infω∈Hn L̃π(ω)
− 1.

Thus, to prove Theorem 1, it suffices to hold that

sup
ω∈Hn

∣∣∣∣∣∣ R̃π(ω)
Rπ(ω)

− 1

∣∣∣∣∣∣ = op(1), (5.12)

sup
ω∈Hn

∣∣∣∣∣∣ L̃π(ω)
R̃π(ω)

− 1

∣∣∣∣∣∣ = op(1), (5.13)

sup
ω∈Hn

∣∣∣∣∣Lπ̂(ω)
Rπ(ω)

− 1
∣∣∣∣∣ = op(1), (5.14)

L̃π(ω̂cv)
infω∈Hn L̃π(ω)

− 1 = op(1). (5.15)

We can obtain (5.12) in Lemma 2, which implies that (5.12) is valid.
For (5.13), it is noted that∣∣∣∣L̃π(ω) − R̃π(ω)

∣∣∣∣ =
∣∣∣∣‖µ − µ̃π(ω)‖2 − ‖Ã(ω)µ‖2 − tr

{
P̃(ω)ΩπP̃(ω)T

} ∣∣∣∣
=
∣∣∣∣‖P̃(ω)eπ‖2 − tr

{
P̃(ω)ΩπP̃(ω)T

}
− 2µTÃT(ω)P̃(ω)eπ

∣∣∣∣.
Hence, for (5.13) to hold, it suffices to show that

sup
ω∈Hn

∣∣∣∣‖P̃(ω)eπ‖2 − tr
{
P̃(ω)ΩπP̃(ω)T

} ∣∣∣∣
R̃π(ω)

= op(1), (5.16)

sup
ω∈Hn

∣∣∣∣µTÃT(ω)P̃(ω)eπ
∣∣∣∣

R̃π(ω)
= op(1). (5.17)

In addition, according to Lemma 4 and the property of P(m), we have

λmax{P(m)} = λmax{Q + X̃(m)(X̃(m)T
X̃(m))−1X̃(m)T

}
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≤ λmax{Q} + λmax{X̃(m)(X̃(m)T
X̃(m))−1X̃(m)T

}

≤ 2. (5.18)

Note that
P̃(m) = P(m) − D(m)A(m), (5.19)

which, along with (5.18) and the first term of Condition (C4), leads us to

λmax{P̃(ω)} ≤
Mn∑

m=1

ωm[λmax{P(m)} + λmax{−D(m)A(m)}]

≤

Mn∑
m=1

ωm[2 + λmax{−D(m)}λmax{A(m)}]

≤

Mn∑
m=1

ωm

[
2 + max

1≤i≤n

hm,ii

1 − hm,ii

]
=1 + (1 − h̄)−1

=O(1). (5.20)

To prove (5.16), it is necessary only to verify that, for any δ > 0,

Pr

{
sup
ω∈Hn

∣∣∣∣‖P̃(ω)eπ‖2 − tr
{
P̃(ω)ΩπP̃(ω)T

} ∣∣∣∣/R̃π(ω) > δ
∣∣∣∣X,U}

≤Pr

 sup
ω∈Hn

Mn∑
m=1

Mn∑
s=1

ωmωs

∣∣∣∣eT
π P̃T

(m)P̃(s)eπ − tr
{
ΩπP̃T

(s)P̃(m)

} ∣∣∣∣ > δξ̃π∣∣∣∣X,U
≤Pr

{
max

1≤m≤Mn
max

1≤s≤Mn

∣∣∣∣eT
π P̃T

(m)P̃(s)eπ − tr
{
ΩπP̃T

(s)P̃(m)

} ∣∣∣∣ > δξ̃π∣∣∣∣X,U}
≤

Mn∑
m=1

Mn∑
s=1

Pr

{∣∣∣∣eT
π P̃T

(m)P̃(s)eπ − tr
{
ΩπP̃T

(s)P̃(m)

}∣∣∣∣ > δξ̃π∣∣∣∣X,U}
≤C1δ

−2Gξ̃−2G
π

Mn∑
m=1

Mn∑
s=1

E
{∣∣∣eT

πΩ
−1/2
π Ω1/2

π P̃(ωo
m)TP̃(ωo

s)Ω
1/2
π Ω

−1/2
π eπ

− tr
{
ΩπP̃(ωo

s)
TP̃(ωo

m)
}∣∣∣∣2G ∣∣∣∣X,U}

≤C1δ
−2Gξ̃−2G

π λG
max(Ωπ)

Mn∑
m=1

Mn∑
s=1

∣∣∣∣tr {P̃(ωo
m)TP̃(ωo

s)ΩπP̃(ωo
s)

TP̃(ωo
m)

}∣∣∣∣G
≤C1δ

−2GλG
max(Ωπ)λ2G

max[P̃(ωo
s)]ξ̃

−2G
π

Mn∑
m=1

∣∣∣∣tr {P̃(ωo
m)TΩπP̃(ωo

m)
}∣∣∣∣G

≤C1δ
−2GλG

max(Ωπ)λ2G
max[P̃(ωo

s)]Mnξ̃
−2G
π

Mn∑
m=1

{R̃π(ωo
m)}G → 0, as n→ ∞,

where C1 is a positive constant. The third inequality, fourth inequality, and fifth inequality are derived
from the triangle inequality, Markov’s inequality and (7) of Theorem 2 of [23], respectively. The
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sixth line follows from inequality tr(B1B2) ≤ λmax(B1) tr(B2), and the last inequality is contributed
to tr

{
P̃(ωo

m)TΩπP̃(ωo
m)

}
≤ R̃π(ωo

m). The last inequality is guaranteed by Lemma 2, (5.10), and (5.20).
Thus, (5.16) is valid.

By similar arguments, for (5.17), we obtain that

Pr

{
sup
ω∈Hn

∣∣∣µTÃT(ω)P̃(ω)eπ
∣∣∣ /R̃π(ω) > δ

∣∣∣∣X,U}
≤

Mn∑
m=1

Mn∑
s=1

Pr

{∣∣∣µTÃT(ωo
m)P̃(ωo

s)eπ
∣∣∣ > δξ̃π∣∣∣∣X,U}

≤δ−2Gξ̃−2G
π

Mn∑
m=1

Mn∑
s=1

E
{∣∣∣µTÃT(ωo

m)P̃(ωo
s)eπ

∣∣∣2G
∣∣∣∣X,U}

≤C2δ
−2Gξ̃−2G

π

Mn∑
m=1

Mn∑
s=1

∣∣∣P̃(ωo
s)Ω

1/2
π Ã(ωo

m)µ
∣∣∣2G

≤C2δ
−2Gξ̃−2G

π Mnλ
G
max(Ωπ)λ2G

max[P̃(ωo
s)]

Mn∑
m=1

∣∣∣Ã(ωo
m)µ

∣∣∣2G

≤C2δ
−2GλG

max(Ωπ)λ2G
max[P̃(ωo

s)]Mnξ̃
−2G
π

Mn∑
m=1

{R̃π(ωo
m)}G → 0, as n→ ∞,

where C2 is a positive constant, and the last inequality is due to the fact that
∥∥∥Ã(ωo

m)µ
∥∥∥2
≤ R̃π(ωo

m),
which is implied by (5.11). Thus, (5.17) is valid. This completes the proof of (5.13).

By the Cauchy-Schwarz inequality, it can be shown that∣∣∣∣∣Lπ̂(ω)
Rπ(ω)

− 1
∣∣∣∣∣ ≤ ∣∣∣∣∣Lπ(ω)

Rπ(ω)
− 1

∣∣∣∣∣ +
2{Lπ(ω)}1/2‖µ̂π(ω) − µ̂π̂(ω)‖

Rπ(ω)
+
‖µ̂π(ω) − µ̂π̂(ω)‖2

Rπ(ω)
.

Thus, to prove (5.14), it suffices to show that

sup
ω∈Hn

∣∣∣∣∣Lπ(ω)
Rπ(ω)

− 1
∣∣∣∣∣ = op(1), (5.21)

sup
ω∈Hn

‖µ̂π(ω) − µ̂π̂(ω)‖2

Rπ(ω)
= op(1). (5.22)

Similarly, using the technique used in deriving (5.13), it can be shown that (5.21) is valid. By
Lemma 1, Lemma 4, Condition (C3), and (5.18), we have

sup
ω∈Hn

‖µ̂π(ω) − µ̂π̂(ω)‖2

Rπ(ω)
= sup
ω∈Hn

‖P(ω)Zπ̂ − Zπ‖
2

Rπ(ω)

≤ξ−1
π sup

ω∈Hn

λ2
max{P(ω)}‖Zπ̂ − Zπ‖

2

≤4ξ−1
π ‖Zπ̂ − Zπ‖

2 → 0, as n→ ∞.

As a result, (5.21) and (5.22) are valid, and thus (5.14) is valid.
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By the jackknife criterion in (2.2), straightforward and careful calculation yields

CVπ̂(ω) = ‖Zπ̂ − µ̃π̂(ω)‖2

= ‖Zπ̂ − µ + µ − µ̃π(ω) + µ̃π(ω) − µ̃π̂(ω)‖2

= L̃π(ω) + ãn(ω) + ‖Zπ̂ − µ‖
2, (5.23)

where the term ‖Zπ̂ − µ‖
2 is independent of ω, and

ãn(ω) =‖µ̃π(ω) − µ̃π̂(ω)‖2 + 2{µ − µ̃π(ω)}T{µ̃π(ω) − µ̃π̂(ω)} + 2(Zπ̂ − Zπ)T{µ − µ̃π(ω)}
+ 2(Zπ̂ − Zπ)T{µ̃π(ω) − µ̃π̂(ω)} + 2eT

πÃ(ω)µ − 2eT
π P̃(ω)eπ + 2eT

π P̃(ω)(Zπ − Zπ̂).

Thus, for (5.23) to hold, it only needs to verify that, as n→ ∞,

sup
ω∈Hn

|ãn(ω)|
R̃π(ω)

= op(1). (5.24)

Using the Cauchy-Schwarz inequality, Lemma 4 and (5.20), we obtain that

|ãn(ω)| = ‖µ̃π(ω) − µ̃π̂(ω)‖2 + 2{L̃π(ω)}
1
2 ‖µ̃π(ω) − µ̃π̂(ω)‖ + 2(Zπ̂ − Zπ)T{L̃π(ω)}

1
2

+ 2(Zπ̂ − Zπ)T‖µ̃π(ω) − µ̃π̂(ω)‖ + 2|eT
πÃ(ω)µ|

− 2|eT
π P̃(ω)eπ| + 2‖P̃(ω)Teπ‖(Zπ − Zπ̂), (5.25)

where
‖µ̃π(ω) − µ̃π̂(ω)‖2 = ‖P̃(ω)(Zπ̂ − Zπ)‖2 ≤ [λmax{P̃(ω)}]2‖Zπ̂ − Zπ‖

2 = Op(1).

Therefore, for (5.24) to hold, it suffices to prove that

sup
ω∈Hn

∣∣∣µTÃT(ω)eπ
∣∣∣

R̃π(ω)
= op(1), (5.26)

sup
ω∈Hn

∣∣∣eT
π P̃(ω)eπ

∣∣∣
R̃π(ω)

= op(1), (5.27)

sup
ω∈Hn

∥∥∥P̃(ω)Teπ
∥∥∥

R̃π(ω)
= op(1). (5.28)

Likewise, the technique is applied to derive (5.17). For any δ > 0, we have

Pr

{
sup
ω∈Hn

∣∣∣µTÃT(ω)eπ
∣∣∣ /R̃π(ω) > δ

∣∣∣∣X,U}
≤

Mn∑
m=1

Pr

{∣∣∣µTÃT(ωo
m)eπ

∣∣∣ > δξ̃π∣∣∣∣X,U}
≤δ−2Gξ̃−2G

π

Mn∑
m=1

E
{∣∣∣µTÃT(ωo

m)eπ
∣∣∣2G

∣∣∣∣X,U}
AIMS Mathematics Volume 9, Issue 6, 16392–16421.
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≤C3δ
−2Gξ̃−2G

π

Mn∑
m=1

∣∣∣Ω1/2
π Ã(ωo

m)µ
∣∣∣2G

≤C3δ
−2Gξ̃−2G

π λG
max(Ωπ)

Mn∑
m=1

∣∣∣Ã(ωo
m)µ

∣∣∣2G

≤C3δ
−2GλG

max(Ωπ)ξ̃−2G
π

Mn∑
m=1

{R̃π(ωo
m)}G → 0, as n→ ∞,

where C3 is a positive constant. By Conditions (C2) and (C3) and (5.10), we know that (5.26) is valid.
It can be observed that∣∣∣eT

π P̃(ω)eπ
∣∣∣ ≤ ∣∣∣∣eT

π P̃(ω)eπ − tr
(
P̃(ω)Ωπ

)∣∣∣∣ + tr
(
P̃(ω)Ωπ

)
.

Therefore, (5.27) holds if we can prove that

sup
ω∈Hn

∣∣∣∣eT
π P̃(ω)eπ − tr

(
P̃(ω)Ωπ

)∣∣∣∣
R̃π(ω)

= op(1), (5.29)

sup
ω∈Hn

∣∣∣∣tr (P̃(ω)Ωπ

)∣∣∣∣
R̃π(ω)

= op(1). (5.30)

Similar to (5.26), it can be shown that

Pr

{
sup
ω∈Hn

∣∣∣∣eT
π P̃(ω)eπ − tr

(
P̃(ω)Ωπ

)∣∣∣∣ /R̃π(ω) > δ
∣∣∣∣X,U}

≤

Mn∑
m=1

Pr

{∣∣∣∣eT
π P̃(ωo

m)eπ − tr
(
P̃(ωo

m)Ωπ

)∣∣∣∣ > δξ̃π∣∣∣∣X,U}
≤δ−2Gξ̃−2G

π

Mn∑
m=1

E
{∣∣∣∣eT

πΩ
−1/2
π Ω1/2

π P̃(ωo
m)TΩ1/2

π Ω
−1/2
π eπ − tr

{
ΩπP̃(ωo

m)
}∣∣∣∣2G ∣∣∣∣X,U}

≤C4δ
−2Gξ̃−2G

π λG
max(Ωπ)

Mn∑
m=1

(
tr

{
P̃(ωo

m)TΩπP̃(ωo
m)

})G

≤C4δ
−2GλG

max(Ωπ)ξ̃−2G
π

Mn∑
m=1

{R̃π(ωo
m)}G → 0, as n→ ∞,

where C4 is a positive constant. As a result, (5.29) is valid.
By (5.10), Condition (C4), and the fact that all the diagonal elements of P̃(m) are zeros, it is observed

that

sup
ω∈Hn

∣∣∣∣tr (P̃(ω)Ωπ

)∣∣∣∣ /R̃π(ω) ≤ξ̃−1
π max

1≤m≤Mn

∣∣∣∣tr (P̃(m)Ωπ

)∣∣∣∣
≤ξ̃−1

π max
1≤m≤Mn

∣∣∣∣λmax(Ωπ) tr
(
P̃(m)

)∣∣∣∣
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≤ξ̃−1
π λmax(Ωπ) max

1≤m≤Mn
tr

(
P̃(m)

)
→ 0, as n→ ∞.

Thus, (5.30) is valid.
Similarly, for (5.28), we have that∥∥∥P̃(ω)Teπ

∥∥∥2
≤

∣∣∣∣eT
π P̃(ω)TP̃(ω)eπ − tr

{
P̃(ω)TΩπP̃(ω)

}∣∣∣∣ + tr
{
P̃(ω)TΩπP̃(ω)

}
.

Then, for (5.28) to hold, we only need to prove

sup
ω∈Hn

∣∣∣∣eT
π P̃(ω)TP̃(ω)eπ − tr

{
P̃(ω)TΩπP̃(ω)

}∣∣∣∣{
R̃π(ω)

}2 = op(1), (5.31)

sup
ω∈Hn

∣∣∣∣tr {P̃(ω)TΩπP̃(ω)
}∣∣∣∣{

R̃π(ω)
}2 = op(1). (5.32)

By the proof of (5.16), it can be shown that (5.31) is valid. Letting S(m) = D(m) + In, this together
with (5.19) generates

tr
{
P̃(m)T

P̃(m)
}

= tr
{[

P(m) − D(m)A(m)
]

P̃(m)
}

= tr
{[

(P(m) − In)S(m) + In

]
P̃(m)

}
= tr

{
P(m)S(m)P̃m

}
− tr

{
S(m)P̃(m)

}
= tr

{
P(m)S(m)S(m)(P(m) − In)

}
+ tr

{
P(m)S(m)

}
≤ tr

{
P(m)S(m)S(m)P(m)

}
+ tr

{
P(m)S(m)

}
≤ tr

{
P(m)(1 − h̄)−2

}
+ tr

{
P(m)(1 − h̄)−1

}
=(dn + km)(1 − h̄)−2(2 − h̄), (5.33)

where

tr
{
P(m)

}
= tr

{
Q + X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T}
= tr {Q} + tr

{
X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T}
= dn + km,

tr
{
P̃(m)

}
= 0.

Under Lemma 2 and the second part of Condition (C4), we have

ξ̃−2
π (d̄ + k̄) = ξ−2

π (d̄ + k̄)ξ2
πξ̃
−2
π ≤ ξ

−2
π (d̄ + k̄)

{
sup
ω∈Hn

∣∣∣∣∣∣Rπ(ω)
R̃π(ω)

− 1

∣∣∣∣∣∣ + 1
}2

a.s.
−→ 0.

where ξ̃π = infω∈Hn R̃(ω). Which, along with (5.10) and (5.33), implies that

sup
ω∈Hn

∣∣∣∣tr {P̃(ω)TΩπP̃(ω)
}∣∣∣∣ / {R̃π(ω)

}2
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≤ξ̃−2
π sup

ω∈Hn

∣∣∣∣∣∣∣λmax(Ωπ)
Mn∑

m=1

Mn∑
s=1

ωmωs tr
{
P̃(m)T

P̃(s)
}∣∣∣∣∣∣∣

≤λmax(Ωπ)ξ̃−2
π (d̄ + k̄)(1 − h̄)−2(2 − h̄)→ 0, as n→ ∞,

and thus (5.32) is valid. In conclusion, the proof of Theorem 1 is completed. �

Proof of Theorem 2:

Define ψn(ω) = Zπ̂ − Zπ + µ̂π(ω) − µ̃π(ω) + µ̃π(ω) − µ̃π̂(ω). A simple calculation yields

CVπ̂(ω̂cv) =‖Zπ̂ − µ̃π̂(ωcv)‖2

=‖Zπ̂ − Zπ + Zπ − µ̂π(ω̂cv) + µ̂π(ω̂cv) − µ̃π(ω̂cv) + µ̃π(ω̂cv) − µ̃π̂(ω̂cv)‖2

=‖µ − µ̂π(ω̂cv) + eπ + ψn(ω̂cv)‖2

=

∥∥∥∥∥∥∥ŝcv

m0∑
m=1

ω̂cv,m

ŝcv
{µ − µ̂(m)

π } + (1 − ŝcv)
Mn∑

m=m0+1

ω̂cv,m

1 − ŝcv
{µ − µ̂(m)

π } + eπ + ψn(ω̂cv)

∥∥∥∥∥∥∥
2

=
∥∥∥ŝcv{µ − µ̂(ω̂C)} + (1 − ŝcv){µ − µ̂(ω̂F)} + eπ + ψn(ω̂cv)

∥∥∥2
, (5.34)

where ω̂C = (ω̂cv,1, . . . , ω̂cv,m0 , 0, . . . , 0)/ŝcv ∈ Hn and ω̂F = (0, . . . , 0, ω̂cv,m0+1, . . . , ω̂cv,Mn)/(1 − ŝcv) ∈
Hn. Likewise, we obtain that

CVπ̂(ω̂C) =‖Zπ̂ − Zπ + Zπ − µ̂π(ω̂C) + µ̂π(ω̂C) − µ̃π(ω̂C) + µ̃π(ω̂C) − µ̃π̂(ω̂C)‖2

=‖µ − µ̂π(ω̂C) + eπ + ψn(ω̂C)‖2. (5.35)

We know that CVπ̂(ω̂cv) ≤ CVπ̂(ω̂C), which with (5.34), (5.35), and the Cauchy-Schwarz inequality,
implies that

(1 − ŝcv)2 ≤
[
(1 − ŝ2

cv)‖µ − µ̂π(ω̂C)‖2 + ‖ψn(ω̂C)‖2 + 2eT
π[{µ − µ̂π(ω̂C)} + ψn(ω̂C)]

+ 2{µ − µ̂π(ω̂C)}Tψn(ω̂C) + 2[ŝcv{µ − µ̂π(ω̂C)} + ψn(ω̂cv)]T{µ − µ̂π(ω̂F)}
+ ‖ψn(ω̂cv)‖2 + 2eT

π {µ − µ̂π(ω̂F)} + 2eT
π[ŝcv{µ − µ̂π(ω̂C)} + ψn(ω̂cv)]

+ 2ŝcv{µ − µ̂π(ω̂C)}Tψn(ω̂cv)
]
/‖µ − µ̂π(ω̂F)‖

≤

[
2‖µ − µ̂π(ω̂C)‖2 + 2 sup

ω∈Hn

‖ψn(ω)‖2 + 4
∣∣∣eT
π {µ − µ̂π(ω̂C)}

∣∣∣ + 4‖eπ‖ sup
ω∈Hn

‖ψn(ω)‖

+ 4‖µ − µ̂π(ω̂C)‖ sup
ω∈Hn

‖ψn(ω)‖ + 2
{
‖µ − µ̂π(ω̂C)‖ + sup

ω∈Hn

‖ψn(ω)‖
}
‖µ − µ̂π(ω̂F)‖

+ 2eT
πA(ω̂F)µ − 2eT

πP(ω̂F)eπ
] 1

Rπ(ω̂F)
Rπ(ω̂F)
Lπ(ω̂F)

≤

[{
2‖µ − µ̂π(ω̂C)‖2 + 2 sup

ω∈Hn

‖ψn(ω)‖2 + 4
∣∣∣eT
π {µ − µ̂π(ω̂C)}

∣∣∣ + 4‖eπ‖ sup
ω∈Hn

‖ψn(ω)‖

+ 4‖µ − µ̂π(ω̂C)‖ sup
ω∈Hn

‖ψn(ω)‖
}
ξ−1
π,F + 2

|eT
πA(ω̂F)µ|
Rπ(ω̂F)

+ 2
eT
πP(ω̂F)eπ
Rπ(ω̂F)
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+ 2
{
‖µ − µ̂π(ω̂C)‖ + sup

ω∈Hn

‖ψn(ω)‖
}{

Lπ(ω̂F)
Rπ(ω̂F)

}1/2

ξ−1/2
π,F

 sup
ω∈HF

[∣∣∣∣∣Lπ(ω)
Rπ(ω)

− 1
∣∣∣∣∣ + 1

]
≤

[{
2‖µ − µ̂π(ω̂C)‖2 + 2 sup

ω∈Hn

‖ψn(ω)‖2 + 4
∣∣∣eT
π {µ − µ̂π(ω̂C)}

∣∣∣ + 4‖eπ‖ sup
ω∈Hn

‖ψn(ω)‖

+ 4‖µ − µ̂π(ω̂C)‖ sup
ω∈Hn

‖ψn(ω)‖
}
ξ−1
π,F + 2 sup

ω∈HF

|eT
πA(ω)µ|
Rπ(ω)

+ 2 sup
ω∈HF

eT
πP(ω)eπ
Rπ(ω)

+ 2ξ−1/2
π,F

{
‖µ − µ̂π(ω̂C)‖ + sup

ω∈Hn

‖ψn(ω)‖
}{

sup
ω∈HF

∣∣∣∣∣Lπ(ω)
Rπ(ω)

− 1
∣∣∣∣∣ + 1

}1/2
× sup
ω∈HF

{∣∣∣∣∣Lπ(ω)
Rπ(ω)

− 1
∣∣∣∣∣ + 1

}
.

Condition (C6) indicates that to prove Theorem 2, it suffices to show

ξ−1
π,F‖µ − µ̂π(ω̂C)‖2 = op(1), (5.36)

ξ−1
π,F

∣∣∣eT
π {µ − µ̂π(ω̂C)}

∣∣∣ = op(1), (5.37)
sup
ω∈Hn

‖ψn(ω)‖2 = Op(1), (5.38)

ξ−2
π,F‖eπ‖

2 = op(1), (5.39)

sup
ω∈HF

∣∣∣∣∣Lπ(ω)
Rπ(ω)

− 1
∣∣∣∣∣ = op(1), (5.40)

sup
ω∈HF

|eT
πA(ω)µ|
Rπ(ω)

= op(1), (5.41)

sup
ω∈HF

eT
πP(ω)eπ
Rπ(ω)

= op(1). (5.42)

For the correct model with m = 1, 2, . . . ,m0, we have

P(m)µ =
{
Q + X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T} {
Q + X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T}
Zπ

=
{
Q + 2QX̃(m)(X̃(m)T

X̃(m))−1X̃(m)T

+X̃(m)(X̃(m)T
X̃(m))−1X̃(m)T

X̃(m)(X̃(m)T
X̃(m))−1X̃(m)T}

Zπ

=
{
Q + X̃(m)(X̃(m)T

X̃(m))−1X̃(m)T}
Zπ

= µ,

where QX̃(m) = Q(I −Q)X(m) = 0. This implies that

‖µ − µ̂π(ω̂C)‖2 =

∥∥∥∥∥∥∥
m0∑

m=1

ω̂cv,m

ŝcv
{µ − P(m)Zπ}

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
m0∑

m=1

ω̂cv,m

ŝcv
P(m)eπ

∥∥∥∥∥∥∥
2
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≤
1
2

m0∑
m=1

ω̂cv,m

ŝcv

m0∑
t=1

ω̂cv,s

ŝcv

(
eT
πP(m)P(m)eπ + eT

πP(s)P(s)eπ
)

=

m0∑
m=1

ω̂cv,m

ŝcv
eT
πP(m)P(m)eπ

≤ max
1≤m≤m0

eT
πP(m)eπ.

Thus, for (5.36) to hold, we need to make

ξ−1
π,F max

1≤m≤m0
eT
πP(m)eπ = op(1). (5.43)

By Markov’s inequality, for any δ > 0, we have

sup
n≥1

P
(

max
1≤m≤m0

eT
πP(m)eπ > δ

)
≤ sup

n≥1

m0∑
m=1

P
(
eT
πP(m)eπ > δ

)
= sup

n≥1

m0∑
m=1

E
[
E

{
I
(
eT
πP(m)eπ > δ

) ∣∣∣∣X,U}]
= sup

n≥1

m0∑
m=1

E
{
P

(
eT
πP(m)eπ > δ

∣∣∣∣X,U)}
≤ sup

n≥1

m0∑
m=1

E
[
δ−2GE

{(
eT
πP(m)eπ

)2G ∣∣∣∣X,U}]
≤ sup

n≥1

m0∑
m=1

E
{
δ−2G tr

{
P(m)Ωπ

}2G
}

≤δ−2Gλ2G
max(Ω)m0(d̄ + k̄)2G,

which is op(1) under Condition (C6), implying that (5.43) is valid and thus guarantees that (5.36) is
valid.

Indeed, (5.37) is further simplified to the following form:

∣∣∣eT
π {µ − µ̂π(ω̂C)}

∣∣∣ =

∣∣∣∣∣∣∣
m0∑

m=1

ω̂cv,m

ŝcv
eT
πP(m)eπ

∣∣∣∣∣∣∣ ≤ max
1≤m≤m0

eT
πP(m)eπ.

Thus, by the proof of (5.43), it can be shown that (5.37) is valid.
For (5.38), one can obtain that

sup
ω∈Hn

‖ψn(ω)‖2 = sup
ω∈Hn

‖Zπ̂ − Zπ + µ̂π(ω) − µ̃π(ω) + µ̃π(ω) − µ̃π̂(ω)‖2

≤2 sup
ω∈Hn

{
‖Zπ̂ − Zπ‖

2 + ‖µ̂π(ω) − µ̃π(ω)‖2 + ‖µ̃π(ω) − µ̃π̂(ω)‖2
}

≤2{1 + (1 − h̄)−2}‖Zπ̂ − Zπ‖
2 + 2 sup

ω∈Hn

‖µ̂π(ω) − µ̃π(ω)‖2

=Op(1) + 2 sup
ω∈Hn

‖µ̂π(ω) − µ̃π(ω)‖2, (5.44)
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where the third step is derived from the Cauchy-Schwarz inequality and (5.25), and the last step is
obtained from Lemma 2 and Condition (C7). Therefore, (5.44) holds if we can prove that

sup
ω∈Hn

‖µ̂π(ω) − µ̃π(ω)‖2 = op(1). (5.45)

By (5.19), Lemma 4, and the Cauchy-Shwarz inequality, we have

sup
ω∈Hn

‖µ̂π(ω) − µ̃π(ω)‖2 = sup
ω∈Hn

∥∥∥P(ω)Zπ − P̃(ω)Zπ

∥∥∥2

= sup
ω∈Hn

∥∥∥∥∥∥∥
Mn∑

m=1

ωmD(m)A(m)Zπ

∥∥∥∥∥∥∥
2

≤
1
2

sup
ω∈Hn

Mn∑
m=1

Mn∑
s=1

ωmωs

(
ZT
πA(m)D(m)D(m)A(m)Zπ

+ZT
πA(s)D(s)D(s)A(s)Zπ

)
(5.46)

≤ sup
ω∈Hn

Mn∑
m=1

Mn∑
s=1

ωmωsλmax{A(m)D(m)D(s)A(s)}ZT
πZπ

≤ 2(1 − h̄)−2h̄2n
(
1
n
µTµ +

1
n

eT
πeπ

)
, (5.47)

where λmax(A) = −1. This, along with Condition (C2), Condition (C4), and (5.46), implies that, to
prove (5.44), it only suffices to prove

1
n

eT
πeπ = Op(1). (5.48)

Likewise, we use the same technique used in Lemma 1 in deriving (5.48). Thus, it is valid and
obtaining (5.38) is valid. Based on (5.48) and Condition (3), we know that (5.39) is valid.

Under Conditions (C6) and (C7), it is observed that

(Mn − m0)ξ−2G
π,F

Mn−m0∑
m=m0

{Rπ(ωo
m)}G → 0, h̄→ 0, (d̄ + k̄)ξ−2

F,π → 0, a.s.

This result implies that Conditions (C3) and (C4) are satisfied for {Zπ,i, Xi,Ui}
n
i=1 with ω ∈ HF .

Therefore, it is analogous to (5.13), and we directly obtain that (5.40)–(5.42) are valid. Above all,
this completes the proof of Theorem 2. �
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