This paper presents novel criteria for investigating the oscillatory behavior of even-order neutral differential equations. By employing a comparative approach, we established the oscillation properties of the studied equation through comparisons with well-understood first-order equations with known oscillatory behavior. The findings of this study introduce fresh perspectives and enrich the existing body of oscillation criteria found in the literature. To illustrate the practical application of our results, we provide an illustrative example.
Citation: Shaimaa Elsaeed, Osama Moaaz, Kottakkaran S. Nisar, Mohammed Zakarya, Elmetwally M. Elabbasy. Sufficient criteria for oscillation of even-order neutral differential equations with distributed deviating arguments[J]. AIMS Mathematics, 2024, 9(6): 15996-16014. doi: 10.3934/math.2024775
This paper presents novel criteria for investigating the oscillatory behavior of even-order neutral differential equations. By employing a comparative approach, we established the oscillation properties of the studied equation through comparisons with well-understood first-order equations with known oscillatory behavior. The findings of this study introduce fresh perspectives and enrich the existing body of oscillation criteria found in the literature. To illustrate the practical application of our results, we provide an illustrative example.
[1] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Springer Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9401-1 |
[2] | J. K. Hale, Theory of functional differential equations, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2 |
[3] | C. Huang, B. Liu, C. Qian, J. Cao, Stability on positive pseudo almost periodic solutions of HPDCNNs incorporating $D$ operator, Math. Comput. Simul., 190 (2021), 1150–1163. https://doi.org/10.1016/j.matcom.2021.06.027 doi: 10.1016/j.matcom.2021.06.027 |
[4] | X. Zhao, C. Huang, B. Liu, J. Cao, Stability analysis of delay patch-constructed Nicholson's blowflies system, Math. Comput. Simul., 2023. https://doi.org/10.1016/j.matcom.2023.09.012 |
[5] | C. Huang, X. Ding, Dynamics of the diffusive Nicholson's blowflies equation with two distinct distributed delays, Appl. Math. Lett., 145 (2023), 108741. https://doi.org/10.1016/j.aml.2023.108741 doi: 10.1016/j.aml.2023.108741 |
[6] | C. Huang, B. Liu, Traveling wave fronts for a diffusive Nicholson's Blowflies equation accompanying mature delay and feedback delay, Appl. Math. Lett., 134 (2022), 108321. https://doi.org/10.1016/j.aml.2022.108321 doi: 10.1016/j.aml.2022.108321 |
[7] | W. E. Boyce, R. C. DiPrima, D. B. Meade, Elementary differential equations, John Wiley & Sons, 2017. |
[8] | M. W. Hirsch, S. Smale, R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Academic press, 2012. |
[9] | G. F. Simmons, Differential equations with applications and historical notes, CRC Press, 2016. |
[10] | D. G. Zill, Differential equations with boundary-value problems, Cengage Learning, 2016. |
[11] | O. Moaaz, C. Park, A. Muhib, O. Bazighifan, Oscillation criteria for a class of even-order neutral delay differential equations, J. Appl. Math. Comput., 63 (2020), 607–617. https://doi.org/10.1007/s12190-020-01331-w doi: 10.1007/s12190-020-01331-w |
[12] | O. Bazighifan, O. Moaaz, R. A. El-Nabulsi, A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry, 12 (2020), 1248. https://doi.org/10.3390/sym12081248 doi: 10.3390/sym12081248 |
[13] | O. Moaaz, R. A. El-Nabulsi, W. Muhsin, O. Bazighifan, Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments, Mathematics, 8 (2020), 849. https://doi.org/10.3390/math8050849 doi: 10.3390/math8050849 |
[14] | H. Salah, O. Moaaz, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy, Optimizing the monotonic properties of fourth-order neutral differential equations and their applications, Symmetry, 15 (2023), 1744. https://doi.org/10.3390/sym15091744 doi: 10.3390/sym15091744 |
[15] | C. H. Ou, J. S. W. Wong, Oscillation and non-oscillation theorems for superlinear Emden-Fowler equations of the fourth order, Ann. Mat. Pura Appl. IV. Ser., 183 (2004), 25–43. https://doi.org/10.1007/s10231-003-0079-z doi: 10.1007/s10231-003-0079-z |
[16] | J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360. https://doi.org/10.1137/1017036 doi: 10.1137/1017036 |
[17] | J. Zhao, F. Meng, Oscillation criteria for second-order neutral equations with distributed deviating argument, Appl. Math. Comput., 206 (2008), 485–493. https://doi.org/10.1016/j.amc.2008.09.021 doi: 10.1016/j.amc.2008.09.021 |
[18] | S. S. Santra, K. M. Khedher, O. Moaaz, A. Muhib, S. W. Yao, Second-order impulsive delay differential systems: necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry, 13 (2021), 722. https://doi.org/10.3390/sym13040722 doi: 10.3390/sym13040722 |
[19] | G. Gui, Z. Xu, Oscillation criteria for second-order neutral differential equations with distributed deviating arguments, Electron. J. Differ. Eq., 2007 (2007), 1–11. |
[20] | F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7 |
[21] | J. K. Hale, Functional differential equations, Springer: New York, 1971. https://doi.org/10.1007/978-1-4615-9968-5 |
[22] | Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178. https://doi.org/10.1007/BF01223686 doi: 10.1007/BF01223686 |
[23] | A. Muhib, T. Abdeljawad, O. Moaaz, E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci., 10 (2020), 5952. https://doi.org/10.3390/app10175952 doi: 10.3390/app10175952 |
[24] | I. Györi, G. Ladas, Oscillation theory of delay differential equations: with applications, Oxford: Clarendon Press, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001 |
[25] | O. Moaaz, R. A. El-Nabulsi, A. Muhib, S. K. Elagan, M. Zakarya, New improved results for oscillation of fourth-order neutral differential equations, Mathematics, 9 (2021), 2388. https://doi.org/10.3390/math9192388 doi: 10.3390/math9192388 |
[26] | T. Gopal, G. Ayyappan, J. R. Graef, E. Thandapani, Oscillatory and asymptotic behavior of solutions of third-order quasi-linear neutral difference equations, Math. Slovaca, 72 (2022), 411–418. https://doi.org/10.1515/ms-2022-0028 doi: 10.1515/ms-2022-0028 |
[27] | A. K. Alsharidi, A. Muhib, S. K. Elagan, Neutral differential equations of higher-order in canonical form: oscillation criteria, Mathematics, 11 (2023), 3300. https://doi.org/10.3390/math11153300 doi: 10.3390/math11153300 |
[28] | G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Dekker, 1987. |
[29] | R. P. Agarwal, S. R. Grace, J. V. Manojlovic, Oscillation criteria for certain fourth order nonlinear functional differential equations, Math. Comput. Model., 44 (2006), 163–187. https://doi.org/10.1016/j.mcm.2005.11.015 doi: 10.1016/j.mcm.2005.11.015 |
[30] | S. R. Grace, R. P. Agarwal, J. R. Graef, Oscillation theorems for fourth order functional differential equations, J. Appl. Math. Comput., 30 (2009), 75–88. https://doi.org/10.1007/s12190-008-0158-9 doi: 10.1007/s12190-008-0158-9 |
[31] | O. Moaaz, A. Muhib, New oscillation criteria for nonlinear delay differential equations of fourth-order, Appl. Math. Comput., 377 (2020), 125192. https://doi.org/10.1016/j.amc.2020.125192 doi: 10.1016/j.amc.2020.125192 |
[32] | B. Baculíková, J. Džurina, J. R. Graef, On the oscillation of higher-order delay differential equations, Math. Slovaca, 187 (2012), 387–400. https://doi.org/10.1007/s10958-012-1071-1 doi: 10.1007/s10958-012-1071-1 |
[33] | C. Zhang, T. Li, B. Suna, E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621. https://doi.org/10.1016/j.aml.2011.04.015 doi: 10.1016/j.aml.2011.04.015 |
[34] | E. M. Elabbasy, E. Thandpani, O. Moaaz, O. Bazighifan, Oscillation of solutions to fourth-order delay differential equations with middle term, Open J. Math. Sci., 3 (2019), 191–197. https://doi.org/10.30538/oms2019.00 doi: 10.30538/oms2019.00 |
[35] | G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ., 2011 (2011), 45. https://doi.org/10.1186/1687-1847-2011-45 doi: 10.1186/1687-1847-2011-45 |
[36] | B. Baculıkovà, J. Dzurina, T. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Differ. Eq., 143 (2011), 1–9. |
[37] | T. Li, B. Baculíková, J. Džurina, C. Zhang, Oscillation of fourth-order neutral differential equations with $p-$Laplacian like operators, Bound. Value Probl., 2014 (2014), 56. https://doi.org/10.1186/1687-2770-2014-56 doi: 10.1186/1687-2770-2014-56 |
[38] | Q. Liu, M. Bohner, S. R. Grace, T. Li, Asymptotic behavior of even-order damped differential equations with $p-$Laplacian like operators and deviating arguments, J. Inequal. Appl., 2016 (2016), 321. https://doi.org/10.1186/s13660-016-1246-2 doi: 10.1186/s13660-016-1246-2 |
[39] | O. Moaaz, H. Ramos, On the oscillation of fourth-order delay differential equations, Mediterr. J. Math., 20 (2023), 166. https://doi.org/10.1007/s00009-023-02373-7 doi: 10.1007/s00009-023-02373-7 |
[40] | Y. Kitamura, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc., 78 (1980), 64–68. https://doi.org/10.1090/S0002-9939-1980-0548086-5 doi: 10.1090/S0002-9939-1980-0548086-5 |