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1. Introduction

In this study, we focus on even-order neutral differential equations (NDE) of the form:(
ξ (s) U(r−1) (s)

)′
+

∫ β

α

K (s, h) y (ρ (s, h)) dh = 0, s ≥ s0, (1.1)

where r ≥ 4 is an even integer and U := y (s) + υ (s) y (τ (s)). Throughout our analysis, we make the
following assumptions:
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(A1) ξ ∈ C ([s0,∞)) , ξ > 0, ξ′ ≥ 0 and ∫ ∞

s0

1
ξ (h)

dh < ∞; (1.2)

(A2) K ∈ C ([s0,∞) × (α, β) ,R) , and K (s, h) ≥ 0;
(A3) υ ∈ C[s0,∞), and 0 < υ < υ0;
(A4) ρ ∈ C ([s0,∞) × (α, β) ,R) , ρ (s, h) < s for h ∈

[
α, β

]
, and lims→∞ ρ (s, h) = ∞ for h ∈

[
α, β

]
;

(A5) τ ∈ C[s0,∞), τ (s) < s, τ′ (s) ≥ 0 and lims→∞ τ (s) = ∞.

A function y ∈ Cr−1([sy,∞)), sy > s0 is said to be a solution of (1.1), which has the property
ξU(r−1) ∈ C1[sy,∞), and satisfies the Eq (1.1) for all y ∈ [sy,∞). We consider only those solutions y
of (1.1), which exist on some half-line [sy,∞) and satisfy the condition

sup{|y(s)| : s > sy} > 0, for all s ≥ sy.

Definition 1.1. A solution of (1.1) is considered oscillatory if it alternates between neither positive nor
negative values, otherwise, it is classified as nonoscillatory.

Differential equations are a foundational tool in mathematics and science, serving as a bridge
between theory and real-world phenomena. They are essential for modeling and understanding a
wide array of dynamic processes in fields as diverse as physics, engineering, biology, economics, and
ecology; see [1–6]. Differential equations describe how quantities change with respect to one another,
capturing the rate of change and providing a means to predict future behavior. They are classified
into various types, such as ordinary differential equations (ODEs) and partial differential equations
(PDEs), depending on the nature of the variables involved. Several techniques, including numerical
and symbolic techniques, can be used to solve ODEs so they can contribute to the knowledge,
see [7–9]. Differential equations have been instrumental in solving complex problems, from predicting
the trajectory of celestial bodies to optimizing industrial processes; see [10]. This paper delves into
the realm of differential equations, specifically focusing on even-order neutral differential equations,
and presents novel criteria to analyze their oscillatory behavior, thereby contributing to the ongoing
exploration of these mathematical tools in practical applications.

The highest-order derivative of the unknown function appears in a neutral delay differential equation
both with and without delay. In addition to its theoretical significance, the qualitative analysis of
these equations holds great practical significance. This is because neutral differential equations are
involved in a number of phenomena, such as the study of vibrating masses attached to elastic bars,
the solution of variational problems with time delays, and problems involving electric networks with
lossless transmission lines (such as those found in high-speed computers, where these lines are used
to connect switching circuits); see [1, 2]. Furthermore, it is evident that the ongoing advancements in
science and technology give rise to a multitude of phenomena and unresolved challenges; see [11–14].

As a result, numerous theories have surfaced, including oscillation theory, a subset of qualitative
theory, aimed at addressing inquiries concerning the oscillatory patterns and affinity characteristics
exhibited by solutions of differential equations (DEs); see [15, 16]. Over the past few decades, the
oscillation theory pertaining to second-order differential equations has garnered significant attention
in the research community. For the latest advancements and comprehensive summaries of established
findings in this field, we direct the reader to references [17–19].
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Delay differential equations (DDEs) belong to the class of functional differential equations designed
to incorporate the temporal memory of dynamic processes. Consequently, their wide-ranging
applications are evident across the realms of physics, engineering, biology (see [20, 21]), and various
other scientific disciplines, as documented in references [1, 21, 22]. Furthermore, a comprehensive
body of research, documented in monographs [23,24], has been compiled, encompassing a plethora of
results, methodologies, and approaches dedicated to the analysis of oscillatory behavior in solutions of
DDEs.

Given the significance of neutral differential equations in representing a wide range of phenomena in
the natural sciences and engineering [25, 26], researchers have extensively investigated the qualitative
properties of solutions to such equations using diverse analytical techniques; see [27–31].

In their work, Baculikova et al. [32] examined the oscillation criteria for the differential equation
represented by [

ξ (s)
(
y(r−1) (s)

)α]′
+K (s) f

(
y (ρ (s))

)
= 0. (1.3)

They established that (1.3) exhibits oscillatory behavior under the conditions where the delay
differential equation, denoted as:

y′ (s) +K(s) f
 δρr−1 (s)

(r − 1)!ξ
1
α (ρ (s))

 f
(
y

1
α (ρ (s))

)
= 0

is also oscillatory, while concurrently satisfying the assumption expressed by∫ ∞

s0

1
ξ1/α (s)

ds = ∞. (1.4)

In [33], Zhang et al. investigated the asymptotic behavior of solutions to the equation:(
ξ (s)

(
y(r−1) (s)

)α)′
+K (s) yβ (ρ (s)) = 0, (1.5)

where α and β are ratios of odd positive integers, β ≤ α and∫ ∞

s0

ξ−1/α (s) ds < ∞. (1.6)

Meanwhile, Elabbasy et al. in [34] examined a fourth-order delay differential equation:(
ξ (s)

(
y′′′ (s)

)α)′
+ υ (s)

(
y′′′ (s)

)α
+K (s) yβ (ρ (s)) = 0, (1.7)

where α = β = 1, and they demonstrated that (1.7) is oscillatory if∫ ∞

s0

ρ∗ (s)K (s)
µ

2
ρ2 (s) −

1
4ρ∗ (s) ξ (s)

[
ρ′∗+ (s)
ρ∗ (s)

−
υ∗ (s)
ξ (s)

]2 ds = ∞,

for some µ ∈ (0, 1) , and∫ ∞

s0

[
ϑ (s)

∫ ∞

s

[
1

ξ (υ)

∫ ∞

υ

K (ν)
(
ρ2 (ν)
ν2

)
dν

]
dυ −

(ϑ′ (s))2

4ϑ (s)

]
ds = ∞,
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under the condition ∫ ∞

s0

[
1

ξ (s)
exp

(
−

∫ s

s0

υ (u)
ξ (u)

du
)]1/α

ds = ∞. (1.8)

Under the canonical case
∫ ∞

s0
ξ−1/γ (s) ds = ∞, Xing et al. [35] studied the oscillatory behavior of

higher-order quasi-linear neutral differential equation{
ξ (s)

(
y (s) + p (s) y (τ(s))(n−1)

)γ}′
+K (s) yγ (ρ (s)) = 0, (1.9)

where n ≥ 2 and γ ≤ 1 is the quotient of odd positive integers. Various theorems and lemmas
were presented to establish oscillation conditions for these differential equations, with a particular
emphasis on odd-order equations by using a comparison technique. By using the Riccati transformation
technique and some inequalities, Dzurina et al. [36] established oscillation theorems for all solutions
to even order quasilinear neutral differential equation((

y (s) + p (s) y (τ(s))(n−1)
)γ)′

+K (s) yγ (ρ (s)) = 0. (1.10)

Under the condition (1.2), Baculı́ková et al. [37] studied the oscillatory behavior of a class of fourth-
order neutral differential equations with a p−Laplacian-like operator using the Riccati transformation
and integral averaging technique. A Kamenev-type oscillation criterion is presented

(
ξ (s) |U′′′ (s)|p−2 U′′′ (s)

)′
+

l∑
i=1

Ki (s) y (ρi (s)) = 0, (1.11)

where n ≥ 2 is an even integer, p > 1 is constant, and U := y (s) + υ (s) y (τ (s)).
under the assumptions that ξ ∈ C ([s0,∞)) , ξ > 0, ξ′ ≥ 0. In [38], the asymptotic properties of the

solutions of a class of even-order damped differential equations(
ξ (s)

∣∣∣y(n−1) (s)
∣∣∣p−2

y(n−1) (s)
)′

+ r (s)
∣∣∣y(n−1) (s)

∣∣∣p−2
y(n−1) (s) +K (s)

∣∣∣y (ρ (s))
∣∣∣p−2

y (ρ (s)) = 0, (1.12)

with p−Laplacian-like operators, delayed and advanced arguments, was examined by Liu et al, where
n ≥ 2 is an even integer, and p > 1 is constant. Moaaz et al. in [39] examined the asymptotic behavior
of solutions of a class of higher-order delay differential equations (DDEs) of the form(

ξ (s) v(n−1) (s)
)′

+
(
h.

(
f ◦ v ◦ g

))
(s) = 0, (1.13)

where n ∈ Z+ an even number, n ≥ 4. They obtained a new condition that excludes a class of
positive solutions of this type of differential equation (1.13), and constructed a fluctuation criterion
that simplifies, improves, and complements previous results in the literature. The simplification lies
in obtaining the volatility criterion with two conditions, in contrast to previous results that required
at least three conditions. The primary objective of this investigation is to enhance the asymptotic and
monotonic properties of solutions to Eq (1.1). Additionally, it aims to ascertain the circumstances that
lead to the emergence of oscillations. To illustrate our primary findings, we provide an example.
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2. Properties of asymptotes and monotonic behavior

In this section, we will introduce notations designed to enhance the clarity of our main results
presentation. Furthermore, we will establish enhanced asymptotic and monotonic properties for the
positive solutions of the equation under investigation. Our approach begins with the classification of
positive solutions based on the signs of their derivatives. We make the assumption that y(s), y(τ(s)),
and y(ρ(s, h)) all become eventually positive, thereby asserting the eventual positivity of the solution x.
Consequently, z(t) approaches positivity over time.

Equation (1.1) provides insight into the behavior of ξ (s) U(r−1) (s) , indicating that U falls into one
of the following categories:

(1) U′ > 0, U(r−1) > 0 are U(r) ≤ 0;
(2) U′ > 0, U(r−2) > 0, and U(r−1) ≤ 0;
(3) (−1)i U(i) > 0, for i = 1, 2, ..., r − 1.

Notation 2.1. The set of all solutions that eventually become positive for Eq (1.1) and meet the
condition

U(j) (s) U(j+1) (s) < 0 for j = 0, 1, 2, ..., r − 2, (2.1)

is denoted as Ω∗. Additionally, we introduce the functions µi defined as follows:

µ0(s) :=
∫ ∞

s
ξ−1 (h) dh,

and

µi(s) :=
∫ ∞

s
µi−1 (h) dh, i = 1, 2, ..., r − 2.

Lemma 2.1. If y represents an eventually positive solution to Eq (1.1), then U will eventually meet the
condition expressed by

y (s) >
k∑

i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
U

(
τ[2i] (s)

)
υ
(
τ[2i] (s)

) − U
(
τ[2i+1] (s)

) , k ∈ N. (2.2)

Proof. The following can be deduced from the definition of U

y (s) ≥ U (s) − υ (s) U (τ (s))

= U (s) − υ (s) [U (τ (s)) − υ
(
τ (s) y

(
τ2 (s)

))
]

= U (s) − υ (s) U (τ (s)) + υ (s) υ (τ (s)) y
(
τ2 (s)

)
. (2.3)

By evaluating (2.3) at τ2 (s), we derive

y
(
τ2 (s)

)
= U

(
τ2 (s)

)
− υ

(
τ2 (s)

)
U

(
τ3 (s)

)
+ υ

(
τ2 (s)

)
υ
(
τ3 (s)

)
y
(
τ4 (s)

)
. (2.4)

Now, employing (2.3) in (2.4), we have

y (s) ≥ U (s) − υ (s) U (τ (s))

+υ (s) U (τ (s)) [U
(
τ2 (s)

)
− υ

(
τ2 (s)

)
U

(
τ3 (s)

)
]
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+υ (s) υ (τ (s)) υ
(
τ2 (s)

)
υ
(
τ3 (s)

)
y
(
τ4 (s)

)
.

By iterating this process, it becomes evident through induction that

y (s) = U (s) − υ (s) U (τ (s))

+

k∑
i=0

2i−1∏
j=0

υ
(
τj (s)

) [U
(
τ[2i] (s)

)
− υ

(
τ[2i+1] (s)

)
]

+

2i+1∏
j=0

υ
(
τ[j] (s)

) y
(
τ[2k+2] (s)

)
,

and so on. Thus,

y (s) >
k∑

i=0

(−1)k

 i∏
j=0

υ
(
τ[j] (s)

) U
(
τ[i] (s)

)
υ
(
τ[i] (s)

) ,
for every positive odd integer k, or

y (s) >
k∑

i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
U

(
τ[2i] (s)

)
υ
(
τ[2i] (s)

) − U
(
τ[2i+1] (s)

) ,
which implies (2.2). The proof is complete. �

Lemma 2.2. Assume that y ∈ Ω∗. Then,
(C1) (−1)i+1 U(r−i−2) (s) ≤ ξ (s) U(r−1) (s) µi (s) for i = 0, 1, 2, ..., r − 2;
(C2) (U (s) /µr−2 (s))′ > 0;
(C3) y (s) ≥ U (s) H1 (s, k) , k ∈ N0;

where

H1 (s, k) =

k∑
i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

)  .
Proof. Assume that y ∈ Ω∗. Thus, for some s2 ≥ s1, we have y (ρ (s)) > 0 for all s ≥ s2. Hence,
from (1.1), we obtain (

ξ (s) U(r−1) (s)
)′

= −

∫ β

α

K (s, h) y (ρ (s, h)) dh ≤ 0. (2.5)

(C1) Using (2.5), we have that ξ.U(r−1) is nonincreasing and hence

ξ (s) U(r−1) (s) µ0 (s) ≥
∫ ∞

s

ξ (h) U(r−1) (h)
ξ (h)

dh

= lim
s→∞

U(r−2) (s) − U
(r−2)

(s) . (2.6)

Given that U(n−2) is a positive decreasing function, it follows that as s → ∞, U(n−2)(s) converges to a
nonnegative constant. Consequently, (2.6) transforms into:

U(r−2)
≥ −ξU(r−1)µ0. (2.7)
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Using the fact that (−1)r U(r) (s) > 0 for r = 0, 1, ..., n − 1, and integrating the inequality (2.7) along
with its subsequent derivations, repeated r − 2 times over [s,∞), we arrive at the following:

(−1)i+1 U(r−i−2)
≤ ξU(r−1)µi. (2.8)

(C2) Using (C1) at i = 0, we get (
Ur−2

µ0

)′
=

(
µ0U(r−1) + ξ−1U(r−2)

)
µ2

0

≥ 0,

which leads to

−U(r−3) (s) ≥
∫ ∞

s
µ0 (%)

U(r−2) (%)
µ0 (%)

d% ≥
U(r−2) (s)
µ0 (s)

µ1 (s) .

This implies (
U(r−3)

µ1

)′
=

1
µ2

1

(
µ1U(r−2) + µ0U(r−3)

)
≤ 0.

By employing a comparable method repeatedly, we derive (U/µr−2)′ > 0. So

(−1)k d
ds

(
Un−k−2 (s)
µk (s)

)
≥ 0. (2.9)

(C3) Since τ (s) ≤ s. From Lemma (2.1), we have (2.2) holds. From (C2), we conclude that

U (s) − υ (s) U (τ (s)) ≥ U (s) − υ (s)
µ (τ (s))
µ (s)

U (s) . (2.10)

Evaluating (2.10) in τ[2i+1] and using that U is decreasing, we obtain

U
(
τ[2i+1] (s)

)
≤
µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i+1] (s)

)U
(
τ[2i] (s)

)
. (2.11)

Using (2.10) and (2.11) in (2.2), we get

y (s) >
k∑

i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

)  U
(
τ[2i] (s)

)
, k ∈ N0. (2.12)

Since U′ < 0, and τ[2i] (s) < s, then
U

(
τ[2i] (s)

)
≥ U (s) ,

which, with (2.12), leads to

y (s) > U (s)
k∑

i=0

 2i∏
j=0

υ
(
τ[j](s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

) 
= H1 (s, k) U (s) ,

hence, (C3) holds. �

AIMS Mathematics Volume 9, Issue 6, 15996–16014.



16003

Remark 2.1. It is easy to verify that

H1 (s, 0) = 1 − υ (s)
µr−2 (τ (s))
µr−2 (s)

.

Then, putting k = 0 in (C3) , we get classical relation (2.4).

Lemma 2.3. Assume that y ∈ Ω∗. If∫ ∞

s0

µr−3 (ς)
(∫ ς

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%
)

dς = ∞, (2.13)

and there exists a `0 ∈ (0, 1) such that

µ2
r−2 (s)
µr−3 (s)

∫ β

α

K (s, h) H1 (ρ (s, h) , k) dh ≥ `0, (2.14)

then,
(C4) lims→∞U (s) = 0;
(C5)

(
U (s) /µ`0

r−2 (s)
)′
< 0;

(C6) lims→∞U (s) /µ`0
r−2 (s) = 0;

(C7) y (s) > U (s) H̃1 (s, k);
where

H̃1 (s, k) =

k∑
i=0

 2i∏
j=0

υ
(
τ[j](s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

)  µ`0
r−2

(
τ[2i] (s)

)
µ`0

r−2 (s)
.

Proof. (C4) Since U is positive decreasing, we obtain that lims→∞U (s) = D ≥ 0. Assume the contrary
that D > 0. Then, there is a s2 ≥ s1 with U (s) ≥ D for s ≥ s2. Then (1.1) becomes(

ξ (s) U(r−1) (s)
)′
≤ −

∫ β

α

K (s, h) y (ρ (s, h)) dh.

From (C3) we get

(
ξ (s) U(r−1) (s)

)′
≤ −

∫ β

α

K (s, h) H1 (ρ (s, h) , k) U (ρ (s, h)) dh

≤ −D
∫ β

α

K (s, h) H1 (ρ (s, h) , k) dh. (2.15)

Integrating (2.15) from s2 to s, we obtain the following inequality

ξ (s) U(r−1) (s) − ξ (s2) U(r−1) (s2) ≤ −D
∫ s

s2

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%.

From (2.1), we have U(r−1) < 0 for s ≥ s1. Then ξ (s2) U(r−1) (s2) < 0, and so

ξ (s) U(r−1) (s) ≤ −D
∫ s

s2

(∫ β

α

K (s, h) H1 (ρ (%, h) , k) dh
)

d%. (2.16)
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From (C1) at i = r − 3, we obtain
U′ (s)
µr−3 (s)

≤ ξU(r−1) (s) ,

which, with (2.16), yields

U′ (s) ≤ −Dµr−3 (s)
∫ s

s2

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%.

Then,

U (s) ≤ U (s2) − D
∫ s

s2

µr−3 (ς)
(∫ ς

s2

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%
)

dς,

which, with (2.13), gives U (s)→ −∞ as s→ ∞, a contradiction. Then, U→ 0 as s→ ∞.

(C5) Given that ρ(s, s) increases as s increases, it follows that ρ(s, s) ≥ ρ(s, α) for s ∈ (α, β).
Integrating (1.1) over [s2, s) and using (2.13), we find

ξ (s) U(r−1) (s) = ξ (s2) U(r−1) (s2) −
∫ s

s2

(∫ β

α

K (%, s) y (ρ (%, s)) ds
)

d%.

Using (C3), we have

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) −
∫ s

s2

(∫ β

α

K (%, h) H1 (ρ (%, s) , k) U (ρ (%, s)) ds
)

d%

≤ ξ (s2) U(r−1) (s2) − U (ρ (s, β))
∫ s

s2

(∫ β

α

K (%, s) H1 (ρ (%, s) , k) ds
)

d%.

From (2.14), we see that

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) − `0U (s)
∫ s

s2

µr−3 (%)
µ2

r−2 (%)
d%

= ξ (s2) U(r−1) (s2) + `0
U (s)

µr−2 (s2)
− `0

U (s)
µr−2 (s)

,

which, with (C4), gives

ξ (s) U(r−1) (s) ≤ −`0
U (s)
µr−2 (s)

. (2.17)

Therefore, by considering (C1) at i = r − 3, we derive the following inequality:

U′ (s)
µr−3 (s)

≤ −`0
U (s)
µr−2 (s)

.

Consequently,  U (s)

µ`0
r−2 (s)

′ =
1

µ`0+1
r−2 (s)

(
µr−2 (s) U′ (s) + `0µr−3 (s) U (s)

)
≤ 0.

(C6) Now, since U/µ`0
r−2 is positive and decreasing, we get that lims→∞U (s) /µ`0

r−2 (s) = l0 ≥ 0. Suppose
that l0 > 0. Thus, for some s2 ≥ s1, we obtain that U (s) /µ`0

r−2 (s) ≥ l0 for s ≥ s2. Now, let

F (s) :=
U (s) + µr−2 (s) ξ (s) U(r−1) (s)

µ`0
r−2 (s)

. (2.18)
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Therefore, F (s) > 0 for s ≥ s2. From (2.14) and (2.18), we obtain

F′ (s) =
1

µ2`0
r−2 (s)

[
µ`0

r−2 (s)
(
U′ (s) − µr−3 (s)

(
ξU(r−1) (s)

)
+ µr−2 (s)

(
ξU(r−1) (s)

)′)
+`0µ

`0−1
r−2 (s) µr−3 (s)

(
U (s) +

(
ξU(r−1) (s)

)
µr−2 (s)

)]
≤

1

µ`0+1
r−2 (s)

[
−µ2

r−2 (s)
(∫ β

α

K (s, h) y (ρ (s, h)) dh
)

+ `0µr−3 (s)
(
U (s) + µr−2 (s) ξ (s) U(r−1) (s)

)]
≤

1

µ`0+1
r−2 (s)

[
−µ2

r−2 (s)
(∫ β

α

K (s, h) H1 (ρ (s, h) , k) U (ρ (s, h)) dh
)

+ `0µr−3 (s)
(
U (s) + µr−2 (s) ξ (s) U(r−1) (s)

)]
≤

1

µ`0+1
r−2 (s)

[
−µ2

r−2 (s) U (s)
(∫ β

α

K (s, h) H1 (ρ (s, h) , k) dh
)

+ `0µr−3 (s)
(
U (s) + µr−2 (s) ξ (s) U(r−1) (s)

)]
.

Hence,

F′ (s) ≤
1

µ`0+1
r−2 (s)

[
−µ2

r−2 (s) U (s)
`0µr−3 (s)
µ2

r−2 (s)
+ `0µr−3 (s)

(
U (s) + µr−2 (s) ξ (s) U(r−1) (s)

)]
=

1

µ`0+1
r−2 (s)

[
−`0µr−3 (s) U (s) + `0µr−3 (s) U (s) + `0µr−3 (s) µr−2 (s) ξ (s) U(r−1) (s)

]
=

`0

µ`0
r−2 (s)

µr−3 (s) ξ (s) U(r−1) (s) . (2.19)

Using the fact that U (s) /µ`0
r−2 (s) ≥ l0 with (2.17), we obtain

ξ (s) U(r−1) (s) ≤ −`0
U (s)
µr−2 (s)

≤ −`0l0µ
`0−1
r−2 (s) . (2.20)

Combining (2.19) and (2.20), yields

F′ (s) ≤ −`2
0l0
µr−3 (s)
µr−2 (s)

< 0.

Integrating the above inequality over [s2, s), we find

−F (s2) ≤ −`2
0l0 log

µr−2 (s2)
µr−2 (s)

→ ∞ as s→ ∞,

a contradiction, and thus, l0 = 0.

(C7) As in the proof of Lemma 2.2, we arrive at

y (s) >
k∑

i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

)  U
(
τ[2i] (s)

)
. (2.21)

From (C5), we conclude that

U
(
τ[2ξ] (s)

)
≥
µ`0

r−2

(
τ[2ξ] (s)

)
µ`0

r−2

U (s) ,
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which, with (2.21), gives

y (s) > U (s)
k∑

i=0

 2i∏
j=0

υ
(
τ[j] (s)

)
 1
υ
(
τ[2i] (s)

) − µr−2

(
τ[2i+1] (s)

)
µr−2

(
τ[2i] (s)

)  µ`0
r−2

(
τ[2i] (s)

)
µ`0

r−2

= H̃1 (s, k) U (s) .

The lemma’s proof has been finalized. �

Lemma 2.4. Let’s suppose that y ∈ Ω∗. If condition (2.14) is satisfied for `0 ∈ (0, 1), then
condition (2.13) also holds.

Proof. Suppose we have y ∈ Ω∗. By applying (2.14), we obtain the following inequality:∫ ς

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d% ≥
∫ ς

s0

`0
µr−3 (%)
µ2

r−2 (%)
d%

= `0

(
1

µr−2 (ς)
−

1
µr−2 (s0)

)
.

By leveraging the fact that as µn−2 → 0 as s→ ∞, we can eventually derive the following inequality:

1
µr−2 (s)

−
1

µr−2 (s0)
≥

µ

µr−2 (s)
,

for µ ∈ (0, 1). Therefore,

µr−3 (ς)
∫ ς

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d% ≥ `0µ
µr−3 (ς)
µr−2 (ς)

.

Thus, ∫ s

s0

µr−3 (ς)
(∫ ς

s2

(∫ β

α

K (%, h) dhH1 (ρ (%, h) , k)
)

d%
)

dς ≥ `0µ ln
µr−3 (s0)
µr−2 (s)

→ ∞ as s→ ∞.

The proof is complete. �

Theorem 2.1. Assume that y ∈ Ω∗, (2.14) holds for some `0 ∈ (0, 1). If there exists a natural number
n such that `i ≤ `i+1 < 1 for all i = 0, 1, 2, ..., n − 1, the following conditions holds:(

C1,n
) (

U (s) /µ`n
r−2 (s)

)′
< 0;(

C2,n
)

lims→∞U (s) /µ`n
r−2 (s) = 0;

where `i is defined as:

`j = `0
λ`j−1

1 − `j−1
, j = 1, 2, ..., n,

and for some λ ≥ 1, the inequality:
µr−2 (ρ (s, β))
µr−2 (s)

≥ λ, (2.22)

is satisfied.

AIMS Mathematics Volume 9, Issue 6, 15996–16014.



16007

Proof. Assume that y ∈ Ω∗. Then, from Lemma 2.1, we have that (C1)–(C3) hold. Using induction, we
have from Lemmas 2.1 and 2.2 that

(
C1,0

)
and

(
C2,0

)
hold. Now, we assume that

(
C1,s−1

)
and

(
C2,s−1

)
hold. Over [s1, s), integration (1.1) yields

ξ (s) U(r−1) (s) = ξ (s2) U(r−1) (s2) −
∫ s

s2

(∫ β

α

K (%, h) y (ρ (%, h)) dh
)

d%

≤ ξ (s2) U(r−1) (s2) −
∫ s

s2

U (ρ (%, β))
(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%. (2.23)

Using
(
C1,n−1

)
, we have that

U (ρ (s, h)) ≥ µ`n−1
r−2 (ρ (s, h))

U (s)

µ`n−1
r−2 (s)

,

then (2.23) becomes

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) −
∫ s

s2

µ`n−1
r−2 (ρ (%, β))

U (%)

µ`n−1
r−2 (%)

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%.

Since
(
U (s) /µ`s−1

r−2 (s)
)′
≤ 0, we can conclude that

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) −
U (s)

µ`n−1
r−2 (s)

∫ s

s2

µ`n−1
r−2 (%)

µ`n−1
r−2 (ρ (%, β))

µ`n−1
r−2 (%)

(∫ β

α

K (%, h) H1 (ρ (%, h) , r) dh
)

d%.

Hence, from (2.14) and (2.22), we obtain

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) − `0λ
`n−1

U (s)
µ`n−1

r−2 (s)

∫ s

s2

µr−3 (%)

µ2−`n−1
r−2 (%)

d%

= ξ (s2) U(r−1) (s2) − `0
λ`n−1

1 − `n−1

U (s)

µ`n−1
r−2 (s)

 1

µ1−`n−1
r−2 (s)

−
1

µ1−`n−1
r−2 (s2)

 ,
hence,

ξ (s) U(r−1) (s) ≤ ξ (s2) U(r−1) (s2) − `s
U (s)

µ`n−1
r−2 (s)

1

µ1−`n−1
r−2 (s2)

− `n
U (s)
µr−2 (s)

.

Using the property lims→∞U (s) /µ`n−1
r−2 (s) = 0, we get

ξU(r−1)
≤ −`s

U
µr−2

. (2.24)

Thus, from (C1) at k = r − 3, we obtain

U′

µr−3
≤ −`n

U
µr−2

.

Consequently,  U

µ`n
r−2

′ =
1

µ`n+1
r−2

(
µr−2U′ + `nµr−3U

)
≤ 0.

The proof’s remaining steps align precisely with those found in the proof of (C6), as demonstrated in
Lemma 2.2. Consequently, we can conclude that the proof is now finished. �
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3. Criteria for oscillation

Theorem 3.1. Suppose that y ∈ Ω∗, and, for a certain value `0 ∈ (0, 1), (2.14) is satisfied. If there
exists a natural number n such that `i ≤ `i+1 < 1 for all i from 0 to n − 1, then

ϕ′ (s) +
1

1 − `n

(∫ β

α

H1 (ρ (s, h) , k)K (s, h) dh
)
µr−2 (s)ϕ (ρ (s, β)) = 0 (3.1)

has a positive solution. Here, `j and λ are defined as per the description in Lemma 2.4.

Proof. Suppose we have y ∈ Ω∗. According to Lemma 2.4, it follows that both
(
C1,n

)
and

(
C2,n

)
are

satisfied. Now, define ϕ as
ϕ = ξµr−2U(r−1) + U. (3.2)

Consequently, based on (C1) at i = r − 2, we can deduce that ϕ (s) > 0 for s ≥ s2. Additionally,

ϕ′ = µr−2

(
ξU(r−1)

)′
− ξµr−3U(r−1) + U′.

By utilizing (C1) at i = r − 3, we can establish the following inequality

ϕ′ ≤ µr−2

(
ξU(r−1)

)′
≤ −U (ρ (s, β)) µr−2

∫ β

α

H1 (ρ (%, h) , k)K (s, h) dh. (3.3)

Based on the proof provided in Lemma 2.4, it is apparent that (2.24) is satisfied. When we merge the
Eqs (3.2) and (2.24), we can deduce

ϕ (s) ≤ (1 − `n) U (s) .

Consequently, Eq (3.3) can be rewritten as

ϕ′ (s) +
1

1 − `n

(∫ β

α

H1 (ρ (s, h) , k)K (s, h) dh
)
µr−2 (s)ϕ (ρ (s, β)) ≤ 0. (3.4)

Thus, we have established that ϕ is a positive solution to the differential inequality (3.4). Furthermore,
according to [22, Theorem 1], Eq (3.1) also possesses a positive solution, thereby concluding our
proof. �

Theorem 3.2. Suppose there exists a value `0 within the interval (0, 1) such that condition (2.14) is
satisfied. Additionally, assume there exists a natural number n such that `i ≤ `i+1 < 1 for all i from 0
to n − 1. Furthermore, consider the delay differential equations (3.1):

$′ (s) +
ε1ρ

r−1 (s, β)
(r − 1)! (ξ (ρ (s, β)))

(∫ β

α

K (s, h) H1 (ρ (s, h) , k) dh
)
$ (ρ (s, β)) = 0 (3.5)

and

$′ (s) +
ε2

(r − 2)!ξ (s)

(∫ s

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)
ρr−2 (%, β) d%

)
$ (ρ (s, β)) = 0, (3.6)

which are oscillatory for certain ε1, ε2, `n ∈ (0, 1), where `j, λ are defined according to Theorem 3.1.
Under these conditions, it follows that every solution of Eq (1.1) exhibits oscillatory behavior.
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Proof. Let’s assume the opposite scenario, where y represents solutions that eventually become
positive. In this case, as per [1, Lemma 2.2.1], we encounter three distinct cases denoted as (1)–(3).

By adopting an approach quite akin to the one employed in [32, Theorem 3], we can establish
that cases (1) and (2) cannot occur, based on our initial assumption that Eqs (3.4) and (3.6) exhibit
oscillatory behavior.

Consequently, we are left with the situation where (3) is true. Utilizing Theorem 3.1, we deduce
that (3.1) possesses a positive solution, which contradicts our earlier assumption. Hence, we can
conclude that the proof is now fully substantiated. �

Corollary 3.1. Suppose there exists a value `0 within the interval (0, 1) such that condition (2.14) is
satisfied. Additionally, assume there exists a natural number n such that `i ≤ `i+1 < 1 for all i from 0
to n − 1, and the following inequalities hold

lim inf
s→∞

∫ s

ρ(s,β)
µr−2 (%)

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d% >
1 − `n

e
, (3.7)

lim inf
s→∞

∫ s

ρ(s,β)

1
ξ (ρ (%, β))

ρr−1 (%, β)
(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d% >
(r − 1)!

e
, (3.8)

and

lim inf
s→∞

∫ s

ρ(s,β)

1
ξ (u)

(∫ u

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)
ρr−2 (%, β) d%

)
du >

(r − 2)!
e

, (3.9)

where ε, `n ∈ (0, 1), then it follows that every solution of (1.1) exhibits oscillatory behavior.

Proof. According to [40, Corollary 2.1], when conditions (3.7)–(3.9) are met, it indicates the
oscillatory nature of the solutions for (3.1), (3.5), and (3.6), respectively. Consequently, based on
Theorem 3.2, we can conclude that every solution of (1.1) exhibits oscillatory behavior. �

Example 3.1. Consider the NDE

(
s4 (

y (s) + υ0y (τ0s)
))(4)

+

∫ β

α

K0y (ρ0s) ds = 0, s ≥ 1, (3.10)

where υ0, ρ0 ∈ (0, 1) and s ∈ (0.4, 1). By comparing (1.1) and (3.10), we see that r = 4, ξ (s) = s4,

µi (s) = e−s, i = 0, 1, 2, K (s, h) = K0, ρ (s, h) = ρ0s. It is easy to verify that

µ0 (s) =
1

3s3 , µ1 (s) =
1

6s2 , µ2 (s) =
1
6s
,

H1 (s, k) = H1 =

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0 ,

and

H̃1 (s, k) =

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0

1

τ2i`0
0

.
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Condition (3.7) becomes

lim inf
s→∞

∫ s

ρ(s,β)
µr−2 (%)

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%

= lim inf
s→∞

∫ s

ρ0s
µ2 (%)

(∫ β

α

K0H1dh
)

d%

= lim inf
s→∞

∫ s

ρ0s

1
6%

((β − α)K0H1) d%

=
1
6

(β − α)K0

[
1 −

υ0

τ0

]
ln

1
ρ0
,

which leads to
K0 >

6 (1 − `n)
(β − α) H1ln 1

ρ0

>
1
e
, (3.11)

condition (3.8) becomes

lim inf
s→∞

∫ s

ρ(s,β)

1
ξ (ρ (%, β))

ρr−1 (%, β)3
(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)

d%

= lim inf
s→∞

∫ s

ρ0s

1
ρ4

0%
4
ρ3

0%
3 (β − α)K0

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0 d%

=
1
ρ0

(β − α)K0

[
1 −

υ0

τ0

]
ln

1
ρ0

k∑
i=0

υ2i
0 ,

which leads to
K0 >

6ρ0

(β − α) H1ln 1
ρ0

1
e
, (3.12)

and condition (3.9) becomes

lim inf
s→∞

∫ s

ρ(s,β)

1
ξ (u)

(∫ u

s0

(∫ β

α

K (%, h) H1 (ρ (%, h) , k) dh
)
ρr−2 (%, β) d%

)
du

= lim inf
s→∞

∫ s

ρ0s

1
u4

(∫ u

s0

(∫ β

α

K0H1dh
)
ρ2

0%
2d%

)
du

= lim inf
s→∞

∫ s

ρ0s

1
u4

(β − α)K0

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0

 ∫ u

s0

ρ2
0%

2d%

 du

= lim inf
s→∞

∫ s

ρ0s

(β − α)
ρ2

0

3
K0

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0

 1
u4

ρ2
0

3
u3du

=
1
3

(β − α) ρ2
0ln

1
ρ0
K0

[
1 −

υ0

τ0

] k∑
i=0

υ2i
0 ,

which is achieved when
K0 >

6
(β − α) H1ρ

2
0ln 1

ρ0

1
e
. (3.13)

AIMS Mathematics Volume 9, Issue 6, 15996–16014.



16011

From Corollary 3.1, we see that every solution of (3.10) is oscillatory if (3.11)–(3.13) hold.

Example 3.2. Consider the Eq (3.10) where υ0 = 0.5, τ0 = 0.9, ρ0 = 0.7, α = 0.5, and β = 1, we see
that

H1 (s, 20) = H1 =

(
1 −

0.5
0.9

) 20∑
i=0

(0.5)2i = 0.59259.

Using Corollary 3.1, the conditions

K0 >
12 (1 − `n)

0.59259 ∗ ln 1
0.7

1
e

= 20.886 (1 − `n) ,

K0 >
12 ∗ 0.7

0.59259 ∗ ln 1
0.7

1
e

= 14.62,

and

K0 >
12

0.59259 ∗ (0.7)2
∗ ln 1

0.7

1
e

= 42.625.

confirm the oscillation of all solutions of (3.10).

4. Conclusions

This paper has contributed significantly to the field of even-order neutral differential equations by
introducing novel sufficient criteria for guaranteeing oscillatory solutions. By drawing comparisons
with the oscillatory behavior of first-order delay equations, we have expanded upon and enriched
the existing body of knowledge in this area. The findings presented here not only advance our
understanding of even-order neutral differential equations in form (1.1) but also hold the potential
for further extensions to address half-linear and super-linear cases. Our results can be extended to the
following case: (

ξ (s)
[
U(r−1) (s)

]κ)′
+

∫ β

α

K (s, h)
[
y (ρ (s, h))

]δ dh = 0,

where κ and δ are quotients of odd numbers. Moreover, it would be interesting to obtain new oscillation
criteria that do not place monotonic constraints on delay functions.
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32. B. Baculı́ková, J. Džurina, J. R. Graef, On the oscillation of higher-order delay differential
equations, Math. Slovaca, 187 (2012), 387–400. https://doi.org/10.1007/s10958-012-1071-1

33. C. Zhang, T. Li, B. Suna, E. Thandapani, On the oscillation of higher-order
half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621.
https://doi.org/10.1016/j.aml.2011.04.015

34. E. M. Elabbasy, E. Thandpani, O. Moaaz, O. Bazighifan, Oscillation of solutions to fourth-
order delay differential equations with middle term, Open J. Math. Sci., 3 (2019), 191–197.
https://doi.org/10.30538/oms2019.00

35. G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations,
Adv. Differ. Equ., 2011 (2011), 45. https://doi.org/10.1186/1687-1847-2011-45
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