Research article Special Issues

Separation axioms via novel operators in the frame of topological spaces and applications

  • Received: 08 February 2024 Revised: 11 April 2024 Accepted: 12 April 2024 Published: 18 April 2024
  • MSC : 54A05, 54C05, 54C08

  • In this work, we introduce a very wide category of open sets in topological spaces, called $ \aleph $-open sets. We study the category of $ \aleph $-open sets that contains $ \beta $-open sets in addition to $ \beta^{\ast} $-open and $ e^{\ast} $-open sets. We present the essential properties of this class and disclose its relationships with many different classes of open sets with the help of concrete counterexamples. In addition, we introduce the $ \aleph $-interior and $ \aleph $-closure operators. Moreover, we study the concept of $ \aleph $-continuity of functions inspired by the classes of $ \aleph $-open and $ \aleph $-closed sets. Also, we discuss some kinds of separation axioms and some theorems related to the graph of functions.

    Citation: Mesfer H. Alqahtani, Alaa M. Abd El-latif. Separation axioms via novel operators in the frame of topological spaces and applications[J]. AIMS Mathematics, 2024, 9(6): 14213-14227. doi: 10.3934/math.2024690

    Related Papers:

  • In this work, we introduce a very wide category of open sets in topological spaces, called $ \aleph $-open sets. We study the category of $ \aleph $-open sets that contains $ \beta $-open sets in addition to $ \beta^{\ast} $-open and $ e^{\ast} $-open sets. We present the essential properties of this class and disclose its relationships with many different classes of open sets with the help of concrete counterexamples. In addition, we introduce the $ \aleph $-interior and $ \aleph $-closure operators. Moreover, we study the concept of $ \aleph $-continuity of functions inspired by the classes of $ \aleph $-open and $ \aleph $-closed sets. Also, we discuss some kinds of separation axioms and some theorems related to the graph of functions.



    加载中


    [1] N. Levine, Semi-open sets and semi-continuity in topological spaces, Am. Math. Mon., 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039 doi: 10.1080/00029890.1963.11990039
    [2] O. Njåstad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961 doi: 10.2140/pjm.1965.15.961
    [3] A. S. Mashour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
    [4] M. Abd El-Monsef, S. El-Deeb, R. Mahmoud, $\beta$-open sets and $\beta$-continuous mappings, Bull. Fac. Sci. Assuit Univ., 12 (1983), 77–90.
    [5] D. Andrijevic, On $b$-open sets, Mat. Vesnik., 48 (1996), 59–64.
    [6] J. Dontchev, M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hung., 71 (1996), 109–120.
    [7] A. S. Sulaiman, B. A. Asaad, Z. A. Ameen, On certain types of convergence and $\gamma$-continuity, J. Math. Comput. Sci., 11 (2021), 1029–1038. https://doi.org/10.1007/BF00052199 doi: 10.1007/BF00052199
    [8] Z. Piotrowski, A survey of results concerning generalized continuity on topological spaces, Acta Math. Univ. Comenian., 52 (1987), 91–110.
    [9] K. R. Gentry, H. B. Hoyle III, Somewhat continuous functions, Czech. Math. J., 21 (1971), 5–12.
    [10] X. Gao, A. M. Khalil, More on $\mathfrak{D}\alpha$-closed sets in topological spaces, J. Math., 2023, 1–9. https://doi.org/10.21136/CMJ.1971.100999
    [11] Z. A. Ameen, On somewhat near continuity and some applications, Selecciones Mat., 8 (2021), 360–369. https://doi.org/10.17268/sel.mat.2021.02.12 doi: 10.17268/sel.mat.2021.02.12
    [12] Z. A. Ameen, A note on some forms of continuity, Divulgaciones Mat., 22 (2021), 52–63.
    [13] Z. A. Ameen, Almost somewhat near continuity and near regularity, Moroc. J. Pure Appl. Anal., 7 (2021), 88–99. https://doi.org/10.2478/mjpaa-2021-0009 doi: 10.2478/mjpaa-2021-0009
    [14] N. V. Veliko, $H$-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103–118.
    [15] E. Ekici, On $a$-open sets, $A^{\star}$-sets and decompositions of continuity and super continuity, Ann. Univ. Sci. Budapest, 51 (2008), 39–51.
    [16] A. I. El-Magharabi, A. M. Mubarki, $Z$-open sets and $Z$-continuity in topological spaces, Int. J. Math. Arch., 2 (2011), 1819–1827.
    [17] J. H. Park, B. Y. Lee, M. J. Son, On $\delta$-semiopen sets in topological spaces, J. Indian Acad. Math., 19 (1997), 59–67.
    [18] Z. A. Ameen, B. A. Asaad, R. A. Muhammed, On superclasses of $\delta$-open sets in topological spaces, Int. J. Appl. Math., 32 (2019), 259–277. https://doi.org/10.12732/ijam.v32i2.8 doi: 10.12732/ijam.v32i2.8
    [19] S. Raychaudhuri, M. N. Mukherjee, On $\delta$-almost continuity and $\delta$-preopen sets, Bull. Inst. Math. Acad., 21 (1993), 357–366.
    [20] A. M. Mubarki, M. M. Al-Rshudi, M. A. Al-Juhani, $\beta^{\ast}$-open sets and $\beta^{\ast}$-continuity in topological spaces, J. Taibah Univ. Sci., 8 (2014), 142–148.
    [21] E. Ekici, On $e^{\ast}$-open sets and $(D, S)^{\ast}$-sets and decompositions of continuous functions, Math. Moravica, 13 (2009), 29–36.
    [22] A. El-Atik, A study of some types of mappings on topological spaces, Master science thesis, Egypt: Tanta Univ., 1997.
    [23] M. H. Alqahtani, $F$-open and $F$-closed sets in topological spaces, Eur. J. Pure Appl. Math., 16 (2023), 819–832. https://doi.org/10.29020/nybg.ejpam.v16i2.4583 doi: 10.29020/nybg.ejpam.v16i2.4583
    [24] M. H. Alqahtani, H. Y. Saleh, A novel class of separation axioms, compactness, and continuity via $C$-open sets, Mathematics, 11 (2023), 4729.
    [25] L. Steen, J. Seebach, Counterexamples in topology, Dover Publications, INC, 1995.
    [26] J. Dugundji, Topology, Prentice-Hall of India Private Ltd., New Delhi, 1975.
    [27] A. M. Abd El-latif, M. H. Alqahtani, Fatouh A. Gharib, Strictly wider class of soft sets via supra soft $\delta$-closure operator, Int. J. Anal. Appl., 22 (2024), 47. https://doi.org/10.28924/2291-8639-22-2024-47 doi: 10.28924/2291-8639-22-2024-47
    [28] S. A. El-Sheikh, A. M. Abd El-latif, Decompositions of some types of supra soft sets and soft continuity, Int. J. Math. Tre. Technol., 9 (2014), 37–56. https://doi.org/10.14445/22315373/IJMTT-V9P504 doi: 10.14445/22315373/IJMTT-V9P504
    [29] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. Abd El-latif, $\gamma$-operation and decompositions of some forms of soft continuity in soft topological spaces, Ann. Fuzzy Math. Inform., 7 (2014), 181–196.
    [30] A. M. Abd El-latif, M. H. Alqahtani, New soft operators related to supra soft $\delta_i$-open sets and applications, AIMS Math., 9 (2024), 3076–3096. https://doi.org/10.3934/math.2024150 doi: 10.3934/math.2024150
    [31] A. M. Abd El-latif, Novel types of supra soft operators via supra soft sd-sets and applications, AIMS Math., 9 (2024), 6586–6602. https://doi.org/10.3934/math.2024321 doi: 10.3934/math.2024321
    [32] A. M. Abd El-latif, M. H. Alqahtani, Novel categories of supra soft continuous maps via new soft operators, AIMS Math., 9 (2024), 7449–7470. https://doi.org/10.3934/math.2024361 doi: 10.3934/math.2024361
    [33] A. M. Abd El-latif, Some properties of fuzzy supra soft topological spaces, Eur. J. Pure Appl. Math., 12 (2019), 999–1017. https://doi.org/10.29020/nybg.ejpam.v12i3.3440 doi: 10.29020/nybg.ejpam.v12i3.3440
    [34] M. H. Alqahtani, Zanyar A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(587) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog