In this study, we present a comprehensive framework for enhancing the temperature control of electric furnaces, integrating three novel components: a proportional-integral-derivative controller with a filter (PID-F), a customized objective function, and a modified electric eel foraging optimization (mEEFO) algorithm. The PID-F controller, introduced for the first time in the literature for temperature control of electric furnaces, leverages a filter coefficient to effectively mitigate the kick effect, improving transient and frequency responses. To further optimize the PID-F controller, we employed the mEEFO, a recently proposed metaheuristic inspired by the social predation behaviors of electric eels, with tailored modifications for electric furnace temperature control. The study also introduces a new objective function, based on the modification of the integral of absolute error (IAE) performance index. The proposed framework was evaluated through extensive comparisons with established metaheuristic algorithms, including statistical analysis, Wilcoxon signed-rank test, and time and frequency domain analyses. Comparative assessments with reported methods, such as genetic algorithms and Ziegler–Nichols-based PID controllers, validated the efficacy of the proposed approach, highlighting its transformative impact on electric furnace temperature regulation. The non-ideal conditions such as measurement noise, external disturbance, and saturation at the output of the controller were also evaluated in order to demonstrate the superior performance of the proposed approach from a wider perspective. Furthermore, the robustness of the proposed approach against variations in system parameters was also demonstrated.
Citation: Sarah A. Alzakari, Davut Izci, Serdar Ekinci, Amel Ali Alhussan, Fatma A. Hashim. A new control scheme for temperature adjustment of electric furnaces using a novel modified electric eel foraging optimizer[J]. AIMS Mathematics, 2024, 9(5): 13410-13438. doi: 10.3934/math.2024654
[1] | Yinwan Cheng, Chao Yang, Bing Yao, Yaqin Luo . Neighbor full sum distinguishing total coloring of Halin graphs. AIMS Mathematics, 2022, 7(4): 6959-6970. doi: 10.3934/math.2022386 |
[2] | Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman . On the neighbor-distinguishing in generalized Petersen graphs. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797 |
[3] | Xiaoxue Hu, Jiangxu Kong . An improved upper bound for the dynamic list coloring of 1-planar graphs. AIMS Mathematics, 2022, 7(5): 7337-7348. doi: 10.3934/math.2022409 |
[4] | Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357 |
[5] | Zongpeng Ding . Skewness and the crossing numbers of graphs. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223 |
[6] | Zongrong Qin, Dingjun Lou . The k-subconnectedness of planar graphs. AIMS Mathematics, 2021, 6(6): 5762-5771. doi: 10.3934/math.2021340 |
[7] | Xin Xu, Xu Zhang, Jiawei Shao . Planar Turán number of double star S3,4. AIMS Mathematics, 2025, 10(1): 1628-1644. doi: 10.3934/math.2025075 |
[8] | Yunfeng Tang, Huixin Yin, Miaomiao Han . Star edge coloring of K2,t-free planar graphs. AIMS Mathematics, 2023, 8(6): 13154-13161. doi: 10.3934/math.2023664 |
[9] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[10] | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384 |
In this study, we present a comprehensive framework for enhancing the temperature control of electric furnaces, integrating three novel components: a proportional-integral-derivative controller with a filter (PID-F), a customized objective function, and a modified electric eel foraging optimization (mEEFO) algorithm. The PID-F controller, introduced for the first time in the literature for temperature control of electric furnaces, leverages a filter coefficient to effectively mitigate the kick effect, improving transient and frequency responses. To further optimize the PID-F controller, we employed the mEEFO, a recently proposed metaheuristic inspired by the social predation behaviors of electric eels, with tailored modifications for electric furnace temperature control. The study also introduces a new objective function, based on the modification of the integral of absolute error (IAE) performance index. The proposed framework was evaluated through extensive comparisons with established metaheuristic algorithms, including statistical analysis, Wilcoxon signed-rank test, and time and frequency domain analyses. Comparative assessments with reported methods, such as genetic algorithms and Ziegler–Nichols-based PID controllers, validated the efficacy of the proposed approach, highlighting its transformative impact on electric furnace temperature regulation. The non-ideal conditions such as measurement noise, external disturbance, and saturation at the output of the controller were also evaluated in order to demonstrate the superior performance of the proposed approach from a wider perspective. Furthermore, the robustness of the proposed approach against variations in system parameters was also demonstrated.
Differential equations of arbitrary order have been shown to be useful in the study of models of many phenomena in various fields such as: Electrochemistry and material science, they are in fact described by differential equations of fractional order [9,10,15,16,25,26,27,28,29]. For more details, we refer the reader to the books of Hilfer [30], Podlubny [31], Kilbas et al. [34], Miller and Ross [2] and to the following research papers [1,2,3,4,5,6,7,8,11,12,14,16,17,19,20,24,31,35,36,37,38,39,40,41,42]. In this work, we discuss the existence and uniqueness of the solutions for multi-point boundary value problems of nonlinear fractional differential equations with two Riemann-Liouville fractionals:
{Dαx(t)=∑mi=1fi(t,x(t),y(t),φ1x(t),ϕ1y(t)),α∈]1,2],t∈[0,T]Dβy(t)=∑mi=1gi(t,x(t),y(t),φ2x(t),ϕ2y(t)),β∈]1,2],t∈[0,T]I2−αx(0)=0, Dα−2x(T)=θIα−1(x(η)), 0<η<T,I2−βy(0)=0, Dβ−2x(T)=ωIβ−1(x(γ)), 0<γ<T, | (1.1) |
where D(.), I(.) denote the Riemann-Liouville derivative and integral of fractional order (.), respectively, fi, gi:[0,T]×R4→R, i=1,⋯,m are continuous functions on [0,T] and
(φ1x)(t)=∫t0A′1(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′1(t,s)y(s)ds, |
(φ2x)(t)=∫t0A′2(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′2(t,s)y(s)ds, |
with Ai and Bi being continuous functions on [0,1]×[0,1]. However, it is rare to find a work in nonlinear term fi depends on fractional derivative of unknown functions x(t),y(t),φ1x(t),ϕ1y(t) and solutions for multi-order fractional differential equations on the infinite interval [0,T). Motivated by [8,11,12,13,14] and the references therein, we consider the existence and unicity of solution for multi-order fractional differential equations on infinite interval [0,T).
The rest of this paper is organized as follow. In section 2, we present some preliminaries and lemmas. Section 3 is dedicated to showing the existence of a solution for problem (1.1). Finally, section 4 illustrated the proposed results with two examples.
Remark 1.1. This work generalizes the work of Houas and Benbachir [14] on different boundary conditions and for another type of integral.
This section covers the basic concepts of Riemann-Liouville type fractional calculus that will be used throughout this paper.
Definition 2.1. [31,32] The Riemann-Liouville fractional integral operator of order α≥0, of a function f:(0,∞)→R is defined as
{Jαf(t)=1Γ(α)∫t0(t−τ)α−1f(τ)dτ,J0f(t)=f(t), |
where Γ(α):=∫∞0e−uuα−1du.
Definition 2.2. [31,32] The Riemann-Liouville fractional derivative of order α>0, of a continuous function h:(0,∞)→R is defined as
Dαh(t)=1Γ(n−α)(ddt)n∫t0(t−τ)n−α−1h(τ)dτ=(ddt)nIn−αh(τ), |
where n=[α]+1.
For α<0, we use the convention that Dαh=J−αh. Also for 0≤ρ<α, it is valid that DρJαh=hα−ρ. We note that for ε>−1 and ε≠α−1,α−2,...,α−n, we have
Dαtε=Γ(ε+1)Γ(ε−α+1)tε−α,Dαtα−i=0, i=1,2,...,n. |
In particular, for the constant function h(t)=1, we obtain
Dα1=1Γ(1−α)t−α,α∉N. |
For α∈N, we obtain, of course, Dα1=0 because of the poles of the gamma function at the points 0,−1,−2,... For α>0, the general solution of the homgeneous equation Dαh(t)=0 in C(0,T)∩L(0,T) is
h(t)=c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1, |
where ci,i=1,2,....,n−1, are arbitrary real constants. Further, we always have DαIαh=h, and
DαIαh(t)=h(t)+c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1. |
Lemma 2.1. [33] Let E be Banach space. Assume that T:E⟶E is a completely continuous operator. If the set V={x∈E:x=μTx, 0<μ<1} is bounded, then T has a fixed point in E.
To define the solution for problem (1.1). We consider the following lemma.
Lemma 2.2. Suppose that (Hi)i=1,…,m⊂C([0,1],R), and consider the problem
Dαh(t)−m∑i=1Hi(t)=0, t∈j, 1<α<2, m∈N∗, | (2.1) |
with the conditions
I2−αh(0)=0, Dα−2h(T)=θIα−1(h(η)), 0<η<T. | (2.2) |
Then we have
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T.
Proof. We have
h(t)=m∑i=1IαHi(t)+c0tα−2+c1tα−1, |
where ci∈R, i=0,1.
We obtain
I2−αh(τ)=m∑i=1I2Hi(τ)+c0I2−ατα−2+c1I2−ατα−1=m∑i=1I2Hi(τ)+c0+c1τ,Iα−1h(τ)=m∑i=1I2α−1Hi(τ)+c0Iα−1τα−2+c1Iα−1τα−1=m∑i=1I2α−1Hi(τ)+c0Γ(α−1)Γ(2α−2)τ2α−3+c1Γ(α)Γ(2α−1)τ2α−2,Dα−2h(τ)=m∑i=1I2Hi(τ)+c0Γ(α−1)+c1Γ(α)τ. |
Using the given conditions: I2−αh(0)=0, we find that c0=0, and since Dα−2h(T)−θIα−1(h(η))=0, we have
m∑i=1I2hi(T)+c1Γ(α)T−θ[m∑i=1I2α−1hi(η)+c1Γ(α)Γ(2α−1)η2α−2]=0, |
then
c1[Γ(α)Γ(2α−1)η2α−2−Γ(α)T]=m∑i=1I2hi(T)−θm∑i=1I2α−1hi(η) |
and
c1=1ψ(m∑i=1I2Hi(T)−θm∑i=1I2α−1Hi(η))=1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with
ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T. |
Finally, the solution of (2.1) and (2.2) is
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ). |
We denote by
E={x,y∈C([0,T],R);φix,ϕiy∈C([0,T],R) i=1,2}, |
and the Banach space of all continuous functions from [0,T] to R endowed with a topology of uniform convergence with the norm defined by
||(x,y)||E=max(||x||,||y||,||φ1x||,||ϕ1y||,||φ2x||,||ϕ2y||), |
where
||x||=supt∈j|φix(t)|,||y||=supt∈j|y(t)|,||ϕix||=supt∈j|φix(t)|,||ϕiy||=supt∈j|ϕiy(t)|. |
In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1.1).
For the sake of convenience, we impose the following hypotheses:
(H1) For each i=1,2,⋯,m, the functions fi and gi :[0,T]×R4⟶R are continuous.
(H2) There exist nonnegative real numbers ξik,φik,k=1,2,3,4,i=1,2,⋯,m, such that for all t∈[0,T] and all (x1,x2,x3,x4), (y1,y2,y3,y4)∈R4, we have
|fi(t,x1,x2,x3,x4)−fi(t,y1,y2,y3,y4)|≤4∑k=1 ξik|xk−yk|, |
and
|gi(t,x1,x2,x3,x4)−gi(t,y1,y2,y3,y4)|≤4∑k=1 χik|xk−yk|. |
(H3) There exist nonnegative constants (Li) and (Ki) i=1,...,m, such that: For each t∈[0,T] and all (x1,x2,x3,x4)∈R4,
|fi(t,x1,x2,x3,x4)|≤Li,|gi(t,x1,x2,x3,x4)|≤Ki,i=1,...,m. |
We also consider the following quantities:
A1=TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4),A2=TβΓ(β+1)m∑i=1(χi1+χi2+χi3+χi4),A3=maxt,s∈[0,1]||A′1(t,s)||×A1,A4=maxt,s∈[0,1]||A′2(t,s)||×A1,A5=maxt,s∈[0,1]||B′1(t,s)||×A2,A6=maxt,s∈[0,1]||B′2(t,s)||×A2,ν1=[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))],ν2=[TβΓ(β+1)+1ψ′(Tβ+12+ωT3β−2(2β−1)2Γ(2β−1))],ν3=maxt,s∈[0,1]|A′1(t,s)|ν1,ν4=maxt,s∈[0,1]|A′2(t,s)|ν1,ν5=maxt,s∈[0,1]|B′1(t,s)|ν2,ν6=maxt,s∈[0,1]|B′2(t,s)|ν2. |
The first result is based on Banach contraction principle. We have
Theorem 3.1. Assume that (H2) holds. If the inequality
max(A1,A2,A3,A4,A5,A6)<1, | (3.1) |
is valid, then the system (1.1) has a unique solution on [0,T].
Proof. We define the operator T:E⟶E by
T(x,y)(t)=(T1(x,y)(t),T2(x,y)(t)),t∈[0,T], |
such that
T1(x,y)(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) | (3.2) |
and
T2(x,y)(t)=1Γ(β)m∑i=1∫t0(t−τ)β−1Gi(τ)dτ+tβ−1ψ′(m∑i=1∫T0(T−τ)Gi(τ)dτ−ωΓ(2β)m∑i=1∫γ0(γ−τ)2β−2Gi(τ)dτ) | (3.3) |
where
Hi(τ)=fi(τ,x(τ),y(τ),φ1x(τ),ϕ1y(τ)) |
and
Gi(τ)=gi(τ,x(τ),y(τ),φ2x(τ),ϕ2y(τ)). |
We obtain
φiT1(x,y)(t)=∫t0Ai(t,s)T1(x,y)(s)ds, ϕiT2(x,y)(t)=∫t0Bi(t,s)T2(x,y)(s)ds |
where i=1,2.
We shall now prove that T is contractive.
Let T1(x1,y1),T2(x2,y2)∈E. Then, for each t∈[0,T], we have
|T1(x1,y1)−T1(x2,y2)|≤[1Γ(α)m∑i=1∫t0(t−τ)α−1dτ+tα−1ψ(m∑i=1∫T0(T−τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2dτ)]×maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|≤TαΓ(α+1)maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|. |
By (H2), it follows that
||T1(x1,y1)−T1(x2,y2)||≤TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4)×max(||x1−x2||,||y1−y2||,||φ1(x1−x2)||,||φ2(x1−x2)||,||ϕ1(y1−y2)||,||ϕ2(y1−y2)||). |
Hence,
||T1(x1,y1)−T1(x2,y2)||≤A1||x1−x2,y1−y2||E. | (3.4) |
With the same arguments as before, we can show that
||T2(x1,y1)−T2(x2,y2)||≤A2||x1−x2,y1−y2||E. | (3.5) |
On the other hand, we have
||φ1(T1(x1,y1)−T1(x2,y2))||≤∫t0||A′1(t,s)||||T1(x1,y1)−T1(x2,y2)||ds≤maxt,s∈[0,1]||A′1(t,s)||×A1||x1−x2,y1−y2||E. |
Hence,
||φ1(T1(x1,y1)−T1(x2,y2))||≤A3||x1−x2,y1−y2||E | (3.6) |
and
||φ2(T1(x1,y1)−T1(x2,y2))||≤A4||x1−x2,y1−y2||E. | (3.7) |
Also, we have
||ϕ1(T2(x1,y1)−T2(x2,y2))||≤A5||x1−x2,y1−y2||E | (3.8) |
and
||ϕ2(T2(x1,y1)−T2(x2,y2))||≤A6||x1−x2,y1−y2||E. | (3.9) |
Thanks to (3.4)–(3.9), we get
||T(x1,y1)−T(x2,y2)||≤max(A1,A2,A3,A4,A5,A6)×||(x1−x2,y1−y2)||E. | (3.10) |
Thanks to (3.10), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which is the solution of the system (1.1).
Our second main result is based on Lemma 2.1. We have
Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied. Then, system (1.1) has at least a solution on [0,T].
Proof. The operator T is continuous on E in view of the continuity of fi and gi (hypothesis (H1)).
Now, we show that T is completely continuous:
(i) First, we prove that T maps bounded sets of E into bounded sets of E. Taking λ>0, and (x,y)∈Ωλ={(x,y)∈E;||(x,y)||≤λ}, then for each t∈[0,T], we have:
|T1(x,y)|≤[1Γ(α)∫t0(t−τ)α−1dτ+tα−1ψ(∫T0(T−τ)dτ−θΓ(2α)∫η0(η−τ)2α−2dτ)]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|, |
Thanks to (H3), we can write
||T1(x,y)||≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]m∑i=1Li. |
Thus,
||T1(x,y)||≤ν1m∑i=1Li. | (3.11) |
As before, we have
||T2(x,y)||≤ν2m∑i=1Ki. | (3.12) |
On the other hand, for all j=1,2, we get
|ϕjT1(x,y)(t)|=|∫t0A′j(t,s)T1(x,y)(s)ds|≤maxt,s∈[0,1]|A′j(t,s)|ν1m∑i=1Li. |
This implies that
||ϕ1T1(x,y)(t)||≤ν3m∑i=1Li, | (3.13) |
||ϕ2T1(x,y)(t)||≤ν4m∑i=1Li. | (3.14) |
Similarly, we have
||φ1T2(x,y)(t)||≤ν5m∑i=1Ki, | (3.15) |
||φ2T2(x,y)(t)||≤ν6m∑i=1Ki. | (3.16) |
It follows from (3.11)–(3.16) that:
||T(x,y)||E≤max(ν1m∑i=1Li,ν2m∑i=1Ki,ν3m∑i=1Li,ν4m∑i=1Li,,ν5m∑i=1,ν6m∑i=1). |
Thus,
||T(x,y)||E<∞. |
(ii) Second, we prove that T is equi-continuous:
For any 0≤t1<t2≤T and (x,y)∈Ωλ, we have
|T1(x,y)(t2)−T1(x,y)(t1)|≤[1Γ(α)∫t10(t2−τ)α−1−(t1−τ)α−1dτ+1Γ(α)∫t2t1(t2−τ)α−1dτ+tα−12−tα−11ψ(T22−θη2α−1Γ(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ−θη2α−1ψΓ(2α−1)2Γ(2α−1)+1Γ(α+1)]]×m∑i=1Li. |
Therefore,
||T1(x,y)(t2)−T1(x,y)(t1)||E[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ+1Γ(α+1)]]×m∑i=1Li. | (3.17) |
We also have
||T2(x,y)(t2)−T2(x,y)(t1)||E[2Γ(β+1)(t2−t1)β−1+(tβ−12−tβ−11)[T22ψ′+1Γ(β+1)]]×m∑i=1Ki. | (3.18) |
On the other hand,
|ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)|≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]×sups∈[0,1]|T1(x,y)(s)|. |
Consequently, for all i=1,2, we obtain
||ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)||≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]ν1m∑i=1Li. | (3.19) |
Similarly,
||φiT1(x,y)(t2)−φiT1(x,y)(t1)||≤[maxs∈[0,1]|B′i(t2,s)−B′i(t1,s)|+(t2−t1)maxs∈[0,1]|B′i(t1,s)|]ν2m∑i=1Ki. | (3.20) |
where i=1,2. Using (3.17)–(3.20), we deduce that
||T(x,y)(t2)−T(x,y)(t1)||E⟶0 |
as t2→t1.
Combining (i) and (ii), we conclude that T is completely continuous.
(iii) Finally, we shall prove that the set F defined by
F={(x,y)∈E,(x,y)=ρT(x,y), 0<ρ<1} |
is bounded.
Let (x,y)∈F, then (x,y)=ρT(x,y), for some 0<ρ<1. Thus, for each t∈[0,T], we have:
x(t)=ρT1(x,y)(t), y(t)=ρT2(x,y)(t). | (3.21) |
Thanks to (H3) and using (3.11) and (3.12), we deduce that
||x||≤ρν1m∑i=1Li, ||y||≤ρν2m∑i=1Ki. | (3.22) |
Using (3.13)–(3.16), it yields that
{||ϕ1x||≤ρν3∑mi=1Li||ϕ2x||≤ρν4∑mi=1Li||φ1y||≤ρν5∑mi=1Ki||φ2y||≤ρν6∑mi=1Ki. | (3.23) |
It follows from (3.22) and (3.23) that
||T(x,y)||E≤ρmax(ν1∑mi=1Li,ν2∑mi=1Ki,ν3∑mi=1Li,ν4∑mi=1Li,,ν5∑mi=1,ν6∑mi=1). |
Consequently,
||(x,y)||E<∞. |
This shows that F is bounded. By Lemma (2.1), we deduce that T has a fixed point, which is a solution of (1.1).
To illustrate our main results, we treat the following examples.
Example 4.1. Consider the following system:
{D32x(t)=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(x+y+φ1x(t)+ϕ1y(t))+132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π),D32y(t)=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))+1(10π+et)e(t+1)(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)),I12x(0)=0, D−12x(T)=I12(x(1)),I12y(0)=0, D−12y(T)=I12(y(1)). | (4.1) |
We have
α=32, β=32, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Also,
f1(t,x(t),y(t),φ1x(t),ϕ1y(t))=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(1+x+y+φ1x(t)+ϕ1y(t)), | (4.2) |
f2(t,x(t),y(t),φ1x(t),ϕ1y(t))=132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π). | (4.3) |
For t∈[0,1] and (x1,y1,φ1x1,ϕ1y1),(x2,y2,φ1x2,ϕ1y2)∈R4, we have
|f1(t,x1,y1,φ1x1,ϕ1y1)−f1(t,x2,y2,φ1x2,ϕ1y2)|≤|cos(πt)|10π|x1+y1+φ1x1+ϕ1y11+x1+y1+φ1x1+ϕ1y1−x2+y2+φ1x2+ϕ1y2)1+x2+y2+φ1x2+ϕ1y2)|≤110π(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|) | (4.4) |
and
|f2(t,x1,y1,φ1x1,ϕ1y1)−f2(t,x2,y2,φ1x2,ϕ1y2)|≤132πe(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|). | (4.5) |
So, we can take
ξ11=ξ12=ξ13=ξ14=110π, |
ξ21=ξ22=ξ23=ξ24=132πe. |
We also have
g1(t,x(t),y(t),φ2x(t),ϕ2y(t))=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t)) |
and
g2(t,x(t),y(t),φ2x(t),ϕ2y(t))=1(10π+et)et+1(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)) | (4.6) |
For t∈[0,1] and (x1,y1,φ2x1,ϕ2y1),(x2,y2,φ2x2,ϕ2y2)∈R4, we can write
|g1(t,x1,y1,φ2x1,ϕ2y1)−g1(t,x2,y2,φ2x2,ϕ2y2)|≤18π3(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|), | (4.7) |
and
|g2(t,x1,y1,φ2x1,ϕ2y1)−g2(t,x2,y2,φ2x2,ϕ2y2)|≤110πe2(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|). | (4.8) |
Hence,
χ11=χ12=χ13=χ14=18π3, |
χ21=χ22=χ23=χ24=110πe2. |
Therefore,
A1=0.0589009676,A2=0.0250930393. |
Suppose
A′i=B′i=1, i=1,2, |
so,
A1=A3=A4,A2=A5=A6. |
Thus,
max(A1,A2,A3,A4,A5,A6)<1, | (4.9) |
and by Theorem 3.1, we conclude that the system (4.1) has a unique solution on [0,1].
Example 4.2.
{D32x(t)=π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))+et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t)), t∈[0,1],D43y(t)=e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))+3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t)), t∈[0,1],I12x(0)=0, D−12x(T)=I12(x(1)),I23y(0)=0, D−23y(T)=I13(y(1)). | (4.10) |
We have
α=32, β=43, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Since
|f1(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))|≤2π,|f2(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t))|≤e2π+2,|g1(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))|≤e22π+1,|g2(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t))|≤3e−1. |
The functions f1, f2, g1 and g2 are continuous and bounded on [0,1]×R4. So, by Theorem 3.2, the system (4.10) has at least one solution on [0,1].
We have proved the existence of solutions for fractional differential equations with integral and multi-point boundary conditions. The problem is solved by applying some fixed point theorems. We also provide examples to make our results clear.
The authors declare that they have no conflicts of interest in this paper.
[1] |
P. L. V. Héroult, Recent developments in the electric steel furnace, Ind. Eng. Chem., 5 (1913), 47–49. https://doi.org/10.1021/ie50049a020 doi: 10.1021/ie50049a020
![]() |
[2] | J. C. Tudon-Martinez, J. de-J. Lozoya-Santos, A. Cantu-Perez, A. Cardenas-Romero, Advanced temperature control applied on an industrial box furnace, J. Therm. Sci. Eng. Appl., 14 (2022), 061001. |
[3] |
N. Wang, Z. X. Liu, C. Ding, J. Zhang, G. Sui, H. Jia, et al., High efficiency thermoelectric temperature control system with improved proportional integral differential algorithm using energy feedback technique, IEEE T. Ind. Electron., 69 (2022), 5225–5234. https://doi.org/10.1109/TIE.2021.3082462 doi: 10.1109/TIE.2021.3082462
![]() |
[4] |
J. Tang, H. Ni, R. Peng, N. Wang, L. Zuo, A review on energy conversion using hybrid photovoltaic and thermoelectric systems, J. Power Sources, 562 (2023), 232785. https://doi.org/10.1016/j.jpowsour.2023.232785 doi: 10.1016/j.jpowsour.2023.232785
![]() |
[5] | H. Etchells, Application of electric furnace methods to industrial processes, Trans. Faraday Soc., 14 (1919), 71–78. |
[6] |
M. M. Hussein, S. Alkhalaf, T. H. Mohamed, D. S. Osheba, M. Ahmed, A. Hemeida, et al., Modern temperature control of electric furnace in industrial applications based on modified optimization technique, Energies, 15 (2022), 8474. https://doi.org/10.3390/en15228474 doi: 10.3390/en15228474
![]() |
[7] |
E. Grassi, K. Tsakalis, PID controller tuning by frequency loop-shaping: application to diffusion furnace temperature control, IEEE T. Contr. Syst. Technol., 8 (2000), 842–847. https://doi.org/10.1109/87.865857 doi: 10.1109/87.865857
![]() |
[8] |
D. Ajorloo, M. Nazari, M. Nazari, N. Sepehry, A. Mohammadzadeh, Mathematical modeling and designing an optimized fuzzy temperature controller for a vacuum box electric furnace: Numerical and experimental study, T. I. Meas. Control, 45 (2023), 1193–1212. https://doi.org/10.1177/01423312221124017 doi: 10.1177/01423312221124017
![]() |
[9] | B. G. Liptak, Instrument engineers' handbook, volume two: Process control and optimization, CRC Press, 2005. https://doi.org/10.1201/9781315219028 |
[10] |
X. Chen, Temperature control in electric furnaces: Methods, applications, and challenges, J. Phys. Conf. Ser., 2649 (2023), 012032. https://doi.org/10.1088/1742-6596/2649/1/012032 doi: 10.1088/1742-6596/2649/1/012032
![]() |
[11] | Y. Wang, PID Temperature control, In: Conveyor belt furnace thermal processing, Springer, Cham, 2018, 63–76. https://doi.org/10.1007/978-3-319-69730-7_9 |
[12] |
K. Rsetam, M. Al-Rawi, Z. Cao, Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component, ISA T., 130 (2022), 152–162. https://doi.org/10.1016/j.isatra.2022.03.024 doi: 10.1016/j.isatra.2022.03.024
![]() |
[13] | D. Rawat, K. Bansal, A. K. Pandey, LQR and PID design technique for an electric furnace temperature control system, In: Proceeding of International Conference on Intelligent Communication, Control and Devices, 2017,561–567. Singapore: Springer, . https://doi.org/10.1007/978-981-10-1708-7_64 |
[14] |
T. Ghanim, A. R. Ajel, A. j. Humaidi, Optimal fuzzy logic control for temperature control based on social spider optimization, IOP Conf. Ser. Mater. Sci. Eng., 745 (2020), 012099. https://doi.org/10.1088/1757-899X/745/1/012099 doi: 10.1088/1757-899X/745/1/012099
![]() |
[15] | N. Pringsakul, D. Puangdownreong, Mofpa-based pida controller design optimization for electric furnace temperature control system, Int. J. Innov. Comput. Inform. Control, 16 (2020), 1863–1876. |
[16] | M. R. Moussa, Temperature control of electric furnace using adaptive lag compensator based on improved gorilla troops optimization: Towards energy efficiency, Aswan Univ. J. Sci. Technol., 3 (2023), 13–29. |
[17] |
L. Liu, D. Xue, S. Zhang, General type industrial temperature system control based on fuzzy fractional-order PID controller, Complex Intell. Syst., 9 (2023), 2585–2597. https://doi.org/10.1007/s40747-021-00431-9 doi: 10.1007/s40747-021-00431-9
![]() |
[18] |
A. E. Kayabekir, G. Bekdaş, S. M. Nigdeli, Z. W. Geemet, Optimum design of PID controlled active tuned mass damper via modified harmony search, Appl. Sci., 10 (2020), 2976. https://doi.org/10.3390/app10082976 doi: 10.3390/app10082976
![]() |
[19] |
S. Ulusoy, S. M. Nigdeli, G. Bekdaş, Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness, J. Build. Eng., 33 (2021), 101647. https://doi.org/10.1016/j.jobe.2020.101647 doi: 10.1016/j.jobe.2020.101647
![]() |
[20] |
E. Kose, Optimal control of AVR system with tree seed algorithm-based PID controller, IEEE Access, 8 (2020), 89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628 doi: 10.1109/ACCESS.2020.2993628
![]() |
[21] |
R. Alayi, F. Zishan, S. R. Seyednouri, R. Kumaret, M. H. Ahmadi, M. Sharifpur, Optimal load frequency control of island microgrids via a PID controller in the presence of wind turbine and PV, Sustainability, 13 (2021), 10728. https://doi.org/10.3390/su131910728 doi: 10.3390/su131910728
![]() |
[22] |
S. Ekinci, D. Izci, M. R. Al Nasar, L. Abualigah, Logarithmic spiral search based arithmetic optimization algorithm with selective mechanism and its application to functional electrical stimulation system control, Soft Comput., 26 (2022), 12257–12269. https://doi.org/10.1007/s00500-022-07068-x doi: 10.1007/s00500-022-07068-x
![]() |
[23] | D. Izci, S. Ekinci, C. Budak, V. Gider, PID controller design for DFIG-based wind turbine via reptile search algorithm, In: 2022 Global Energy Conference (GEC), 2022,154–158. https://doi.org/10.1109/GEC55014.2022.9986617 |
[24] |
M. P. E. Rajamani, R. Rajesh, M. W. Iruthayarajan, Design and experimental validation of PID controller for buck converter: A multi-objective evolutionary algorithms based approach, IETE J. Res., 69 (2023), 21–32. https://doi.org/10.1080/03772063.2021.1905564 doi: 10.1080/03772063.2021.1905564
![]() |
[25] |
M. Issa, Enhanced arithmetic optimization algorithm for parameter estimation of PID controller, Arab J. Sci. Eng., 48 (2023), 2191–2205. https://doi.org/10.1007/s13369-022-07136-2 doi: 10.1007/s13369-022-07136-2
![]() |
[26] | Y. Duan, The design of predictive fuzzy-PID controller in temperature control system of electrical heating furnace, In: Life system modeling and intelligent computing, Berlin, Heidelberg: Springer, 2010,259–265. https://doi.org/10.1007/978-3-642-15597-0_29 |
[27] |
X. Hu, Q. Zou, H. Zou, Design and application of fractional order predictive functional control for industrial heating furnace, IEEE Access, 6 (2018), 66565–66575. https://doi.org/10.1109/ACCESS.2018.2878554 doi: 10.1109/ACCESS.2018.2878554
![]() |
[28] |
V. D. Phan, X. H. Nguyen, V. N. Dinh, T. S. Danget, V. C. Le, S. P. Ho, et al., Development of an adaptive fuzzy-neural controller for temperature control in a brick tunnel kiln, Electronics, 13 (2024), 342. https://doi.org/10.3390/electronics13020342 doi: 10.3390/electronics13020342
![]() |
[29] | K. Rsetam, M. AL-Rawi, Z. Cao, Robust state feedback control of electric heating furnace using a new disturbance observer, In: TENCON 2021-2021 IEEE Region 10 Conference (TENCON), 2021,423–428. https://doi.org/10.1109/TENCON54134.2021.9707435 |
[30] |
Y. Feng, M. Wu, L. Chen, X. Chen, W. Cao, S. Du, et al., Hybrid intelligent control based on condition identification for combustion process in heating furnace of compact strip production, IEEE T. Ind. Electron., 69 (2022), 2790–2800. https://doi.org/10.1109/TIE.2021.3066918 doi: 10.1109/TIE.2021.3066918
![]() |
[31] |
K. Rsetam, M. Al-Rawi, Z. Cao, Robust composite temperature control of electrical tube furnaces by using disturbance observer, Case Stud. Therm. Eng., 30 (2022), 101781. https://doi.org/10.1016/j.csite.2022.101781 doi: 10.1016/j.csite.2022.101781
![]() |
[32] |
W. Xu, J. Zhang, R. Zhang, Application of multi-model switching predictive functional control on the temperature system of an electric heating furnace, ISA T., 68 (2017), 287–292. https://doi.org/10.1016/j.isatra.2017.02.001 doi: 10.1016/j.isatra.2017.02.001
![]() |
[33] |
H. Dong, X. Li, X. He, Z. Zeng, G. Wen, A two-degree-of-freedom controller for a high-precision air temperature control system with multiple disturbances, Case Stud. Therm. Eng., 50 (2023), 103442. https://doi.org/10.1016/j.csite.2023.103442 doi: 10.1016/j.csite.2023.103442
![]() |
[34] |
Z. Chen, J. Cui, Z. Lei, J. Shen, R. Xiao, Design of an improved implicit generalized predictive controller for temperature control systems, IEEE Access, 8 (2020), 13924–13936. https://doi.org/10.1109/ACCESS.2020.2965021 doi: 10.1109/ACCESS.2020.2965021
![]() |
[35] |
D. Izci, S. Ekinci, E. Eker, A. Demirö ren, Multi-strategy modified INFO algorithm: Performance analysis and application to functional electrical stimulation system. J. Comput. Sci., 64 (2022), 101836. https://doi.org/10.1016/j.jocs.2022.101836 doi: 10.1016/j.jocs.2022.101836
![]() |
[36] |
T. Veerendar, D. Kumar, CBO-based PID-F controller for Load frequency control of SPV integrated thermal power system, Mater. Today Proc., 58 (2022), 593–599. https://doi.org/10.1016/j.matpr.2022.03.414 doi: 10.1016/j.matpr.2022.03.414
![]() |
[37] |
B. Ozgenc, M. S. Ayas, I. H. Altas, Performance improvement of an AVR system by symbiotic organism search algorithm-based PID-F controller, Neural Comput. Appl., 34 (2022), 7899–7908. https://doi.org/10.1007/s00521-022-06892-4 doi: 10.1007/s00521-022-06892-4
![]() |
[38] |
S. Ekinci, H. Çetin, D. Izci, E. Kö se, A novel balanced arithmetic optimization algorithm-optimized controller for enhanced voltage regulation, Mathematics, 11 (2023), 4810. https://doi.org/10.3390/math11234810 doi: 10.3390/math11234810
![]() |
[39] |
D. Izci, R. M. Rizk-Allah, S. Ekinci, A. G. Hussien, Enhancing time-domain performance of vehicle cruise control system by using a multi-strategy improved RUN optimizer, Alex. Eng. J., 80 (2023), 609–622. https://doi.org/10.1016/j.aej.2023.09.009 doi: 10.1016/j.aej.2023.09.009
![]() |
[40] |
E. Eker, M. Kayri, S. Ekinci, D. Izci, Comparison of swarm-based metaheuristic and gradient descent-based algorithms in artificial neural network training, ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J., 12 (2023), e29969. https://doi.org/10.14201/adcaij.29969 doi: 10.14201/adcaij.29969
![]() |
[41] |
R. M. Rizk-Allah, S. Ekinci, D. Izci, An improved artificial rabbits optimization for accurate and efficient infinite impulse response system identification, Decision Anal. J., 9 (2023), 100355. https://doi.org/10.1016/j.dajour.2023.100355 doi: 10.1016/j.dajour.2023.100355
![]() |
[42] |
W. Zhao, L. Wang, Z. Zhang, H. Fan, Ji. Zhang, S. Mirjalili, et al., Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications, Expert Syst. Appl., 238 (2024), 122200. https://doi.org/10.1016/j.eswa.2023.122200 doi: 10.1016/j.eswa.2023.122200
![]() |
[43] |
W. Zhou, P. Wang, X. Zhao, H. Chen, Anti-sine-cosine atom search optimization (ASCASO): A novel approach for parameter estimation of PV models, Environ. Sci. Pollut. Res., 30 (2023), 99620–99651. https://doi.org/10.1007/s11356-023-28777-2 doi: 10.1007/s11356-023-28777-2
![]() |
[44] | S. Ekinci, D. Izci, Whale optimization algorithm based controller design for air-fuel ratio system, In: Handbook of whale optimization algorithm, Elsevier, 2024,411–421. https://doi.org/10.1016/B978-0-32-395365-8.00035-X |
[45] |
L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
![]() |
[46] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[47] |
A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, Harris hawks optimization: Algorithm and applications, Future Gener. Comp. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
![]() |
[48] |
E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inform. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
![]() |
[49] |
M. M. Gani, M. S. Islam, M. A. Ullah, Optimal PID tuning for controlling the temperature of electric furnace by genetic algorithm, SN Appl. Sci., 1 (2019), 880. https://doi.org/10.1007/s42452-019-0929-y doi: 10.1007/s42452-019-0929-y
![]() |
[50] | V. Sinlapakun, W. Assawinchaichote, Optimized PID controller design for electric furnace temperature systems with Nelder Mead Algorithm, In: 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, 1–4. https://doi.org/10.1109/ECTICon.2015.7206925 |
[51] |
D. A. Bastos, J. Zuanon, L. R. Py-Daniel, C. D.de Santana, Social predation in electric eels, Ecol. Evol., 11 (2021): 1088–1092. https://doi.org/10.1002/ece3.7121 doi: 10.1002/ece3.7121
![]() |
[52] |
G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y
![]() |
[53] | D. Izci, S. Ekinci, A. Demiroren, J. Hedley, HHO algorithm based PID controller design for aircraft pitch angle control system, In: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020, 1–6. https://doi.org/10.1109/HORA49412.2020.9152897 |
[54] |
D. Izci, S. Ekinci, A novel-enhanced metaheuristic algorithm for FOPID-controlled and Bode's ideal transfer function–based buck converter system, T. I. Meas. Control, 45 (2023), 1854–1872. https://doi.org/10.1177/01423312221140671 doi: 10.1177/01423312221140671
![]() |
[55] |
Z. L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE T. Energy Conver., 19 (2004), 384–391. https://doi.org/10.1109/TEC.2003.821821 doi: 10.1109/TEC.2003.821821
![]() |
[56] |
D. Izci, S. Ekinci, Optimizing three-tank liquid level control: Insights from prairie dog optimization, Int. J. Robot. Control Syst., 3 (2023), 599–608. https://doi.org/10.31763/ijrcs.v3i3.1116 doi: 10.31763/ijrcs.v3i3.1116
![]() |
[57] |
M. S. Ali, L. Wang, H. Alquhayz, O. Ur Rehman, G. Chen, Performance improvement of three-phase boost power factor correction rectifier through combined parameters optimization of proportional-integral and repetitive controller, IEEE Access, 9 (2021), 58893–58909. https://doi.org/10.1109/ACCESS.2021.3073004 doi: 10.1109/ACCESS.2021.3073004
![]() |
[58] |
E. Çelik, M. Karayel, Effective speed control of brushless DC motor using cascade 1PDf-PI controller tuned by snake optimizer. Neural Comput. Appl., 36 (2024), 7439–7454. https://doi.org/10.1007/s00521-024-09470-y doi: 10.1007/s00521-024-09470-y
![]() |
[59] | D. Izci, S. Ekinci, An improved RUN optimizer based real PID plus second-order derivative controller design as a novel method to enhance transient response and robustness of an automatic voltage regulator, e-Prime–Adv. Elect. Eng. Electron. Eng., 2 (2022), 100071. |