Research article Special Issues

A new control scheme for temperature adjustment of electric furnaces using a novel modified electric eel foraging optimizer

  • Received: 04 March 2024 Revised: 30 March 2024 Accepted: 03 April 2024 Published: 11 April 2024
  • MSC : 90C26, 90C59

  • In this study, we present a comprehensive framework for enhancing the temperature control of electric furnaces, integrating three novel components: a proportional-integral-derivative controller with a filter (PID-F), a customized objective function, and a modified electric eel foraging optimization (mEEFO) algorithm. The PID-F controller, introduced for the first time in the literature for temperature control of electric furnaces, leverages a filter coefficient to effectively mitigate the kick effect, improving transient and frequency responses. To further optimize the PID-F controller, we employed the mEEFO, a recently proposed metaheuristic inspired by the social predation behaviors of electric eels, with tailored modifications for electric furnace temperature control. The study also introduces a new objective function, based on the modification of the integral of absolute error (IAE) performance index. The proposed framework was evaluated through extensive comparisons with established metaheuristic algorithms, including statistical analysis, Wilcoxon signed-rank test, and time and frequency domain analyses. Comparative assessments with reported methods, such as genetic algorithms and Ziegler–Nichols-based PID controllers, validated the efficacy of the proposed approach, highlighting its transformative impact on electric furnace temperature regulation. The non-ideal conditions such as measurement noise, external disturbance, and saturation at the output of the controller were also evaluated in order to demonstrate the superior performance of the proposed approach from a wider perspective. Furthermore, the robustness of the proposed approach against variations in system parameters was also demonstrated.

    Citation: Sarah A. Alzakari, Davut Izci, Serdar Ekinci, Amel Ali Alhussan, Fatma A. Hashim. A new control scheme for temperature adjustment of electric furnaces using a novel modified electric eel foraging optimizer[J]. AIMS Mathematics, 2024, 9(5): 13410-13438. doi: 10.3934/math.2024654

    Related Papers:

  • In this study, we present a comprehensive framework for enhancing the temperature control of electric furnaces, integrating three novel components: a proportional-integral-derivative controller with a filter (PID-F), a customized objective function, and a modified electric eel foraging optimization (mEEFO) algorithm. The PID-F controller, introduced for the first time in the literature for temperature control of electric furnaces, leverages a filter coefficient to effectively mitigate the kick effect, improving transient and frequency responses. To further optimize the PID-F controller, we employed the mEEFO, a recently proposed metaheuristic inspired by the social predation behaviors of electric eels, with tailored modifications for electric furnace temperature control. The study also introduces a new objective function, based on the modification of the integral of absolute error (IAE) performance index. The proposed framework was evaluated through extensive comparisons with established metaheuristic algorithms, including statistical analysis, Wilcoxon signed-rank test, and time and frequency domain analyses. Comparative assessments with reported methods, such as genetic algorithms and Ziegler–Nichols-based PID controllers, validated the efficacy of the proposed approach, highlighting its transformative impact on electric furnace temperature regulation. The non-ideal conditions such as measurement noise, external disturbance, and saturation at the output of the controller were also evaluated in order to demonstrate the superior performance of the proposed approach from a wider perspective. Furthermore, the robustness of the proposed approach against variations in system parameters was also demonstrated.



    加载中


    [1] P. L. V. Héroult, Recent developments in the electric steel furnace, Ind. Eng. Chem., 5 (1913), 47–49. https://doi.org/10.1021/ie50049a020 doi: 10.1021/ie50049a020
    [2] J. C. Tudon-Martinez, J. de-J. Lozoya-Santos, A. Cantu-Perez, A. Cardenas-Romero, Advanced temperature control applied on an industrial box furnace, J. Therm. Sci. Eng. Appl., 14 (2022), 061001.
    [3] N. Wang, Z. X. Liu, C. Ding, J. Zhang, G. Sui, H. Jia, et al., High efficiency thermoelectric temperature control system with improved proportional integral differential algorithm using energy feedback technique, IEEE T. Ind. Electron., 69 (2022), 5225–5234. https://doi.org/10.1109/TIE.2021.3082462 doi: 10.1109/TIE.2021.3082462
    [4] J. Tang, H. Ni, R. Peng, N. Wang, L. Zuo, A review on energy conversion using hybrid photovoltaic and thermoelectric systems, J. Power Sources, 562 (2023), 232785. https://doi.org/10.1016/j.jpowsour.2023.232785 doi: 10.1016/j.jpowsour.2023.232785
    [5] H. Etchells, Application of electric furnace methods to industrial processes, Trans. Faraday Soc., 14 (1919), 71–78.
    [6] M. M. Hussein, S. Alkhalaf, T. H. Mohamed, D. S. Osheba, M. Ahmed, A. Hemeida, et al., Modern temperature control of electric furnace in industrial applications based on modified optimization technique, Energies, 15 (2022), 8474. https://doi.org/10.3390/en15228474 doi: 10.3390/en15228474
    [7] E. Grassi, K. Tsakalis, PID controller tuning by frequency loop-shaping: application to diffusion furnace temperature control, IEEE T. Contr. Syst. Technol., 8 (2000), 842–847. https://doi.org/10.1109/87.865857 doi: 10.1109/87.865857
    [8] D. Ajorloo, M. Nazari, M. Nazari, N. Sepehry, A. Mohammadzadeh, Mathematical modeling and designing an optimized fuzzy temperature controller for a vacuum box electric furnace: Numerical and experimental study, T. I. Meas. Control, 45 (2023), 1193–1212. https://doi.org/10.1177/01423312221124017 doi: 10.1177/01423312221124017
    [9] B. G. Liptak, Instrument engineers' handbook, volume two: Process control and optimization, CRC Press, 2005. https://doi.org/10.1201/9781315219028
    [10] X. Chen, Temperature control in electric furnaces: Methods, applications, and challenges, J. Phys. Conf. Ser., 2649 (2023), 012032. https://doi.org/10.1088/1742-6596/2649/1/012032 doi: 10.1088/1742-6596/2649/1/012032
    [11] Y. Wang, PID Temperature control, In: Conveyor belt furnace thermal processing, Springer, Cham, 2018, 63–76. https://doi.org/10.1007/978-3-319-69730-7_9
    [12] K. Rsetam, M. Al-Rawi, Z. Cao, Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component, ISA T., 130 (2022), 152–162. https://doi.org/10.1016/j.isatra.2022.03.024 doi: 10.1016/j.isatra.2022.03.024
    [13] D. Rawat, K. Bansal, A. K. Pandey, LQR and PID design technique for an electric furnace temperature control system, In: Proceeding of International Conference on Intelligent Communication, Control and Devices, 2017,561–567. Singapore: Springer, . https://doi.org/10.1007/978-981-10-1708-7_64
    [14] T. Ghanim, A. R. Ajel, A. j. Humaidi, Optimal fuzzy logic control for temperature control based on social spider optimization, IOP Conf. Ser. Mater. Sci. Eng., 745 (2020), 012099. https://doi.org/10.1088/1757-899X/745/1/012099 doi: 10.1088/1757-899X/745/1/012099
    [15] N. Pringsakul, D. Puangdownreong, Mofpa-based pida controller design optimization for electric furnace temperature control system, Int. J. Innov. Comput. Inform. Control, 16 (2020), 1863–1876.
    [16] M. R. Moussa, Temperature control of electric furnace using adaptive lag compensator based on improved gorilla troops optimization: Towards energy efficiency, Aswan Univ. J. Sci. Technol., 3 (2023), 13–29.
    [17] L. Liu, D. Xue, S. Zhang, General type industrial temperature system control based on fuzzy fractional-order PID controller, Complex Intell. Syst., 9 (2023), 2585–2597. https://doi.org/10.1007/s40747-021-00431-9 doi: 10.1007/s40747-021-00431-9
    [18] A. E. Kayabekir, G. Bekdaş, S. M. Nigdeli, Z. W. Geemet, Optimum design of PID controlled active tuned mass damper via modified harmony search, Appl. Sci., 10 (2020), 2976. https://doi.org/10.3390/app10082976 doi: 10.3390/app10082976
    [19] S. Ulusoy, S. M. Nigdeli, G. Bekdaş, Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness, J. Build. Eng., 33 (2021), 101647. https://doi.org/10.1016/j.jobe.2020.101647 doi: 10.1016/j.jobe.2020.101647
    [20] E. Kose, Optimal control of AVR system with tree seed algorithm-based PID controller, IEEE Access, 8 (2020), 89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628 doi: 10.1109/ACCESS.2020.2993628
    [21] R. Alayi, F. Zishan, S. R. Seyednouri, R. Kumaret, M. H. Ahmadi, M. Sharifpur, Optimal load frequency control of island microgrids via a PID controller in the presence of wind turbine and PV, Sustainability, 13 (2021), 10728. https://doi.org/10.3390/su131910728 doi: 10.3390/su131910728
    [22] S. Ekinci, D. Izci, M. R. Al Nasar, L. Abualigah, Logarithmic spiral search based arithmetic optimization algorithm with selective mechanism and its application to functional electrical stimulation system control, Soft Comput., 26 (2022), 12257–12269. https://doi.org/10.1007/s00500-022-07068-x doi: 10.1007/s00500-022-07068-x
    [23] D. Izci, S. Ekinci, C. Budak, V. Gider, PID controller design for DFIG-based wind turbine via reptile search algorithm, In: 2022 Global Energy Conference (GEC), 2022,154–158. https://doi.org/10.1109/GEC55014.2022.9986617
    [24] M. P. E. Rajamani, R. Rajesh, M. W. Iruthayarajan, Design and experimental validation of PID controller for buck converter: A multi-objective evolutionary algorithms based approach, IETE J. Res., 69 (2023), 21–32. https://doi.org/10.1080/03772063.2021.1905564 doi: 10.1080/03772063.2021.1905564
    [25] M. Issa, Enhanced arithmetic optimization algorithm for parameter estimation of PID controller, Arab J. Sci. Eng., 48 (2023), 2191–2205. https://doi.org/10.1007/s13369-022-07136-2 doi: 10.1007/s13369-022-07136-2
    [26] Y. Duan, The design of predictive fuzzy-PID controller in temperature control system of electrical heating furnace, In: Life system modeling and intelligent computing, Berlin, Heidelberg: Springer, 2010,259–265. https://doi.org/10.1007/978-3-642-15597-0_29
    [27] X. Hu, Q. Zou, H. Zou, Design and application of fractional order predictive functional control for industrial heating furnace, IEEE Access, 6 (2018), 66565–66575. https://doi.org/10.1109/ACCESS.2018.2878554 doi: 10.1109/ACCESS.2018.2878554
    [28] V. D. Phan, X. H. Nguyen, V. N. Dinh, T. S. Danget, V. C. Le, S. P. Ho, et al., Development of an adaptive fuzzy-neural controller for temperature control in a brick tunnel kiln, Electronics, 13 (2024), 342. https://doi.org/10.3390/electronics13020342 doi: 10.3390/electronics13020342
    [29] K. Rsetam, M. AL-Rawi, Z. Cao, Robust state feedback control of electric heating furnace using a new disturbance observer, In: TENCON 2021-2021 IEEE Region 10 Conference (TENCON), 2021,423–428. https://doi.org/10.1109/TENCON54134.2021.9707435
    [30] Y. Feng, M. Wu, L. Chen, X. Chen, W. Cao, S. Du, et al., Hybrid intelligent control based on condition identification for combustion process in heating furnace of compact strip production, IEEE T. Ind. Electron., 69 (2022), 2790–2800. https://doi.org/10.1109/TIE.2021.3066918 doi: 10.1109/TIE.2021.3066918
    [31] K. Rsetam, M. Al-Rawi, Z. Cao, Robust composite temperature control of electrical tube furnaces by using disturbance observer, Case Stud. Therm. Eng., 30 (2022), 101781. https://doi.org/10.1016/j.csite.2022.101781 doi: 10.1016/j.csite.2022.101781
    [32] W. Xu, J. Zhang, R. Zhang, Application of multi-model switching predictive functional control on the temperature system of an electric heating furnace, ISA T., 68 (2017), 287–292. https://doi.org/10.1016/j.isatra.2017.02.001 doi: 10.1016/j.isatra.2017.02.001
    [33] H. Dong, X. Li, X. He, Z. Zeng, G. Wen, A two-degree-of-freedom controller for a high-precision air temperature control system with multiple disturbances, Case Stud. Therm. Eng., 50 (2023), 103442. https://doi.org/10.1016/j.csite.2023.103442 doi: 10.1016/j.csite.2023.103442
    [34] Z. Chen, J. Cui, Z. Lei, J. Shen, R. Xiao, Design of an improved implicit generalized predictive controller for temperature control systems, IEEE Access, 8 (2020), 13924–13936. https://doi.org/10.1109/ACCESS.2020.2965021 doi: 10.1109/ACCESS.2020.2965021
    [35] D. Izci, S. Ekinci, E. Eker, A. Demirö ren, Multi-strategy modified INFO algorithm: Performance analysis and application to functional electrical stimulation system. J. Comput. Sci., 64 (2022), 101836. https://doi.org/10.1016/j.jocs.2022.101836 doi: 10.1016/j.jocs.2022.101836
    [36] T. Veerendar, D. Kumar, CBO-based PID-F controller for Load frequency control of SPV integrated thermal power system, Mater. Today Proc., 58 (2022), 593–599. https://doi.org/10.1016/j.matpr.2022.03.414 doi: 10.1016/j.matpr.2022.03.414
    [37] B. Ozgenc, M. S. Ayas, I. H. Altas, Performance improvement of an AVR system by symbiotic organism search algorithm-based PID-F controller, Neural Comput. Appl., 34 (2022), 7899–7908. https://doi.org/10.1007/s00521-022-06892-4 doi: 10.1007/s00521-022-06892-4
    [38] S. Ekinci, H. Çetin, D. Izci, E. Kö se, A novel balanced arithmetic optimization algorithm-optimized controller for enhanced voltage regulation, Mathematics, 11 (2023), 4810. https://doi.org/10.3390/math11234810 doi: 10.3390/math11234810
    [39] D. Izci, R. M. Rizk-Allah, S. Ekinci, A. G. Hussien, Enhancing time-domain performance of vehicle cruise control system by using a multi-strategy improved RUN optimizer, Alex. Eng. J., 80 (2023), 609–622. https://doi.org/10.1016/j.aej.2023.09.009 doi: 10.1016/j.aej.2023.09.009
    [40] E. Eker, M. Kayri, S. Ekinci, D. Izci, Comparison of swarm-based metaheuristic and gradient descent-based algorithms in artificial neural network training, ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J., 12 (2023), e29969. https://doi.org/10.14201/adcaij.29969 doi: 10.14201/adcaij.29969
    [41] R. M. Rizk-Allah, S. Ekinci, D. Izci, An improved artificial rabbits optimization for accurate and efficient infinite impulse response system identification, Decision Anal. J., 9 (2023), 100355. https://doi.org/10.1016/j.dajour.2023.100355 doi: 10.1016/j.dajour.2023.100355
    [42] W. Zhao, L. Wang, Z. Zhang, H. Fan, Ji. Zhang, S. Mirjalili, et al., Electric eel foraging optimization: A new bio-inspired optimizer for engineering applications, Expert Syst. Appl., 238 (2024), 122200. https://doi.org/10.1016/j.eswa.2023.122200 doi: 10.1016/j.eswa.2023.122200
    [43] W. Zhou, P. Wang, X. Zhao, H. Chen, Anti-sine-cosine atom search optimization (ASCASO): A novel approach for parameter estimation of PV models, Environ. Sci. Pollut. Res., 30 (2023), 99620–99651. https://doi.org/10.1007/s11356-023-28777-2 doi: 10.1007/s11356-023-28777-2
    [44] S. Ekinci, D. Izci, Whale optimization algorithm based controller design for air-fuel ratio system, In: Handbook of whale optimization algorithm, Elsevier, 2024,411–421. https://doi.org/10.1016/B978-0-32-395365-8.00035-X
    [45] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
    [46] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [47] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, Harris hawks optimization: Algorithm and applications, Future Gener. Comp. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [48] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inform. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [49] M. M. Gani, M. S. Islam, M. A. Ullah, Optimal PID tuning for controlling the temperature of electric furnace by genetic algorithm, SN Appl. Sci., 1 (2019), 880. https://doi.org/10.1007/s42452-019-0929-y doi: 10.1007/s42452-019-0929-y
    [50] V. Sinlapakun, W. Assawinchaichote, Optimized PID controller design for electric furnace temperature systems with Nelder Mead Algorithm, In: 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2015, 1–4. https://doi.org/10.1109/ECTICon.2015.7206925
    [51] D. A. Bastos, J. Zuanon, L. R. Py-Daniel, C. D.de Santana, Social predation in electric eels, Ecol. Evol., 11 (2021): 1088–1092. https://doi.org/10.1002/ece3.7121 doi: 10.1002/ece3.7121
    [52] G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y
    [53] D. Izci, S. Ekinci, A. Demiroren, J. Hedley, HHO algorithm based PID controller design for aircraft pitch angle control system, In: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020, 1–6. https://doi.org/10.1109/HORA49412.2020.9152897
    [54] D. Izci, S. Ekinci, A novel-enhanced metaheuristic algorithm for FOPID-controlled and Bode's ideal transfer function–based buck converter system, T. I. Meas. Control, 45 (2023), 1854–1872. https://doi.org/10.1177/01423312221140671 doi: 10.1177/01423312221140671
    [55] Z. L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE T. Energy Conver., 19 (2004), 384–391. https://doi.org/10.1109/TEC.2003.821821 doi: 10.1109/TEC.2003.821821
    [56] D. Izci, S. Ekinci, Optimizing three-tank liquid level control: Insights from prairie dog optimization, Int. J. Robot. Control Syst., 3 (2023), 599–608. https://doi.org/10.31763/ijrcs.v3i3.1116 doi: 10.31763/ijrcs.v3i3.1116
    [57] M. S. Ali, L. Wang, H. Alquhayz, O. Ur Rehman, G. Chen, Performance improvement of three-phase boost power factor correction rectifier through combined parameters optimization of proportional-integral and repetitive controller, IEEE Access, 9 (2021), 58893–58909. https://doi.org/10.1109/ACCESS.2021.3073004 doi: 10.1109/ACCESS.2021.3073004
    [58] E. Çelik, M. Karayel, Effective speed control of brushless DC motor using cascade 1PDf-PI controller tuned by snake optimizer. Neural Comput. Appl., 36 (2024), 7439–7454. https://doi.org/10.1007/s00521-024-09470-y doi: 10.1007/s00521-024-09470-y
    [59] D. Izci, S. Ekinci, An improved RUN optimizer based real PID plus second-order derivative controller design as a novel method to enhance transient response and robustness of an automatic voltage regulator, e-Prime–Adv. Elect. Eng. Electron. Eng., 2 (2022), 100071.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1047) PDF downloads(57) Cited by(4)

Article outline

Figures and Tables

Figures(16)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog