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Abstract: In this study, we present a comprehensive framework for enhancing the temperature control 

of electric furnaces, integrating three novel components: a proportional-integral-derivative controller 

with a filter (PID-F), a customized objective function, and a modified electric eel foraging optimization 

(mEEFO) algorithm. The PID-F controller, introduced for the first time in the literature for temperature 

control of electric furnaces, leverages a filter coefficient to effectively mitigate the kick effect, 

improving transient and frequency responses. To further optimize the PID-F controller, we employed 

the mEEFO, a recently proposed metaheuristic inspired by the social predation behaviors of electric 

eels, with tailored modifications for electric furnace temperature control. The study also introduces a 

new objective function, based on the modification of the integral of absolute error (IAE) performance 

index. The proposed framework was evaluated through extensive comparisons with established 

metaheuristic algorithms, including statistical analysis, Wilcoxon signed-rank test, and time and 

frequency domain analyses. Comparative assessments with reported methods, such as genetic 

algorithms and Ziegler–Nichols-based PID controllers, validated the efficacy of the proposed approach, 

highlighting its transformative impact on electric furnace temperature regulation. The non-ideal 

conditions such as measurement noise, external disturbance, and saturation at the output of the 

controller were also evaluated in order to demonstrate the superior performance of the proposed 

approach from a wider perspective. Furthermore, the robustness of the proposed approach against 

variations in system parameters was also demonstrated. 
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1. Introduction 

Electric furnaces stand as indispensable components within various industrial processes, playing 

a pivotal role in the production of metals, alloys, and other critical materials [1]. Their versatility spans 

applications in metallurgy, glass manufacturing, and chemical industries, contributing significantly to 

the foundation of modern industrial infrastructure [2–4]. The efficacy of electric furnaces lies in their 

ability to provide controlled and high-temperature environments essential for the transformation of raw 

materials into refined products, thereby shaping the backbone of numerous manufacturing sectors [5]. 

Efficient control of electric furnaces emerges as a paramount concern due to its direct impact on 

the quality, yield, and energy efficiency of industrial processes. Precise temperature control within 

these furnaces is imperative to ensure the desired material properties, prevent thermal degradation, and 

optimize energy consumption. Inaccurate temperature regulation can lead to suboptimal product 

quality, increased energy costs, and elevated environmental footprints. Therefore, the development of 

advanced control strategies is of utmost importance [6–8]. 

The electric furnace temperature-control system is a prevalent real-world second-order system with 

time delay, widely employed in various industrial production operations [9]. Several control approaches, 

such as proportional-integral-derivative (PID) control, sliding mode control, predictive control, and 

internal model control, are utilized for electric furnace temperature control in the industry [10–12]. For 

instance, a study [13] focused on designing and comparing control strategies for electric furnace 

temperature regulation, introducing both a linear quadratic regulator (LQR) controller and a PID 

controller designed using MATLAB. The LQR technique outperformed PID control in achieving better 

performance for the given electric furnace temperature system. Another work [14] presented a fuzzy 

logic controller (FLC) for temperature control, particularly in air heater applications. The proposed 

PDFLC-SSO controller combined a controller structure with fuzzy inference and utilized a trial-and-

error method along with a social spider optimization (SSO) algorithm for gain factor tuning. 

Simulations demonstrated improved performance with PDFLC-SSO, as indicated by a 7.46% integral 

of time multiplied by absolute error (ITAE) value compared with 9.55% for PDFLC. Addressing 

temperature control in electric heating furnaces, a study [12] proposed a robust scheme using an 

adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode 

component. Comparative simulation results showcased the superior robustness and temperature-

tracking performance of the proposed method. Additionally, an enhanced flower pollination algorithm 

(MoFPA) [15] demonstrated superior tracking and regulating responses for electric furnace 

temperature control compared with PID controllers. Another approach [16] introduced an adaptive lag 

compensator for electric furnace temperature control, utilizing gorilla troops optimization (GTO) with 

the balloon effect (BE) (GTO+BE) identifier. The proposed adaptive lag compensator exhibited 

superior dynamic performance, minimizing overshoot, reducing rise time, and achieving quicker 

settling time. Furthermore, a fuzzy fractional-order PID control algorithm [17] was proposed for 

industrial temperature control, dynamically updating gain coefficients based on fractional-order fuzzy 

rules. This approach proved effective in achieving superior dynamic performance and robustness to 
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environmental changes. From the related literature, it is evident that the PID controller has been the 

most preferred structure, similar to other industrial applications due to its simplicity, clear functionality, 

and applicability [18–25]. It is feasible to encounter more approaches, which are listed in Table 1. 

Table 1. Proposed methods in the literature. 

Reference Year Proposed method 

[26] 2010 Improved Smith predictive fuzzy-PID composite control 

[27] 2018 Fractional-order predictive functional control 

[28] 2024 Adaptive fuzzy-neural control 

[29] 2021 Robust state feedback control  

[30] 2022 Hybrid intelligent control 

[31] 2022 Robust composite control 

[32] 2017 Multi-model switching predictive functional control 

[33] 2023 Two-degree-of-freedom (2DOF) control 

[34] 2020 Implicit proportional-integral-based generalized predictive control 

While the PID controller remains a preferred choice, advancing control strategies is crucial for 

enhancing the overall performance, sustainability, and cost-effectiveness of industrial processes 

relying on electric furnaces. Hence, this study introduces a novel iteration of the PID controller, termed 

PID-F (PID with filter) [35], marking the first instance in the literature of its application for temperature 

control in an electric furnace. The PID-F controller brings a distinct advantage by effectively 

addressing the kick effect through the incorporation of a filter coefficient into the derivative gain [36]. 

This addition introduces a new level of adaptability, aiming to improve transient and frequency 

responses while mitigating the impact of disturbances on the electric furnace temperature-control 

system. 

Choosing an intelligent tuning mechanism holds significant promise for optimizing the PID-F 

controller, and in this regard, metaheuristic approaches prove crucial due to their problem-free and 

stochastic structures [37–41]. In alignment with this perspective, this study employs the recently 

introduced electric eel foraging optimization (EEFO) [42], an advanced optimization technique 

inspired by the social predation behaviors of electric eels. To enhance the performance and 

effectiveness of EEFO, specific modifications tailored for electric furnace temperature control are 

introduced. The modifications include an advanced anti-sine-cosine mechanism [43], which is 

integrated with control parameters such as randomization control and transfer parameters. These are 

implemented to tailor the EEFO for more effectively adjusting the parameters of the PID-F controller 

in the context of electric furnace temperature control, resulting in the modified EEFO (mEEFO) as a 

more suitable tool for this purpose. 

To achieve further improvements, this study introduces a novel objective function, a modification 

of the integral of absolute error (IAE) performance index [44], for the temperature control of electric 

furnaces, marking the first instance of such a proposal. Simultaneously, this newly devised objective 

function takes a prominent role, specifically tailored for the nuanced requirements of electric furnace 

temperature control. It incorporates essential performance metrics, aligning with the need for swift 

response, minimal overshoot, and stable settling times. The meticulous design of this objective 

function aims to navigate the complexities inherent in electric furnace systems, providing a 

comprehensive metric to assess the effectiveness of the proposed PID-F controller. Therefore, the 
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advancement of sophisticated control strategies, exemplified by the proposed PID-F controller with a 

novel modified objective function and the mEEFO algorithm, carries profound significance in 

elevating the performance, sustainability, and cost-effectiveness of industrial processes reliant on 

electric furnaces. 

In summary, this study amalgamates three groundbreaking elements—the PID-F controller, the 

customized objective function, and the mEEFO algorithm—creating a unified framework for electric 

furnace temperature control. Through extensive assessments and comparisons with established 

metaheuristic algorithms (original EEFO [42], arithmetic optimization algorithm [45], whale 

optimization algorithm [46], Harris hawks optimization [47], and gravitational search algorithm [48]), 

we illustrate the transformative impact of this comprehensive approach by statistical analysis, 

Wilcoxon signed-rank test, convergence behavior, and time and frequency domain analyses. 

Additionally, a thorough comparison between the proposed mEEFO and established methods, 

including genetic algorithm [49], Ziegler–Nichols [50], Cohen–Coon [50], and direct synthesis [50] 

based PID controllers, serves to validate the effectiveness of the proposed approach, pushing the 

boundaries of achievable performance in electric furnace temperature regulation. The superiority of 

the proposed approach is ultimately confirmed through various quality indicators. 

2. Electric eel foraging optimization 

Electric eels, native to South America, serve as the inspiration for electric eel foraging optimization 

(EEFO) due to their extraordinary predatory abilities [42]. The EEFO integrates the social predation 

behaviors of electric eels, encompassing interactions, resting, migration, and hunting [51]. The 

mathematical representations of the foraging behaviors are elucidated as follows. 

2.1. Interacting 

Inspired by how eels interact during social predation, EEFO employs a cooperative approach 

where each electric eel represents a candidate solution. In each step, the best candidate solution serves 

as the intended prey. This interaction phase mimics global exploration, where each eel collaboratively 

engages with others based on their positions. Specifically: 

- Eels engage with a partner randomly selected from the entire population, adjusting their positions 

based on the difference between the chosen eel and the population center. 

- Eels additionally interact with randomly selected partners within the population, modifying their 

positions by evaluating the disparity between a randomly selected eel and a position generated 

randomly within the search space. 

Interactions involve a churn, representing random movements in various directions. The churn is 

modeled by the following mathematical representation. 

𝐶 = 𝑛1 × 𝐵,           (1) 

where 𝑛1~𝑁(0,1) and 𝐵 = [𝑏1, 𝑏2, … 𝑏𝑘, … 𝑏𝑑]. In here, 𝑏(𝑘) = 1 for 𝑘 = 𝑔 and 𝑏(𝑘) = 0 

for otherwise. The term 𝑔  is determined as 𝑔 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑑) . The interacting behavior is 

described as: 
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{
 
 

 
 {

𝑣𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝐶 × (�̅�(𝑡) − 𝑥𝑖(𝑡)), 𝑝1 > 0.5

𝑣𝑖(𝑡 + 1) = 𝑥𝑗(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑖(𝑡)), 𝑝1 ≤ 0.5
 𝑓𝑖𝑡(𝑥𝑗(𝑡)) < 𝑓𝑖𝑡(𝑥𝑖(𝑡))

{
𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 × (�̅�(𝑡) − 𝑥𝑗(𝑡)) , 𝑝2 > 0.5

𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝐶 × (𝑥𝑟(𝑡) − 𝑥𝑗(𝑡)) , 𝑝2 ≤ 0.5
 𝑓𝑖𝑡(𝑥𝑗(𝑡)) ≥ 𝑓𝑖𝑡(𝑥𝑖(𝑡))

.  (2) 

In here, 𝑥𝑟 = 𝐿𝑜𝑤 + 𝑟 × (𝑈𝑝 − 𝐿𝑜𝑤) , 𝑝1  and 𝑝2  represent random numbers selected from 

the interval (0, 1). The fitness of the candidate position for the 𝑖𝑡ℎ  electric eel is represented by 

𝑓𝑖𝑡(𝑥𝑖), where 𝑥𝑗 signifies the position of an eel selected randomly from the current population, with 

𝑗 ≠  𝑖. The variable 𝑟 corresponds to a random vector within the range (0, 1), while 𝐿𝑜𝑤 and 𝑈𝑝 

represent the lower and upper boundaries, respectively. Besides, �̅�(𝑡) is given as: 

�̅�(𝑡) =
1

𝑛
∑ 𝑥𝑖(𝑡)
𝑛
𝑖=1 ,          (3) 

where 𝑛  represents the population size. As defined by Eq (3), the interacting behavior facilitates 

electric eels to transition to various positions in the search space, significantly contributing to the 

exploration of the entire search space in the EEFO algorithm. 

2.2. Resting 

In the EEFO algorithm, it is essential to define a resting area prior to the execution of resting 

behavior by electric eels. To enhance the effectiveness of the search process, a designated resting area 

is defined within the portion where one specific dimension of an electric eel’s position vector coincides 

with the main diagonal of the search space. Establishing a resting area entails the normalization of both 

the search space and the eel’s position, ranging from 0 to 1. Subsequently, a randomly chosen 

dimension from the eel’s position is projected onto the main diagonal of the normalized search space, 

determining the central point of the eel’s resting area. The manifestation of the resting behavior is 

expressed as: 

𝑣𝑖(𝑡 + 1) = 𝑅𝑖(𝑡 + 1) + 𝑛2 × (𝑅𝑖(𝑡 + 1) − 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑖(𝑡)),    (4) 

where 𝑛2~𝑁(0,1) and 𝑅𝑖 is the resting position. 

2.3. Hunting 

When electric eels locate prey, their hunting strategy involves more than just swarming. Instead, 

they exhibit cooperative behavior by forming a large circular arrangement to encircle the prey. During 

this process, they engage in constant communication and collaboration with fellow eels, achieved 

through low electric organ discharges. As the interaction among eels intensifies, the size of the 

electrified circle diminishes. Eventually, the eels guide the shoal of fish from deeper waters to 

shallower areas, making them more accessible as prey. In line with this behavior, the electrified circle 

serves as the designated hunting area. At this point, the prey begins to maneuver within the hunting 

area, making sudden and successive movements to various positions due to fear. The hunting behavior 

displayed by eels, characterized by their curling movement, can be explained as follows: 
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𝑣𝑖(𝑡 + 1) = 𝐻𝑝𝑟𝑒𝑦(𝑡 + 1) + 𝜂 × (𝐻𝑝𝑟𝑒𝑦(𝑡 + 1) − 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑) × 𝑥𝑖(𝑡)),   (5) 

where 𝜂 is the curling factor [42] and 𝐻𝑝𝑟𝑒𝑦 the new position of the prey concerning its previous 

position within the hunting area. 

2.4. Migrating 

When electric eels locate prey, their tendency is to transition from the resting area to the hunting 

area. To represent this migratory behavior mathematically, the following equation is employed: 

𝑣𝑖(𝑡 + 1) = −𝑟5 × 𝑅𝑖(𝑡 + 1) + 𝑟6 × (𝐻𝑟(𝑡 + 1) − 𝐿 × (𝐻𝑟(𝑡 + 1) − 𝑥𝑖(𝑡)).   (6) 

Here, 𝐻𝑟 represents any position within the hunting area, while 𝑟5 and 𝑟6 are random numbers 

within the range (0,1). The Levy flight function, denoted as 𝐿, is incorporated into the exploitation 

phase of EEFO to prevent entrapment in local optima. 

2.5. Transition from exploration to exploitation 

In EEFO, the exploration and exploitation transitions crucially depend on an energy factor, 

optimizing the algorithm’s performance [52,53]. The eel’s energy factor value serves as the 

determinant for selecting between exploration and exploitation, and it is formally defined as: 

𝐸(𝑡) = 4 × sin (1 −
𝑡

𝑇
) × 𝑙𝑛

1

𝑟7
,        (7) 

where 𝑟7 is a random number within (0,1). 

3. Modified electric eel foraging optimization 

Traditional metaheuristic algorithms may fail to achieve suboptimal values and suffer from slow 

and premature convergence rates. Accordingly, an advanced anti-sine-cosine mechanism is introduced 

and integrated with control parameters like randomization control and transfer parameters. 

3.1. Linear transfer function 

The linear transfer function (LTF) is a proposed control parameter to achieve the balance between 

exploration-exploitation phases and guarantee a linear transfer from exploration to exploitation 

gradually in appreciate time. It is given as follows: 

𝐿𝑇𝐹 = (1 −
𝑡

𝑇
).          (8) 

3.2. Randomization operator 

The right amount of randomization in each phase of the metaheuristic algorithm is one of the 

guarantees of success of this algorithm. In mEEFO, we integrated the control parameters in the update 
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equation with the randomization operator (RO). RO generates a randomization number with different 

signs to change the arrow of the search agent in a different direction. This avoids stagnation at the local 

optimum RO given by: 

𝑅𝑂 = 2 × 𝑟𝑎𝑛𝑑 − 1,          (9) 

where rand is a random number [0,1]. 

3.3. Advanced anti-sine-cosine 

This section proposes EEFO with an advanced anti-sine-cosine (AASC) mechanism; the anti-

sine-cosine (ASC) mechanism is inspired by the integration between the mutation operators of linear 

population size reduction adaptive differential evolution (LSHADE) with sine cosine algorithm (SCA). 

The main idea behind the ASC mechanism is using two mutation strategies injected with arcsine and 

arccosine functions. Here, the AASC is also injected with two operators, linear transfer function and 

randomization operator (RO), to achieve information communication between different populations 

and a good scan of the given workspace. The AASC mechanism is given as follows. 

Xi(t + 1) = {
Xi(t) + RO × 𝐿𝑇𝐹 × arcsin(R) × [G × (Xprey − Xi(t)) + (Xr1(t) − Xr2(t))] l < 0.5,

Xi(t) + RO × 𝐿𝑇𝐹 × arccos(R) × [G × (Xprey − Xi(t)) + (Xr1(t) − Xr2(t))] otherwise.
 (10) 

The pseudocode of the proposed mEEFO is given in Algorithm 1. 

4. Mathematical modeling of electric furnace temperature-control system 

The components of the temperature control system for an electric furnace, as outlined in [50], 

consist of the electric furnace itself, a controller, and a thermocouple. Figure 1 illustrates the 

configuration where the controller is employed to regulate the temperature within the electric furnace. 

In this way, the real-time temperature is detected, and the control algorithm adjusts the power demand 

of the furnace accordingly. 

PID-F 

controller 

Heater

Electric 

furnace

Temperature 

sensor

U
R

y

r

Input

Output

 

Figure 1. Block diagram of electric furnace temperature control system. 
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Algorithm 1. Pseudocode of the proposed mEEFO. 

1) Initialize EEFO parameters 𝑛, 𝑇. 

2) Initialize the positions of candidate solutions randomly. 𝑋𝑖: 𝑖 =  1, … , 𝑛.  

3) While (t <T) do  

4) Update LTF 

5) Calculate the fitness values (𝐹𝑖𝑡𝑖) of the candidate solutions (𝑋𝑖). 
6) Find the optimal solution so far 𝑋𝑝𝑟𝑒𝑦.  

7) For (i = 1 to N) do 

   a) Calculate E. 

   b) If 𝐸 >  1 

      i) Perform the interacting behavior.  

      ii) Evaluate the fitness 𝐹𝑖𝑡𝑖 

   c) Else 

      i) If 𝑟𝑎𝑛𝑑 < 1/3 

         1) Determining the resting region.  

         2) Perform the resting behavior.  

         3) Evaluate the fitness 𝐹𝑖𝑡𝑖 

      ii) Else If 𝑟𝑎𝑛𝑑 > 2/3 

         1. Perform the migrating behavior.  

      iii) Else 

         1. Determining the hunting region. 

         2. Perform hunting behavior. 

      iv) End If 

   d) End If  

   e) Update each eel’s position.  

8) End For 

9) For (𝑖 =  1 𝑡𝑜 𝑁) do  

   a) Update randomization operator. 

   b) Parameters setting for 𝑟1, 𝑟2, 𝑙, 𝑅 and 𝐺. 

   c) Update each solution’s position.  

10) End For 

11) Update the best solution found so far 𝑋𝑝𝑟𝑒𝑦.  

12) End While  

13) Return 𝑋𝑝𝑟𝑒𝑦. 

In the related figure, 𝑟 represents the input voltage, 𝑈 stands for the output voltage generated 

by the controller, 𝑦 corresponds to the output voltage measured by the thermocouple, and 𝑅 denotes 

the armature resistance. In order to analyze the temperature control system of the electric furnace, a 

mathematical model is derived based on the transfer function. The transfer function of the system is 

represented by 𝐺𝑝(𝑠) and is given by: 

𝐺𝑝(𝑠) =
𝑏0

𝑎2𝑠
2+𝑎1𝑠+𝑎0

𝑒−𝐷𝑠 =
0.15

𝑠2+1.1𝑠+0.2
𝑒−1.5𝑠.      (11) 

To facilitate analysis and simulation, a first order Padé approximation is employed for the 
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exponential term 𝑒−𝐷𝑠 (using 1.5 𝑠 time delay), resulting in: 

𝑒−𝐷𝑠 ≅
2−𝐷𝑠

2+𝐷𝑠
.          (12) 

Substituting this approximation into Eq (11), the transfer function 𝐺𝑝(𝑠) can be expressed in a 

simplified form: 

𝐺𝑝(𝑠) =
−0.1125𝑠+0.15

0.75𝑠3+1.825𝑠2+1.25𝑠+0.2
.        (13) 

To further characterize the system’s behavior, the step response of the system without a controller 

is analyzed, as depicted in Figure 2. 
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Figure 2. Step response of the system without the controller. 

The key performance metrics extracted from the step response are as follows: 

- Rise time is 10.2191 𝑠. 

- Settling time is 19.8657 𝑠. 

- No (zero) overshoot. 

It is important to note that these key performance metrics can be enhanced through the application 

of novel control methods. Therefore, this study incorporates a novel control mechanism accompanied 

by an innovative tuning strategy. 

5. Proposed novel control method 

5.1. The structure of the controller 

In this investigation, a novel approach is introduced by employing a proportional-integral-

derivative controller with a filter (PID-F) mechanism for the first time in the literature. The 

performance of the electric furnace system is enhanced through this innovative control strategy. The 

transfer function of the PID-F controller is defined by Eq (14), wherein the proportional, integral, 

derivative, and low-pass filter gains are denoted as 𝐾𝑃, 𝐾𝐼, 𝐾𝐷, and 𝑁, respectively [35]. 
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𝐶𝑃𝐼𝐷−𝐹(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷

𝑁𝑠

𝑠+𝑁
.        (14) 

The PID-F controller offers a distinctive advantage by effectively mitigating the kick effect 

through the incorporation of a filter coefficient into the derivative gain. Consequently, this modification 

enhances the immunity of the electric furnace system to noise. 

5.2. Objective function 

To enhance the temperature control performance of the electric furnace system, the integral of 

absolute error (IAE), as defined in Eq (15), can be considered a suitable objective function for 

minimization. The IAE is given by the integral of the absolute difference between the reference signal 

𝑟(𝑡) and the system output 𝑦(𝑡) [54]: 

𝐼𝐴𝐸 = ∫ |𝑟(𝑡) − 𝑦(𝑡)|𝑑𝑡
∞

0
= ∫ |𝑒(𝑡)|𝑑𝑡

∞

0
.       (15) 

Here, 𝑒(𝑡)  represents the error between the input and output signals, expressed as 𝑒(𝑡) =

𝑟(𝑡) − 𝑦(𝑡). In the context of temperature control for the electric furnace system, achieving low or no 

overshoot with a rapid settling time is desirable. To meet these criteria, a novel cost function 𝐹 is 

proposed in this study, as described by Eq (16) [44]: 

𝐹 = 𝜌 × 𝐼𝐴𝐸 + (1 − 𝜌) × 𝑇𝑠𝑒𝑡       (16) 

Here, 𝜌 serves as a balancing coefficient, set to 𝜌 = 0.70 for this study, and 𝑇𝑠𝑒𝑡 represents 

the settling time. The proposed cost function combines the integral of absolute error and settling time, 

reflecting the importance of minimizing overshoot while achieving a swift settling response. For this 

study, the parameter limitations are established as follows: 

- 1 ≤ 𝐾𝑃 ≤ 4 

- 0 ≤ 𝐾𝐼 ≤ 2 

- 3 ≤ 𝐾𝐷 ≤ 7 

- 10 ≤ 𝑁 ≤ 500 

These constraints provide a framework for parameter tuning, ensuring the optimization of the 

temperature control system for the electric furnace. 

5.3. Implementation of proposed algorithm 

In the pursuit of optimizing the temperature control of the electric furnace system, an innovative 

approach is adopted, leveraging the proposed mEEFO. This sophisticated algorithm aims to minimize 

the newly introduced 𝐹  objective function, thereby facilitating the identification of optimal 

parameters for the PID-F controller. Figure 3 illustrates the structured integration of the PID-F-

controlled system tuned by the mEEFO. This configuration embodies the synergy between the PID-F 

controller and the mEEFO algorithm, showcasing their collaborative role in refining the control 

parameters for the electric furnace system. Through this innovative implementation, the study 

endeavors to establish a robust and efficient temperature-control strategy for the electric furnace 

system, capitalizing on the synergistic capabilities of the mEEFO algorithm and the PID-F controller. 
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Figure 3. Structure of PID-F-controlled system tuned by mEEFO. 

6. Simulation results and discussion 

6.1. Developed MATLAB m-file and Simulink model 

To facilitate the exploration and validation of the proposed temperature-control strategy for the 

electric furnace system, a MATLAB-based Simulink model has been developed. This comprehensive 

model encapsulates the dynamics of the system, integrating the PID-F controller tuned by the mEEFO. 

The core functionalities of the model are encapsulated within a MATLAB m-file (as shown in 

Algorithm 2), designed to interface with Simulink for simulation and analysis. This m-file 

encompasses the implementation of the mEEFO, the PID-F controller, and the dynamics of the electric 

furnace system. It allows the systematic evaluation of the proposed control strategy. 
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Algorithm 2. MATLAB codes for mEEFO-based electric furnace temperature-control system. 

% Open-loop system response 

s=tf('s'); 

G1=0.15/(s^2+1.1*s+0.2); G2=(1-0.75*s)/(1+0.75*s); 

G=G1*G2; % step(G), stepinfo(G) 

t=0:0.01:50; y_no=step(G, t); stepinfo(y_no, t) 

plot(t, y_no, t, 1+t*0) 

xlabel('Time (s)'); ylabel('Normalized output temperatures') 

% mEEFO-PIDF design 

Kp=3.2995; Ki=0.6156; Kd=4.4621; N=368.4193; % Optimized parameters of mEEFO 

s=tf('s'); 

C=Kp+Ki/s+Kd*N*s/(s+N); % PID-F controller  

T_meefo_open=G*C; T_meefo=feedback(G*C,1); 

t=0:0.01:50; y_meefo=step(T_meefo, t); S=stepinfo(y_meefo, t, 1) 

sim(temp_cont_sim') % Developed Simulink model  

IAE=J_iae.signals.values(end) 

ZLG=(1-exp(-1))*S.Overshoot*0.01+exp(-1)*(S.SettlingTime-S.RiseTime) 

Fit=0.70*J_iae.signals.values(end)+0.30*S.SettlingTime % Fitness function evaluation  

bode(T_meefo_open); [Gm,Pm] = margin(T_meefo_open); 

bandwidth(T_meefo), GmdB=20*log10(Gm), Pm 

Figure 4 visually presents the architecture of the Simulink model, encapsulating the 

interconnected components, feedback loops, and the PID-F-controlled system tuned by the mEEFO. 

This Simulink model becomes a crucial tool for experimentation, enabling the investigation of the 

proposed control strategy’s efficacy under diverse scenarios and conditions. 
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Figure 4. Simulink model for temperature control of electric furnace system. 
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6.2. Compared metaheuristic algorithms 

To comprehensively assess the performance of the proposed mEEFO, a comparative study is 

conducted, involving well-established metaheuristic algorithms. In addition to the original electric eel 

foraging optimization (EEFO) [42], this evaluation incorporates recent and highly effective algorithms, 

including the arithmetic optimization algorithm (AOA) [45], whale optimization algorithm (WOA) [46], 

Harris hawks optimization (HHO) [47], and gravitational search algorithm (GSA) [48]. The selected 

metaheuristic algorithms (as shown in Table 2) were chosen for their prominence in optimization tasks. 

These algorithms, each renowned for specific attributes, contribute to a thorough examination of the 

proposed mEEFO. This comprehensive comparison can provide valuable insights into the relative 

strengths and weaknesses of the proposed mEEFO against established optimization methods, shedding 

light on its efficacy in the context of temperature control for the electric furnace system. 

Table 2. Parameter settings for all algorithms. 

Algorithms 
Population 

size 

Maximum 

iterations 
Other control parameters 

mEEFO (proposed) 30 50 - 

EEFO [42] 30 50 - 

AOA [45] 30 50 
Sensitive parameter 𝛼 = 5, control 

parameter 𝜇 = 0.499 

WOA [46] 30 50 
Convergence parameter (𝑎) linearly 

decreases from 2 to 0 

HHO [47] 30 50 Random variable 𝐸0 ∈ [−1, 1] 

GSA [48] 30 50 
Gravitational constant 𝐺0 = 100, decreasing 

coefficient 𝑎 = 20 

6.3. Statistical analysis 

To comprehensively evaluate the performance of the metaheuristic algorithms in minimizing the 

objective function, a detailed statistical analysis was conducted, revealing significant insights into their 

comparative effectiveness. Figure 5 provides a visual representation of the statistical analysis 

considering all runs for each algorithm. The results showcase the efficacy of each algorithm in 

achieving the minimization of the objective function. Notably, the proposed mEEFO demonstrates 

superior performance, as reflected in its competitive position among the algorithms. 

The boxplots provide a comprehensive view of the spread and central tendencies, allowing for a 

deeper understanding of the algorithms’ consistency and robustness in achieving optimal solutions. In 

Figure 6, the boxplot analysis further elucidates the distribution and variability of the performance 

results across multiple runs for each algorithm. 
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Figure 5. Statistical analysis for the minimization of the objective function considering all runs. 
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Figure 6. Boxplot analysis. 

Table 3 presents a numerical overview of the statistical performance of the algorithms, capturing 

key metrics such as the best, worst, mean, standard deviation (SD), median, and rank for each algorithm. 

The values underscore the efficacy of the algorithms in objective function minimization. 

Table 3. Numerical presentation of the statistical performance of the algorithms. 

Algorithms Best Worst Mean SD Median Rank 

mEEFO 2.7926 2.8982 2.8420 0.0318 2.8461 1 

EEFO 2.9729 3.1287 3.0424 0.0409 3.0426 2 

AOA 3.2195 3.4230 3.2919 0.0501 3.2887 4 

WOA 3.3685 3.6117 3.4496 0.0523 3.4600 6 

HHO 3.1501 3.3637 3.2177 0.0472 3.2158 3 

GSA 3.2577 3.4978 3.3362 0.0612 3.3323 5 
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The proposed mEEFO achieved the best performance with a minimum objective function value 

of 2.7926. This indicates that mEEFO consistently found solutions with the lowest objective function 

values among all algorithms. Examining the standard deviation, mEEFO exhibited the lowest value 

(0.0318), suggesting a high level of consistency and robustness in achieving optimal solutions. A lower 

standard deviation implies less variability in performance across multiple runs. The median value for 

mEEFO (2.8461) is close to the best performance, indicating a stable and reliable performance across 

various optimization runs. This aligns with the visual representation in Figure 6, where the boxplot 

shows a tight distribution of results for mEEFO. The rank column reveals that mEEFO secured the top 

position (Rank 1) among all algorithms. This consistent top ranking indicates the algorithm's 

superiority in minimizing the objective function compared with the other metaheuristic algorithms 

considered. Notably, mEEFO outperformed the original EEFO, AOA, WOA, HHO, and GSA in terms 

of achieving lower objective function values. These results collectively suggest that the proposed 

mEEFO algorithm demonstrates exceptional efficiency, reliability, and effectiveness in optimizing the 

temperature control of the electric furnace system. The consistency in achieving superior results across 

multiple runs underscores the algorithm’s robustness and potential applicability in practical scenarios. 

6.4. Wilcoxon test 

Table 4 presents the results of the nonparametric Wilcoxon signed-rank test, offering valuable 

insights into the statistical significance of performance differences between the proposed mEEFO and 

its competitors. The p-values obtained from the Wilcoxon test for all comparisons between mEEFO 

and its competitors are remarkably small (1.7344E−06), suggesting highly significant differences in 

performance. In all comparisons, the p-values are consistent, indicating that mEEFO is statistically 

superior to EEFO, AOA, WOA, HHO, and GSA. The "Superior" column unequivocally states that 

mEEFO outperforms the respective competitors in each comparison. The small p-value (1.7344E−06) 

underscores the high statistical significance of the observed differences. This provides strong evidence 

to reject the null hypothesis, affirming the superiority of mEEFO. These findings, supported by the 

Wilcoxon signed-rank test, further reinforce the robust performance and effectiveness of the proposed 

mEEFO algorithm in comparison to established metaheuristic algorithms. The consistent superiority 

across multiple comparisons highlights mEEFO as a statistically significant and reliable optimization 

strategy for the temperature control of the electric furnace system. 

Table 4. p-values obtained from nonparametric Wilcoxon signed-rank test. 

Proposed Competitor p-value Superior 

mEEFO EEFO 1.7344E−06 mEEFO 

mEEFO AOA 1.7344E−06 mEEFO 

mEEFO WOA 1.7344E−06 mEEFO 

mEEFO HHO 1.7344E−06 mEEFO 

mEEFO GSA 1.7344E−06 mEEFO 

6.5. Change of objective function and obtained best controller parameters 

In this section, we delve into the convergence behavior of the proposed mEEFO in comparison to 

other metaheuristic algorithms. Additionally, the obtained best controller parameters and their 
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corresponding closed-loop transfer functions are presented for a comprehensive understanding of the 

optimization process. Figure 7 showcases the convergence curves of the objective function for mEEFO, 

EEFO, AOA, WOA, HHO, and GSA. It is evident from the convergence curves that mEEFO 

consistently reaches the lowest objective function values compared with the other algorithms, 

affirming its effectiveness in rapidly converging to optimal solutions. 
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Figure 7. Convergence curves of objective function for mEEFO, EEFO, AOA, WOA, HHO, and GSA. 

Table 5 provides a comprehensive overview of the best controller parameters obtained through 

the optimization process for each algorithm. Additionally, the table includes the respective closed-loop 

transfer functions, offering insights into the dynamic characteristics of the optimized controllers. These 

parameters are critical in achieving optimal closed-loop performance for the temperature-control 

system. The combined analysis of convergence behavior and obtained controller parameters offers a 

holistic perspective on the efficacy of the optimization algorithms in tailoring controllers for the 

temperature control of the electric furnace system. The dominance of mEEFO in convergence and 

parameter optimization underscores its potential for practical implementation in real-world control 

scenarios. 

6.6. Step response analysis 

In this section, we delve into the time domain–based performance of different optimization 

algorithms by analyzing their step responses. The step response is a crucial indicator of the system’s 

performance in terms of stability, speed, and precision. Figure 8 illustrates the step responses of various 

algorithms, providing valuable insights into their dynamic behavior. Additionally, Figure 9 offers a 

closer examination of the step responses presented in Figure 8, focusing on key performance indicators 

such as overshoot (𝑂𝑆), rise time (𝑇𝑟𝑖𝑠𝑒), and settling time (𝑇𝑠𝑒𝑡). 
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Table 5. Obtained best controller parameters and the respective closed-loop transfer functions. 

Algorithms 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝑁 Closed-loop transfer function 

mEEFO 3.2995 0.6156 4.4621 368.4193 
−185.3𝑠3 +  110.3𝑠2 + 156.9𝑠 + 34.02

0.75𝑠5 + 278.1𝑠4 + 488.3𝑠3 + 571𝑠2 + 230.6𝑠 + 34.02
 

EEFO 3.1365 0.5925 4.1063 482.4784 
−223.2𝑠3 + 127.3𝑠2 + 194.9𝑠 + 42.88

0.75𝑠5 + 363.7𝑠4 + 658.5𝑠3 + 730.6𝑠2 + 291.4𝑠 + 42.88
 

AOA 3.2516 0.5874 4.0930 276.9906 
−127.9𝑠3 + 69.16𝑠2 + 116.9𝑠 + 24.41

0.75𝑠5 + 209.6𝑠4 + 378.8𝑠3 + 415.6𝑠2 + 172.3𝑠 + 24.41
 

WOA 3.3376 0.5802 4.0353 86.5032 
−39.65𝑠3 + 20.32𝑠2 + 37.75𝑠 + 7.528

0.75𝑠5 + 66.7𝑠4 + 119.5𝑠3 + 128.6𝑠2 + 55.05𝑠 + 7.528
 

HHO 3.2920 0.6205 4.3618 247.8975 
−122𝑠3 + 70.81𝑠2 + 105.2𝑠 + 23.07

0.75𝑠5 + 187.7𝑠4 + 331.6𝑠3 + 380.9𝑠2 + 154.8𝑠 + 23.07
 

GSA 3.2147 0.5537 3.8479 364.1738 
−158𝑠3 + 78.91𝑠2 + 153𝑠 + 30.25

0.75𝑠5 + 275𝑠4 + 507.9𝑠3 + 534.3𝑠2 + 225.8𝑠 + 30.25
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Figure 8. Step responses of different algorithms. 
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Figure 9. Zoomed-in view of step responses. 

Table 6 provides a numerical assessment of the time domain–based performance metrics, offering 

quantitative values for overshoot, rise time, and settling time for each algorithm. The numerical values 

in Table 6 demonstrate that mEEFO achieves the lowest overshoot (1.7563%), indicating superior 

control over transient oscillations compared with other algorithms. mEEFO exhibits the lowest rise 

time (1.8078 𝑠), signifying a quicker response to changes in the reference signal compared with its 

counterparts. With a settling time of 3.6176 𝑠, mEEFO outperforms other algorithms in achieving 

stability and precision in a shorter time duration. These results collectively suggest that mEEFO not 

only excels in the optimization process but also translates to superior dynamic performance in the time 

domain. The step response analysis, supported by numerical values, further reinforces the efficacy of 

mEEFO in achieving precise and efficient temperature control for the electric furnace system. 
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Table 6. Numerical assessment of time domain–based performance. 

Algorithms 𝑂𝑆 (%) 𝑇𝑟𝑖𝑠𝑒 (s) 𝑇𝑠𝑒𝑡 (s) 

mEEFO 1.7563 1.8078 3.6176 

EEFO 1.8421 2.0330 4.0212 

AOA 2.1749 1.9364 4.9761 

WOA 3.8198 1.8674 5.4821 

HHO 2.2336 1.8297 4.7739 

GSA 2.0468 2.0378 5.0418 

6.7. Frequency response analysis 

This section focuses on the frequency domain–based performance of various optimization 

algorithms through the examination of Bode diagrams. Figure 10 visually represents the Bode 

diagrams for each algorithm, providing insights into their frequency response characteristics. 

Additionally, Table 7 offers a numerical assessment of key frequency domain parameters, including 

phase margin (𝑀𝑝ℎ𝑎𝑠𝑒), gain margin (𝑀𝑔𝑎𝑖𝑛), and bandwidth (𝑊𝑏𝑎𝑛𝑑). 
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Figure 10. Bode diagrams of the algorithms. 

As seen from Table 7, mEEFO exhibits a phase margin of 62.784°, reflecting a robust stability 

margin in the frequency domain. This indicates a healthy margin before the system becomes unstable. 

With a gain margin of 8.3291 𝑑𝐵, mEEFO demonstrates a satisfactory buffer against gain variations, 

contributing to system stability. The bandwidth of 1.4525 rad/s for mEEFO indicates the range of 

frequencies where the system operates effectively, providing valuable information about the 

algorithm’s responsiveness to input signals. In summary, the frequency response analysis suggests that 

mEEFO not only excels in the time domain but also exhibits favorable characteristics in the frequency 

domain. The phase margin, gain margin, and bandwidth values collectively contribute to a 

comprehensive understanding of the algorithm’s stability and performance across different frequencies. 
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Table 7. Numerical assessment of frequency domain–based performance. 

Algorithms 𝑀𝑝ℎ𝑎𝑠𝑒 (°) 𝑀𝑔𝑎𝑖𝑛 (dB) 𝑊𝑏𝑎𝑛𝑑 (rad/s) 

mEEFO 62.7840 8.3291 1.4525 

EEFO 63.0627 8.9281 1.3027 

AOA 61.7872 8.7470 1.3266 

WOA 60.4229 8.5523 1.3379 

HHO 62.0265 8.4250 1.4181 

GSA 61.7277 9.0409 1.2476 

6.8. Comparison with reported methods 

In this section, we conduct a comprehensive comparison between the proposed mEEFO and 

reported methods, including genetic algorithm (GA) [49], Ziegler–Nichols (ZN) [50], Cohen–Coon 

(CC) [50], and direct synthesis (DS) [50]-based PID controllers. The evaluation encompasses both 

time-domain and frequency-domain performance metrics to provide a holistic understanding of the 

comparative effectiveness of these methods. 

Figure 11 presents comparative step responses, allowing for a visual assessment of the dynamic 

behavior of the systems controlled by mEEFO and reported methods. This comparison provides 

insights into the transient response characteristics, emphasizing overshoot, rise time, and settling time. 
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Figure 11. Comparative step responses with reported methods. 

Table 8 offers a numerical assessment of the time-domain performance, providing quantitative 

values for overshoot, rise time, and settling time for mEEFO and reported methods. As seen from this 

table, mEEFO exhibits the lowest overshoot among all methods, indicating superior control over 

transient oscillations. It achieves a competitive rise time, emphasizing its responsiveness to changes in 

the reference signal. mEEFO also outperforms other methods in settling time, achieving stability and 

precision in a shorter duration. 
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Table 8. Comparative time domain–based performance assessment. 

Algorithms 𝑂𝑆 (%) 𝑇𝑟𝑖𝑠𝑒 (s) 𝑇𝑠𝑒𝑡 (s) 

mEEFO 1.7563 1.8078 3.6176 

GA 3.2725 1.1378 7.3185 

ZN 37.5675 1.2840 10.1386 

CC 17.8485 1.7853 21.4023 

DS 3.6937 3.0806 9.3605 

Figure 12 illustrates comparative Bode diagrams, providing insights into the frequency response 

characteristics of mEEFO and reported methods. This analysis focuses on phase margin, gain margin, 

and bandwidth, offering a detailed view of stability and performance in the frequency domain. 
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Figure 12. Comparative Bode diagrams with reported methods. 

Table 9 offers numerical values for phase margin, gain margin, and bandwidth, facilitating a 

quantitative assessment of the frequency-domain performance for mEEFO and reported methods. 

From this table, it can be seen that mEEFO and DS demonstrate competitive phase margins, indicating 

robust stability in the frequency domain. mEEFO and DS exhibit favorable gain margins, providing a 

buffer against gain variations for stable system operation. mEEFO achieves a competitive bandwidth, 

showcasing its effectiveness in responding to a range of input frequencies. In summary, the 

comprehensive comparison with reported methods highlights the superior performance of mEEFO, 

both in the time and frequency domains. The visual representation and numerical assessment 

underscore the efficacy of mEEFO in achieving precise and stable control for the electric furnace 

system when compared with established control methods. 

Table 9. Comparative frequency domain–based performance assessment. 

Algorithms 𝑀𝑝ℎ𝑎𝑠𝑒 (°) 𝑀𝑔𝑎𝑖𝑛 (dB) 𝑊𝑏𝑎𝑛𝑑 (rad/s) 

mEEFO 62.7840 8.3291 1.4525 

GA 68.9974 5.8858 2.2322 

ZN 36.9753 6.8084 1.4966 

CC 45.8826 7.5116 1.1753 

DS 61.1560 11.7940 0.7403 
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6.9. Performance evaluation via quality indicator 

For this study, we have proposed a new 𝐹 objective function, as outlined in section 5.2, which 

is based on a modified 𝐼𝐴𝐸 quality indicator. This has been designated to achieve low or no overshoot 

with a rapid settling time for temperature control of the electric furnace system. To further demonstrate 

the efficacy of the proposed approach, the actual IAE performance metric [54] has also been used as a 

quality indicator. Besides, a well-known time-domain criteria-based performance metric known as 

Zwee-Lee-Gaing (ZLG) [55,56] has also been adopted for further assessment. The structure of the IAE 

quality indicator has already been expressed in section 5.2. The ZLG quality indicator is given by [57]: 

𝑍𝐿𝐺 = (1 − 𝛿) × (
%𝑂𝑆

100
+ 𝐸𝑠𝑠) + 𝛿 × (𝑇𝑠𝑒𝑡 − 𝑇𝑟𝑖𝑠𝑒),     (17) 

where 𝛿 = 𝑒−1 = 0.3679 serves as a balancing factor and 𝐸𝑠𝑠 is steady state error. 

The comparative values of the IAE quality indicator obtained via different approaches are 

presented in Figure 13. Figure 14, on the other hand, displays the comparative values of ZLG quality 

indicator obtained via different approaches. As seen from those illustrations, the proposed mEEFO 

reaches the smallest values both for IAE (2.4390) and ZLG (0.6769) quality indicators, making it the 

more efficient approach even with different performance indices. 
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6.10. Robustness validation of proposed controller 

The robustness of a control system is a desirable feature that gauges its capability to endure 

uncertainties and disturbances across its parameters, inputs, outputs, and environment [58,59]. 

Considering this important feature, we have performed a robustness analysis by considering the 

scenarios presented in Table 10. As seen from the numerical results provided in the respective table, 

the proposed mEEFO has greater capability in terms of handling the parametric variations, which 

makes it superior in terms of robustness. 

Table 10. The robustness performance of PID-F-controlled system tuned by mEEFO and 

EEFO algorithms. 

Scenario Algorithms 𝑂𝑆 (%) 𝑇𝑟𝑖𝑠𝑒 (s) 𝑇𝑠𝑒𝑡 (s) 

𝑎2 = 1.16, 𝑎1 = 1.075, 

 𝑎0 = 0.195, 𝑏0 = 0.12 

mEEFO 1.3119 2.7277 5.2390 

EEFO 1.5061 2.9867 5.6119 

𝑎2 = 0.85, 𝑎1 = 1.125, 

 𝑎0 = 0.22, 𝑏0 = 0.16 

mEEFO 0.8669 1.5984 7.4600 

EEFO 0.9470 1.8676 7.5230 

6.11. Performance evaluation for non-ideal conditions 

To further demonstrate the superior efficacy of the proposed approach, a more realistic model for 

the temperature control of an electric furnace system has also been considered in this study. In this regard, 

more real conditions, such as measurement noise as a disturbance source, external disturbance, and the 

saturation at the input of the system as a non-linear effect in the electric furnace temperature system, 

were considered. The respective system with such non-ideal conditions is illustrated in Figure 15. 

𝐸(𝑠) 𝑅(𝑠) 

− 
+ 

−0.1125𝑠 + 0.15

0.75𝑠3 + 1.825𝑠2 + 1.25𝑠 + 0.2
 𝐾𝑃 +

𝐾𝐼
𝑠

+ 𝐾𝐷
𝑁𝑠

𝑠 + 𝑁
 

 Electric furnace temperature systemPID-F controller 

𝑈(𝑠) 𝑌(𝑠) 

Saturation/

Limiter

+ 
+ 

External 

disturbance

+ 
+ 

Measurement 

noise  

Figure 15. A more realistic model for temperature control in an electric furnace system. 

With regards to measurement noise, white Gaussian noises with a signal-to-noise ratio (𝑆𝑁𝑅) of 

20 𝑑𝐵 were considered. The normalized output temperature changes considering ideal and non-ideal 

conditions are displayed in Figure 16. As can be observed from this figure, the proposed method is 

quite capable of handling the non-linear effects by quickly recovering the desired output. 
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Figure 16. Step responses of mEEFO-tuned system with ideal and non-ideal conditions. 

7. Conclusions 

This study has introduced a comprehensive framework for the temperature control of electric 

furnaces, combining innovative elements such as the PID-F controller, a novel modified objective 

function, and the mEEFO algorithm. Through extensive evaluations and comparisons with established 

metaheuristic algorithms including the original EEFO, arithmetic optimization algorithm, whale 

optimization algorithm, Harris hawks optimization, and gravitational search algorithm, the proposed 

approach demonstrates transformative impact across various analyses. The structured abstract reveals 

the effectiveness of the holistic approach in terms of statistical analysis, Wilcoxon signed-rank test, 

convergence behavior, time and frequency domain analyses, as well as comprehensive comparisons 

with reported methods like genetic algorithm, Ziegler–Nichols, Cohen–Coon, and direct synthesis–

based PID controllers. The superiority of the proposed approach is highlighted through various quality 

indicators, marking a significant advancement in electric furnace temperature regulation. In light of 

the above discussion, the significant contributions of this work can briefly be listed as follows. 

- The mEEFO algorithm was developed by integrating effective operators into the current EEFO 

algorithm. 

- A mEEFO-based PID-F controller for the electric furnace temperature control system was 

proposed for the first time. 

- Detailed comparisons were provided with significant control methods reported in the literature 

and various metaheuristic optimization methods with different sources of inspiration. 

- The effectiveness and potential of the proposed control method under non-ideal conditions were 

validated through statistical analyses, Wilcoxon tests, convergence curves, step response, 

frequency response, and robustness analyses. 

As a pathway for future research, several promising directions emerge from this study. First, 

exploring the adaptability and performance of the proposed framework in real-world industrial settings 

would provide valuable insights into its practical applicability. Additionally, investigating the impact 

of varying environmental conditions and system uncertainties on the proposed approach could enhance 

its robustness. Further refinement and optimization of the mEEFO algorithm and exploration of 

alternative objective functions could lead to even more sophisticated control strategies. Collaborative 

efforts between control engineers and industry practitioners may facilitate the integration of this 

framework into industrial automation systems. Finally, extending the study to encompass multi-
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variable systems and addressing the challenges associated with non-linearities and external 

disturbances would contribute to a more comprehensive understanding of the proposed framework’s 

capabilities in complex industrial scenarios. 

Use of AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

The authors would like to express their gratitude to Princess Nourah bint Abdulrahman University 

Researchers Supporting Project number (PNURSP2024R716), Princess Nourah bint Abdulrahman 

University, Riyadh, Saudi Arabia. 

Funding 

This research was funded by Princess Nourah bint Abdulrahman University Researchers 

Supporting Project number (PNURSP2024R716), Princess Nourah bint Abdulrahman University, 

Riyadh, Saudi Arabia. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

1. P. L. V. Héroult, Recent developments in the electric steel furnace, Ind. Eng. Chem., 5 (1913), 47–

49. https://doi.org/10.1021/ie50049a020 

2. J. C. Tudon-Martinez, J. de-J. Lozoya-Santos, A. Cantu-Perez, A. Cardenas-Romero, Advanced 

temperature control applied on an industrial box furnace, J. Therm. Sci. Eng. Appl., 14 (2022), 

061001. 

3. N. Wang, Z. X. Liu, C. Ding, J. Zhang, G. Sui, H. Jia, et al., High efficiency thermoelectric 

temperature control system with improved proportional integral differential algorithm using 

energy feedback technique, IEEE T. Ind. Electron., 69 (2022), 5225–5234. 

https://doi.org/10.1109/TIE.2021.3082462 

4. J. Tang, H. Ni, R. Peng, N. Wang, L. Zuo, A review on energy conversion using hybrid 

photovoltaic and thermoelectric systems, J. Power Sources, 562 (2023), 232785. 

https://doi.org/10.1016/j.jpowsour.2023.232785 

5. H. Etchells, Application of electric furnace methods to industrial processes, Trans. Faraday Soc., 

14 (1919), 71–78. 

6. M. M. Hussein, S. Alkhalaf, T. H. Mohamed, D. S. Osheba, M. Ahmed, A. Hemeida, et al., 

Modern temperature control of electric furnace in industrial applications based on modified 

optimization technique, Energies, 15 (2022), 8474. https://doi.org/10.3390/en15228474 

https://doi.org/10.1021/ie50049a020
https://doi.org/10.1109/TIE.2021.3082462
https://doi.org/10.1016/j.jpowsour.2023.232785
https://doi.org/10.3390/en15228474


13435 

AIMS Mathematics  Volume 9, Issue 5, 13410–13438. 

7. E. Grassi, K. Tsakalis, PID controller tuning by frequency loop-shaping: application to diffusion 

furnace temperature control, IEEE T. Contr. Syst. Technol., 8 (2000), 842–847. 

https://doi.org/10.1109/87.865857 

8. D. Ajorloo, M. Nazari, M. Nazari, N. Sepehry, A. Mohammadzadeh, Mathematical modeling and 

designing an optimized fuzzy temperature controller for a vacuum box electric furnace: Numerical 

and experimental study, T. I. Meas. Control, 45 (2023), 1193–1212. 

https://doi.org/10.1177/01423312221124017 

9. B. G. Liptak, Instrument engineers’ handbook, volume two: Process control and optimization, 

CRC Press, 2005. https://doi.org/10.1201/9781315219028 

10. X. Chen, Temperature control in electric furnaces: Methods, applications, and challenges, J. Phys. 

Conf. Ser., 2649 (2023), 012032. https://doi.org/10.1088/1742-6596/2649/1/012032 

11. Y. Wang, PID Temperature control, In: Conveyor belt furnace thermal processing, Springer, Cham, 

2018, 63–76. https://doi.org/10.1007/978-3-319-69730-7_9 

12. K. Rsetam, M. Al-Rawi, Z. Cao, Robust adaptive active disturbance rejection control of an electric 

furnace using additional continuous sliding mode component, ISA T., 130 (2022), 152–162. 

https://doi.org/10.1016/j.isatra.2022.03.024 

13. D. Rawat, K. Bansal, A. K. Pandey, LQR and PID design technique for an electric furnace 

temperature control system, In: Proceeding of International Conference on Intelligent 

Communication, Control and Devices, 2017, 561–567. Singapore: Springer,. 

https://doi.org/10.1007/978-981-10-1708-7_64 

14. T. Ghanim, A. R. Ajel, A. j. Humaidi, Optimal fuzzy logic control for temperature control based 

on social spider optimization, IOP Conf. Ser. Mater. Sci. Eng., 745 (2020), 012099. 

https://doi.org/10.1088/1757-899X/745/1/012099 

15. N. Pringsakul, D. Puangdownreong, Mofpa-based pida controller design optimization for electric 

furnace temperature control system, Int. J. Innov. Comput. Inform. Control, 16 (2020), 1863–1876. 

16. M. R. Moussa, Temperature control of electric furnace using adaptive lag compensator based on 

improved gorilla troops optimization: Towards energy efficiency, Aswan Univ. J. Sci. Technol., 3 

(2023), 13–29. 

17. L. Liu, D. Xue, S. Zhang, General type industrial temperature system control based on fuzzy 

fractional-order PID controller, Complex Intell. Syst., 9 (2023), 2585–2597. 

https://doi.org/10.1007/s40747-021-00431-9 

18. A. E. Kayabekir, G. Bekdaş, S. M. Nigdeli, Z. W. Geemet, Optimum design of PID controlled 

active tuned mass damper via modified harmony search, Appl. Sci., 10 (2020), 2976. 

https://doi.org/10.3390/app10082976 

19. S. Ulusoy, S. M. Nigdeli, G. Bekdaş, Novel metaheuristic-based tuning of PID controllers for 

seismic structures and verification of robustness, J. Build. Eng., 33 (2021), 101647. 

https://doi.org/10.1016/j.jobe.2020.101647 

20. E. Kose, Optimal control of AVR system with tree seed algorithm-based PID controller, IEEE 

Access, 8 (2020), 89457–89467. https://doi.org/10.1109/ACCESS.2020.2993628 

21. R. Alayi, F. Zishan, S. R. Seyednouri, R. Kumaret, M. H. Ahmadi, M. Sharifpur, Optimal load 

frequency control of island microgrids via a PID controller in the presence of wind turbine and 

PV, Sustainability, 13 (2021), 10728. https://doi.org/10.3390/su131910728 

 

 

https://doi.org/10.1109/87.865857
https://doi.org/10.1177/01423312221124017
https://doi.org/10.1201/9781315219028
https://doi.org/10.1088/1742-6596/2649/1/012032
https://doi.org/10.1007/978-3-319-69730-7_9
https://doi.org/10.1016/j.isatra.2022.03.024
https://doi.org/10.1007/978-981-10-1708-7_64
https://doi.org/10.1088/1757-899X/745/1/012099
https://doi.org/10.1007/s40747-021-00431-9
https://doi.org/10.3390/app10082976
https://doi.org/10.1016/j.jobe.2020.101647
https://doi.org/10.1109/ACCESS.2020.2993628
https://doi.org/10.3390/su131910728


13436 

AIMS Mathematics  Volume 9, Issue 5, 13410–13438. 

22. S. Ekinci, D. Izci, M. R. Al Nasar, L. Abualigah, Logarithmic spiral search based arithmetic 

optimization algorithm with selective mechanism and its application to functional electrical 

stimulation system control, Soft Comput., 26 (2022), 12257–12269. 

https://doi.org/10.1007/s00500-022-07068-x 

23. D. Izci, S. Ekinci, C. Budak, V. Gider, PID controller design for DFIG-based wind turbine via 

reptile search algorithm, In: 2022 Global Energy Conference (GEC), 2022, 154–158. 

https://doi.org/10.1109/GEC55014.2022.9986617 

24. M. P. E. Rajamani, R. Rajesh, M. W. Iruthayarajan, Design and experimental validation of PID 

controller for buck converter: A multi-objective evolutionary algorithms based approach, IETE J. 

Res., 69 (2023), 21–32. https://doi.org/10.1080/03772063.2021.1905564 

25. M. Issa, Enhanced arithmetic optimization algorithm for parameter estimation of PID controller, 

Arab J. Sci. Eng., 48 (2023), 2191–2205. https://doi.org/10.1007/s13369-022-07136-2 

26. Y. Duan, The design of predictive fuzzy-PID controller in temperature control system of electrical 

heating furnace, In: Life system modeling and intelligent computing, Berlin, Heidelberg: Springer, 

2010, 259–265. https://doi.org/10.1007/978-3-642-15597-0_29 

27. X. Hu, Q. Zou, H. Zou, Design and application of fractional order predictive functional control 

for industrial heating furnace, IEEE Access, 6 (2018), 66565–66575. 

https://doi.org/10.1109/ACCESS.2018.2878554 

28. V. D. Phan, X. H. Nguyen, V. N. Dinh, T. S. Danget, V. C. Le, S. P. Ho, et al., Development of an 

adaptive fuzzy-neural controller for temperature control in a brick tunnel kiln, Electronics, 13 

(2024), 342. https://doi.org/10.3390/electronics13020342 

29. K. Rsetam, M. AL-Rawi, Z. Cao, Robust state feedback control of electric heating furnace using 

a new disturbance observer, In: TENCON 2021-2021 IEEE Region 10 Conference (TENCON), 

2021, 423–428. https://doi.org/10.1109/TENCON54134.2021.9707435 

30. Y. Feng, M. Wu, L. Chen, X. Chen, W. Cao, S. Du, et al., Hybrid intelligent control based on 

condition identification for combustion process in heating furnace of compact strip production, 

IEEE T. Ind. Electron., 69 (2022), 2790–2800. https://doi.org/10.1109/TIE.2021.3066918 

31. K. Rsetam, M. Al-Rawi, Z. Cao, Robust composite temperature control of electrical tube furnaces 

by using disturbance observer, Case Stud. Therm. Eng., 30 (2022), 101781. 

https://doi.org/10.1016/j.csite.2022.101781 

32. W. Xu, J. Zhang, R. Zhang, Application of multi-model switching predictive functional control 

on the temperature system of an electric heating furnace, ISA T., 68 (2017), 287–292. 

https://doi.org/10.1016/j.isatra.2017.02.001 

33. H. Dong, X. Li, X. He, Z. Zeng, G. Wen, A two-degree-of-freedom controller for a high-precision 

air temperature control system with multiple disturbances, Case Stud. Therm. Eng., 50 (2023), 

103442. https://doi.org/10.1016/j.csite.2023.103442 

34. Z. Chen, J. Cui, Z. Lei, J. Shen, R. Xiao, Design of an improved implicit generalized predictive 

controller for temperature control systems, IEEE Access, 8 (2020), 13924–13936. 

https://doi.org/10.1109/ACCESS.2020.2965021 

35. D. Izci, S. Ekinci, E. Eker, A. Demirören, Multi-strategy modified INFO algorithm: Performance 

analysis and application to functional electrical stimulation system. J. Comput. Sci., 64 (2022), 

101836. https://doi.org/10.1016/j.jocs.2022.101836 

 

 

https://doi.org/10.1007/s00500-022-07068-x
https://doi.org/10.1109/GEC55014.2022.9986617
https://doi.org/10.1080/03772063.2021.1905564
https://doi.org/10.1007/s13369-022-07136-2
https://doi.org/10.1007/978-3-642-15597-0_29
https://doi.org/10.1109/ACCESS.2018.2878554
https://doi.org/10.3390/electronics13020342
https://doi.org/10.1109/TENCON54134.2021.9707435
https://doi.org/10.1109/TIE.2021.3066918
https://doi.org/10.1016/j.csite.2022.101781
https://doi.org/10.1016/j.isatra.2017.02.001
https://doi.org/10.1016/j.csite.2023.103442
https://doi.org/10.1109/ACCESS.2020.2965021
https://doi.org/10.1016/j.jocs.2022.101836


13437 

AIMS Mathematics  Volume 9, Issue 5, 13410–13438. 

36. T. Veerendar, D. Kumar, CBO-based PID-F controller for Load frequency control of SPV 

integrated thermal power system, Mater. Today Proc., 58 (2022), 593–599. 

https://doi.org/10.1016/j.matpr.2022.03.414 

37. B. Ozgenc, M. S. Ayas, I. H. Altas, Performance improvement of an AVR system by symbiotic 

organism search algorithm-based PID-F controller, Neural Comput. Appl., 34 (2022), 7899–7908. 

https://doi.org/10.1007/s00521-022-06892-4 

38. S. Ekinci, H. Çetin, D. Izci, E. Köse, A novel balanced arithmetic optimization algorithm-

optimized controller for enhanced voltage regulation, Mathematics, 11 (2023), 4810. 

https://doi.org/10.3390/math11234810 

39. D. Izci, R. M. Rizk-Allah, S. Ekinci, A. G. Hussien, Enhancing time-domain performance of 

vehicle cruise control system by using a multi-strategy improved RUN optimizer, Alex. Eng. J., 

80 (2023), 609–622. https://doi.org/10.1016/j.aej.2023.09.009 

40. E. Eker, M. Kayri, S. Ekinci, D. Izci, Comparison of swarm-based metaheuristic and gradient 

descent-based algorithms in artificial neural network training, ADCAIJ: Adv. Distrib. Comput. 

Artif. Intell. J., 12 (2023), e29969. https://doi.org/10.14201/adcaij.29969 

41. R. M. Rizk-Allah, S. Ekinci, D. Izci, An improved artificial rabbits optimization for accurate and 

efficient infinite impulse response system identification, Decision Anal. J., 9 (2023), 100355. 

https://doi.org/10.1016/j.dajour.2023.100355 

42. W. Zhao, L. Wang, Z. Zhang, H. Fan, Ji. Zhang, S. Mirjalili, et al., Electric eel foraging 

optimization: A new bio-inspired optimizer for engineering applications, Expert Syst. Appl., 238 

(2024), 122200. https://doi.org/10.1016/j.eswa.2023.122200 

43. W. Zhou, P. Wang, X. Zhao, H. Chen, Anti-sine-cosine atom search optimization (ASCASO): A 

novel approach for parameter estimation of PV models, Environ. Sci. Pollut. Res., 30 (2023), 

99620–99651. https://doi.org/10.1007/s11356-023-28777-2 

44. S. Ekinci, D. Izci, Whale optimization algorithm based controller design for air-fuel ratio system, 

In: Handbook of whale optimization algorithm, Elsevier, 2024, 411–421. 

https://doi.org/10.1016/B978-0-32-395365-8.00035-X 

45. L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The arithmetic optimization 

algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. 

https://doi.org/10.1016/j.cma.2020.113609 

46. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Soft., 95 (2016), 51–67. 

https://doi.org/10.1016/j.advengsoft.2016.01.008 

47. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, Harris hawks optimization: Algorithm and 

applications, Future Gener. Comp. Syst., 97 (2019), 849–872. 

https://doi.org/10.1016/j.future.2019.02.028 

48. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A gravitational search algorithm, Inform. 

Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 

49. M. M. Gani, M. S. Islam, M. A. Ullah, Optimal PID tuning for controlling the temperature of 

electric furnace by genetic algorithm, SN Appl. Sci., 1 (2019), 880. 

https://doi.org/10.1007/s42452-019-0929-y 

50. V. Sinlapakun, W. Assawinchaichote, Optimized PID controller design for electric furnace 

temperature systems with Nelder Mead Algorithm, In: 2015 12th International Conference on 

Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology 

(ECTI-CON), 2015, 1–4. https://doi.org/10.1109/ECTICon.2015.7206925 

https://doi.org/10.1016/j.matpr.2022.03.414
https://doi.org/10.1007/s00521-022-06892-4
https://doi.org/10.3390/math11234810
https://doi.org/10.1016/j.aej.2023.09.009
https://doi.org/10.14201/adcaij.29969
https://doi.org/10.1016/j.dajour.2023.100355
https://doi.org/10.1016/j.eswa.2023.122200
https://doi.org/10.1007/s11356-023-28777-2
https://doi.org/10.1016/B978-0-32-395365-8.00035-X
https://doi.org/10.1016/j.cma.2020.113609
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.future.2019.02.028
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s42452-019-0929-y
https://doi.org/10.1109/ECTICon.2015.7206925


13438 

AIMS Mathematics  Volume 9, Issue 5, 13410–13438. 

51. D. A. Bastos, J. Zuanon, L. R. Py-Daniel, C. D.de Santana, Social predation in electric eels, Ecol. 

Evol., 11 (2021): 1088–1092. https://doi.org/10.1002/ece3.7121 

52. G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 

1995–2014. https://doi.org/10.1007/s00521-015-1923-y 

53. D. Izci, S. Ekinci, A. Demiroren, J. Hedley, HHO algorithm based PID controller design for 

aircraft pitch angle control system, In: 2020 International Congress on Human-Computer 

Interaction, Optimization and Robotic Applications (HORA), 2020, 1–6. 

https://doi.org/10.1109/HORA49412.2020.9152897 

54. D. Izci, S. Ekinci, A novel-enhanced metaheuristic algorithm for FOPID-controlled and Bode’s 

ideal transfer function–based buck converter system, T. I. Meas. Control, 45 (2023), 1854–1872. 

https://doi.org/10.1177/01423312221140671 

55. Z. L. Gaing, A particle swarm optimization approach for optimum design of PID controller in 

AVR system, IEEE T. Energy Conver., 19 (2004), 384–391. 

https://doi.org/10.1109/TEC.2003.821821 

56. D. Izci, S. Ekinci, Optimizing three-tank liquid level control: Insights from prairie dog 

optimization, Int. J. Robot. Control Syst., 3 (2023), 599–608. 

https://doi.org/10.31763/ijrcs.v3i3.1116 

57. M. S. Ali, L. Wang, H. Alquhayz, O. Ur Rehman, G. Chen, Performance improvement of three-

phase boost power factor correction rectifier through combined parameters optimization of 

proportional-integral and repetitive controller, IEEE Access, 9 (2021), 58893–58909. 

https://doi.org/10.1109/ACCESS.2021.3073004 

58. E. Çelik, M. Karayel, Effective speed control of brushless DC motor using cascade 1PDf-PI 

controller tuned by snake optimizer. Neural Comput. Appl., 36 (2024), 7439–7454. 

https://doi.org/10.1007/s00521-024-09470-y 

59. D. Izci, S. Ekinci, An improved RUN optimizer based real PID plus second-order derivative 

controller design as a novel method to enhance transient response and robustness of an automatic 

voltage regulator, e-Prime–Adv. Elect. Eng. Electron. Eng., 2 (2022), 100071. 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

 

https://doi.org/10.1002/ece3.7121
https://doi.org/10.1007/s00521-015-1923-y
https://doi.org/10.1109/HORA49412.2020.9152897
https://doi.org/10.1177/01423312221140671
https://doi.org/10.1109/TEC.2003.821821
https://doi.org/10.31763/ijrcs.v3i3.1116
https://doi.org/10.1109/ACCESS.2021.3073004
https://doi.org/10.1007/s00521-024-09470-y

