In this paper, we proposed some new integral inequalities for subadditive functions and the product of subadditive functions. Additionally, a novel integral identity was established and a number of inequalities of the Hermite-Hadamard type for subadditive functions pertinent to tempered fractional integrals were proved. Finally, to support the major results, we provided several examples of subadditive functions and corresponding graphs for the newly proposed inequalities.
Citation: Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi. Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations[J]. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643
In this paper, we proposed some new integral inequalities for subadditive functions and the product of subadditive functions. Additionally, a novel integral identity was established and a number of inequalities of the Hermite-Hadamard type for subadditive functions pertinent to tempered fractional integrals were proved. Finally, to support the major results, we provided several examples of subadditive functions and corresponding graphs for the newly proposed inequalities.
[1] | E. Hille, R. S. Phillips, Functional analysis and semigroups, American Mathematical Society, 1996. |
[2] | R. A. Rosenbaum, Sub-additive functions, Duke Math. J., 17 (1950), 227–247. https://doi.org/10.1215/S0012-7094-50-01721-2 doi: 10.1215/S0012-7094-50-01721-2 |
[3] | F. M. Dannan, Submultiplicative and subadditive functions and integral inequalities of Bellman-Bihari type, J. Math. Anal. Appl., 120 (1986), 631–646. https://doi.org/10.1016/0022-247X(86)90185-X doi: 10.1016/0022-247X(86)90185-X |
[4] | R. G. Laatsch, Subadditive functions of one real variable, Oklahoma State University, 1962. |
[5] | J. Matkowski, On subadditive functions and $\Psi$-additive mappings, Open Math., 1 (2003), 435–440. |
[6] | S. K. Sahoo, E. Al-Sarairah, P. O. Mohammed, M. Tariq, K. Nonlaopon, Modified inequalities on center-radius order interval-valued functions pertaining to Riemann-Liouville fractional integrals, Axioms, 11 (2022), 1–18. https://doi.org/10.3390/axioms11120732 doi: 10.3390/axioms11120732 |
[7] | J. Matkowski, T. Swiatkowski, On subadditive functions, Proc. Amer. Math. Soc., 119 (1993), 187–197. |
[8] | M. A. Ali, M. Z. Sarikaya, H. Budak, Fractional Hermite-Hadamard type inequalities for subadditive functions, Filomat, 36 (2022), 3715–3729. https://doi.org/10.2298/FIL2211715A doi: 10.2298/FIL2211715A |
[9] | H. Kadakal, Hermite-Hadamard type inequalities for subadditive functions, AIMS Math., 5 (2020), 930–939. https://doi.org/10.3934/math.2020064 doi: 10.3934/math.2020064 |
[10] | M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1–9. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1 |
[11] | M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225–232. https://doi.org/10.1016/j.camwa.2009.08.002 doi: 10.1016/j.camwa.2009.08.002 |
[12] | X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of $GA$-convex functions and its applications, J. Inequal. Appl., 2010 (2010), 1–11. https://doi.org/10.1155/2010/507560 doi: 10.1155/2010/507560 |
[13] | S. S. Dragomir, J. Pećarič, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341. |
[14] | H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, A. Kashuri, N. Chorfi, Results on Minkowski-type inequalities for weighted fractional integral operators, Symmetry, 15 (2023), 1–26. https://doi.org/10.3390/sym15081522 doi: 10.3390/sym15081522 |
[15] | B. Y. Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243–257. |
[16] | S. Mehmood, P. O. Mohammed, A. Kashuri, N. Chorfi, S. A. Mahmood, M. A. Yousif, Some new fractional inequalities defined using cr-Log-h-convex functions and applications, Symmetry, 16 (2024), 1–12. https://doi.org/10.3390/sym16040407 doi: 10.3390/sym16040407 |
[17] | P. O. Mohammed, T. Abdeljawad, S. D. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1–12. https://doi.org/10.3390/sym12091485 doi: 10.3390/sym12091485 |
[18] | L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard- and Newton-type inequalities for multiplicatively $(P, m)$-convex functions, J. Math. Anal. Appl., 534 (2024), 128117. https://doi.org/10.1016/j.jmaa.2024.128117 doi: 10.1016/j.jmaa.2024.128117 |
[19] | M. Z. Sarikaya, M. A. Ali, Hermite-Hadamard type inequalities and related inequalities for subadditive functions, Miskolc Math. Notes, 22 (2021), 929–937. https://doi.org/10.18514/MMN.2021.3154 doi: 10.18514/MMN.2021.3154 |
[20] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595 |
[21] | Y. Cao, J. F. Cao, P. Z. Tan, T. S. Du, Some parameterized inequalities arising from the tempered fractional integrals involving the $(\mu, \eta)$-incomplete gamma functions, J. Math. Inequal., 16 (2022), 1091–1121. https://doi.org/10.7153/jmi-2022-16-73 doi: 10.7153/jmi-2022-16-73 |