Research article Special Issues

Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations

  • Received: 29 January 2024 Revised: 25 March 2024 Accepted: 03 April 2024 Published: 09 April 2024
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • In this paper, we proposed some new integral inequalities for subadditive functions and the product of subadditive functions. Additionally, a novel integral identity was established and a number of inequalities of the Hermite-Hadamard type for subadditive functions pertinent to tempered fractional integrals were proved. Finally, to support the major results, we provided several examples of subadditive functions and corresponding graphs for the newly proposed inequalities.

    Citation: Artion Kashuri, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Nejmeddine Chorfi. Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations[J]. AIMS Mathematics, 2024, 9(5): 13195-13210. doi: 10.3934/math.2024643

    Related Papers:

  • In this paper, we proposed some new integral inequalities for subadditive functions and the product of subadditive functions. Additionally, a novel integral identity was established and a number of inequalities of the Hermite-Hadamard type for subadditive functions pertinent to tempered fractional integrals were proved. Finally, to support the major results, we provided several examples of subadditive functions and corresponding graphs for the newly proposed inequalities.



    加载中


    [1] E. Hille, R. S. Phillips, Functional analysis and semigroups, American Mathematical Society, 1996.
    [2] R. A. Rosenbaum, Sub-additive functions, Duke Math. J., 17 (1950), 227–247. https://doi.org/10.1215/S0012-7094-50-01721-2 doi: 10.1215/S0012-7094-50-01721-2
    [3] F. M. Dannan, Submultiplicative and subadditive functions and integral inequalities of Bellman-Bihari type, J. Math. Anal. Appl., 120 (1986), 631–646. https://doi.org/10.1016/0022-247X(86)90185-X doi: 10.1016/0022-247X(86)90185-X
    [4] R. G. Laatsch, Subadditive functions of one real variable, Oklahoma State University, 1962.
    [5] J. Matkowski, On subadditive functions and $\Psi$-additive mappings, Open Math., 1 (2003), 435–440.
    [6] S. K. Sahoo, E. Al-Sarairah, P. O. Mohammed, M. Tariq, K. Nonlaopon, Modified inequalities on center-radius order interval-valued functions pertaining to Riemann-Liouville fractional integrals, Axioms, 11 (2022), 1–18. https://doi.org/10.3390/axioms11120732 doi: 10.3390/axioms11120732
    [7] J. Matkowski, T. Swiatkowski, On subadditive functions, Proc. Amer. Math. Soc., 119 (1993), 187–197.
    [8] M. A. Ali, M. Z. Sarikaya, H. Budak, Fractional Hermite-Hadamard type inequalities for subadditive functions, Filomat, 36 (2022), 3715–3729. https://doi.org/10.2298/FIL2211715A doi: 10.2298/FIL2211715A
    [9] H. Kadakal, Hermite-Hadamard type inequalities for subadditive functions, AIMS Math., 5 (2020), 930–939. https://doi.org/10.3934/math.2020064 doi: 10.3934/math.2020064
    [10] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1–9. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
    [11] M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225–232. https://doi.org/10.1016/j.camwa.2009.08.002 doi: 10.1016/j.camwa.2009.08.002
    [12] X. M. Zhang, Y. M. Chu, X. H. Zhang, The Hermite-Hadamard type inequality of $GA$-convex functions and its applications, J. Inequal. Appl., 2010 (2010), 1–11. https://doi.org/10.1155/2010/507560 doi: 10.1155/2010/507560
    [13] S. S. Dragomir, J. Pećarič, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [14] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, A. Kashuri, N. Chorfi, Results on Minkowski-type inequalities for weighted fractional integral operators, Symmetry, 15 (2023), 1–26. https://doi.org/10.3390/sym15081522 doi: 10.3390/sym15081522
    [15] B. Y. Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243–257.
    [16] S. Mehmood, P. O. Mohammed, A. Kashuri, N. Chorfi, S. A. Mahmood, M. A. Yousif, Some new fractional inequalities defined using cr-Log-h-convex functions and applications, Symmetry, 16 (2024), 1–12. https://doi.org/10.3390/sym16040407 doi: 10.3390/sym16040407
    [17] P. O. Mohammed, T. Abdeljawad, S. D. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1–12. https://doi.org/10.3390/sym12091485 doi: 10.3390/sym12091485
    [18] L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard- and Newton-type inequalities for multiplicatively $(P, m)$-convex functions, J. Math. Anal. Appl., 534 (2024), 128117. https://doi.org/10.1016/j.jmaa.2024.128117 doi: 10.1016/j.jmaa.2024.128117
    [19] M. Z. Sarikaya, M. A. Ali, Hermite-Hadamard type inequalities and related inequalities for subadditive functions, Miskolc Math. Notes, 22 (2021), 929–937. https://doi.org/10.18514/MMN.2021.3154 doi: 10.18514/MMN.2021.3154
    [20] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595
    [21] Y. Cao, J. F. Cao, P. Z. Tan, T. S. Du, Some parameterized inequalities arising from the tempered fractional integrals involving the $(\mu, \eta)$-incomplete gamma functions, J. Math. Inequal., 16 (2022), 1091–1121. https://doi.org/10.7153/jmi-2022-16-73 doi: 10.7153/jmi-2022-16-73
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(676) PDF downloads(31) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog