Research article

Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme

  • Received: 18 January 2024 Revised: 18 March 2024 Accepted: 22 March 2024 Published: 09 April 2024
  • MSC : 37C25, 47H09, 47H10

  • Addressing the boundary value problems of fractional-order differential equations hold significant importance due to their applications in various fields. The aim of this paper was to approximate solutions for a class of boundary value problems involving Caputo fractional-order differential equations employing the AA-iterative scheme. Moreover, the stability and data dependence results of the iterative scheme were given for a certain class of mappings. Finally, a numerical experiment was illustrated to support the results presented herein. The results presented in this paper extend and unify some well-known comparable results in the existing literature.

    Citation: Mujahid Abbas, Cristian Ciobanescu, Muhammad Waseem Asghar, Andrew Omame. Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme[J]. AIMS Mathematics, 2024, 9(5): 13129-13158. doi: 10.3934/math.2024641

    Related Papers:

  • Addressing the boundary value problems of fractional-order differential equations hold significant importance due to their applications in various fields. The aim of this paper was to approximate solutions for a class of boundary value problems involving Caputo fractional-order differential equations employing the AA-iterative scheme. Moreover, the stability and data dependence results of the iterative scheme were given for a certain class of mappings. Finally, a numerical experiment was illustrated to support the results presented herein. The results presented in this paper extend and unify some well-known comparable results in the existing literature.



    加载中


    [1] M. Abbas, M. W. Asghar, M. De la Sen, Approximation of the solution of delay fractional differential equation using AA-iterative scheme, Mathematics, 10 (2022), 273. https://doi.org/10.3390/math10020273 doi: 10.3390/math10020273
    [2] M. Abbas, T. Nazir, Some new faster iteration process applied to constrained minimization and feasibility problems, Matematicki Vesnik, 66 (2014), 223–234.
    [3] R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79.
    [4] J. Ali, F. Ali, A new iterative scheme to approximating fixed points and the solution of a delay differential equation, J. Nonlinear Convex Anal., 21 (2020), 2151–2163.
    [5] M. W. Asghar, M. Abbas, C. D. Eyni, M. E. Omaba, Iterative approximation of fixed points of generalized $\alpha_m$-nonexpansive mappings in modular spaces, AIMS Mathematics, 8 (2023), 26922–26944. https://doi.org/10.3934/math.20231378 doi: 10.3934/math.20231378
    [6] M. W. Asghar, M. Abbas, B. D. Rouhani, The AA-viscosity algorithm for fixed-point, generalized equilibrium and variational inclusion problems, Axioms, 13 (2024), 38. https://doi.org/10.3390/axioms13010038 doi: 10.3390/axioms13010038
    [7] G. V. R. Babu, K. N. V. V. Vara Prasad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2007 (2006), 097986. https://doi.org/10.1155/2007/97986 doi: 10.1155/2007/97986
    [8] I. Beg, M. Abbas, M. W. Asghar, Convergence of AA-iterative algorithm for generalized $\alpha$-nonexpansive mappings with an application, Mathematics, 10 (2022), 4375. https://doi.org/10.3390/math10224375 doi: 10.3390/math10224375
    [9] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058
    [10] V. Berinde, Iterative approximation of fixed points, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-72234-2
    [11] M. Caputo, Elasticit'a e dissipazione, Bologna: Zanichelli, 1969.
    [12] V. Daftardar-Gejji, H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007
    [13] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.2307/2039245 doi: 10.2307/2039245
    [14] U. Kifayat, A. Muhammad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006.
    [16] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [17] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [18] A. M. Ostrowski, The round-off stability of iterations, ZAMM-Z. Angew. Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202
    [19] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, Journal de Mathématiques pures et appliquées, 6 (1890), 145–210.
    [20] I. Podlubny, Fractional differential equations, USA: Academic Press, 1998.
    [21] D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12 (2011), 187–204.
    [22] T. B. Singh, T. Dipti, P. Mihai, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T
    [23] S. M. Soltuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
    [24] Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value problems of nonlinear fractional differential equation, Applied Mathematics, 8 (2017), 312–323. https://doi.org/10.4236/am.2017.83026 doi: 10.4236/am.2017.83026
    [25] H. L. Tidke, G. S. Patil, Existence and uniqueness of solutions of a boundary value problem of fractional order via S-iteration, Creat. Math. Inform., 32 (2023), 97–120. https://doi.org/10.37193/CMI.2023.01.10 doi: 10.37193/CMI.2023.01.10
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(642) PDF downloads(46) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog