Research article

Existence and stability results of nonlinear swelling equations with logarithmic source terms

  • Received: 13 January 2024 Revised: 11 March 2024 Accepted: 19 March 2024 Published: 03 April 2024
  • MSC : 35B40, 93D20

  • We considered a swelling porous-elastic system characterized by two nonlinear variable exponent damping and logarithmic source terms. Employing the Faedo-Galerkin method, we established the local existence of weak solutions under suitable assumptions on the variable exponents functions. Furthermore, we proved the global existence utilizing the well-depth method. Finally, we established several decay results by employing the multiplier method and the Logarithmic Sobolev inequality. To the best of our knowledge, this represents the first study addressing swelling systems with logarithmic source terms.

    Citation: Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi. Existence and stability results of nonlinear swelling equations with logarithmic source terms[J]. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627

    Related Papers:

    [1] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018
    [2] Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404
    [3] Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammad Kafini . Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities. AIMS Mathematics, 2021, 6(9): 10105-10129. doi: 10.3934/math.2021587
    [4] Sarra Toualbia, Abderrahmane Zaraï, Salah Boulaaras . Decay estimate and non-extinction of solutions of p-Laplacian nonlocal heat equations. AIMS Mathematics, 2020, 5(3): 1663-1679. doi: 10.3934/math.2020112
    [5] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [6] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842
    [7] Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252
    [8] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Mohamed Alahyane . Theoretical and numerical stability results for a viscoelastic swelling porous-elastic system with past history. AIMS Mathematics, 2021, 6(11): 11921-11949. doi: 10.3934/math.2021692
    [9] Shuai Li, Tianqing An, Weichun Bu . Existence results for Schrödinger type double phase variable exponent problems with convection term in $ \mathbb R^{N} $. AIMS Mathematics, 2024, 9(4): 8610-8629. doi: 10.3934/math.2024417
    [10] Yousif Altayeb . New scenario of decay rate for system of three nonlinear wave equations with visco-elasticities. AIMS Mathematics, 2021, 6(7): 7251-7265. doi: 10.3934/math.2021425
  • We considered a swelling porous-elastic system characterized by two nonlinear variable exponent damping and logarithmic source terms. Employing the Faedo-Galerkin method, we established the local existence of weak solutions under suitable assumptions on the variable exponents functions. Furthermore, we proved the global existence utilizing the well-depth method. Finally, we established several decay results by employing the multiplier method and the Logarithmic Sobolev inequality. To the best of our knowledge, this represents the first study addressing swelling systems with logarithmic source terms.



    Swelling soils are a significant environmental issue that has garnered considerable attention from many researchers due to their potential to cause structural damage or destruction. These soils show a tendency to swell in volume when exposed to moisture, primarily due to the presence of clay minerals that naturally attract and absorb water molecules. Upon introducing water to swelling soils, the molecules are drawn into gaps between the soil plates. As the amount of absorbed water increases, the plates are forced further apart, leading to an increase in soil pore pressure. Consequently, swelling soils pose substantial geotechnical and structural challenges to the environment and society. Swelling soils are prevalent worldwide, and recent estimates from the American Society of Civil Engineers suggests that one in four homes experience some form of damage caused by swelling soils. Typically, the financial losses incurred by property owners due to these soils exceed those caused by earthquakes, floods, hurricanes, and tornadoes combined. Therefore, it is important to explore practical methods for eliminating or minimizing the damages caused by swelling soils. Therefore, studying of the asymptotic behavior of swelling porous elastic soils is important for architecture and civil engineering. For more information in the continuum theory of material, we refer the reader to [1], [2], and [3].

    In this paper, we consider the following nonlinear swelling soil system with nonlinear source terms of logarithmic-type:

    {ρzztta1zxxa2uxx+z+γ|zt|ν()2zt=αzln|z|,inΩ×(0,),ρuutta3uxxa2zxx+u+β|ut|ω()2ut=αuln|u|,inΩ×(0,),u(x,0)=u0(x),ut(x,0)=u1(x),z(x,0)=z0(x),zt(x,0)=z1(x),xΩ,z(0,t)=z(1,t)=u(0,t)=u(1,t)=0,t0, (1.1)

    where the constituents z and u represent the displacement of the fluid and the elastic solid material, respectively. The positive constant coefficients ρu and ρz are the densities of each constituent. The coefficients a1,a2, and a3 are positive constants satisfying specific conditions. z0,z1,u0,u1 are given data. γ,β0, α is a small positive constant, and ν(.) and ω(.) are the variable functions that are satisfying some specific conditions.

    In the present work, our goals are to prove the existence and stability of the system (1.1). We begin by using the Faedo-Galerkin method to prove the local existence of the weak solutions to system (1.1) under suitable assumptions on the variable exponent functions and the logarithmic source terms. We also prove the global existence using the well depth method. Finally, we establish several decay results using the multiplier method and the logarithmic Sobolev inequality.

    Model (1.1) describes swelling of soils with external forces given by nonlinear logarithmic functions. We dissipate this model by the frictional damping mechanism acting on the domain. These dampings of variable exponent-type employ variable exponents in this model, and significantly enhance the ability to capture spatial variations in material properties, nonlinearity, anisotropy, and other complex behaviors. This approach can lead to more accurate simulations and predictions, thereby contributing to the stability, optimization, and design of some tools for a variety of engineering applications [4,5,6,7,8,9].

    The righthand sides of the system (1.1) represent nonlinear sources of logarithmic-type, which models an external force that amplifies energy and drives the system to possible instability.

    We add the logarithmic source terms because they occur in some phenomena; such phenomena are common in nature such as in inflation cosmology, nuclear physics, geophysics, and optics (see [10,11,12,13,14,15,16,17,18,19,20,21,22,23]).

    In the system (1.1), it is evident that the the damping terms and the source terms are the two major players in this model. Their interactions stimulate many interesting phenomena, which deserve careful investigation. To control an object means to influence its behavior so as to achieve a desired goal. In the system (1.1), the intrinsic frictional damping mechanism acting on the system is responsible for dissipation of its energy. The purpose of this line of study is to find conditions on the initial state to control the dissipations that are needed in order to obtain a decay rate of the energy. In other words, the goal is to discover an adequate choice of the controls that can drive the system from a given initial state to a final given state, in a given time.

    The study of the interaction of nonlinear damping and source terms was initiated by Georgiev and Todorova [24] in the wave equation. In this line of research, an important breakthrough was made by Bociu and Lasiecka in a series of papers [25] and [26] where they provided a complete study of a wave equation with damping and supercritical sources in the interior and on the boundary of the domain. Indeed, a source term |u|m1u is called subcritical if 1m<3, critical if m=3, and supercritical if m>3, in three space dimensions.

    The novelty of our results can be seen from the following aspects:

    (1) The source term in our model (1.1) is logarithmic. Let us note here that though the logarithmic nonlinearity is somehow weaker than polynomial nonlinearity, both the existence and stability result are not obtained by straightforward application of the method used for polynomial nonlinearity. We need to make some extra conditions on the nonlinearity coefficient.

    (2) The frictional damping mechanismins are nonstandard. They are of variable exponent-type. Variable exponents in the context of swelling soils are often associated with mathematical models used to represent the relationship between soil moisture content and volume change.

    (3) How to control the frictional damping mechanism to stabilize the system because the external forces may lead to instability.

    The fundamental field equations for the linear theory of swelling porous elastic soils were mathematically presented by Ieşan [27] and later simplified by Quintanilla [28]. These basic equations are given by

    {ρzztt=ϕ1xχ1+ψ1,ρuutt=ϕ2x+χ2+ψ2, (1.2)

    where z and u represent the displacements of the fluid and the elastic solid material, respectively. The coefficients ρz,ρu>0 and represent the densities of the constituents z and u, respectively. The functions (ϕ1,χ1,ψ1) represent the partial tension, internal body forces, and external forces acting on the displacement, respectively. A similar definition holds for (ϕ2,χ2,ψ2), but acts on the elastic solid. Additionally, the constitutive equations of partial tensions are given by

    [ϕ1ϕ2]=[a1a2a2a3]A[zxux], (1.3)

    where a1,a3>0 and a20 is a real number. The coefficient matrix A is positive definite, i.e., a1a3>a22. After that, Quintanilla [28] investigated

    {ρzztt=a1zxx+a2uxxζ(ztut)+a3zxxt,ρuutt=a2zxx+a3uxx+ζ(ztut), (1.4)

    where ζ is a positive constant, and he obtained an exponential stability result. Similarly, Wang and Guo [29] considered

    {ρzztt=a1zxx+a2uxxρzξ(x)zt,ρuutt=a2zxx+a3uxx, (1.5)

    where ξ(x) is an internal viscous damping function with a positive mean. The authors established their exponential stability result by using the spectral method technique. Subsequently, a growing body of new research has explored the stability of system (1.2) by employing various damping mechanisms including viscoelastic damping and/ frictional damping (see, for example [30,31,32,33,34,35,36,37,38,39,40]). Recently, Al-Mahdi et al. [41] established exponential and polynomial decay results for the following system with variable exponent nonlinearity

    {ρzztta1zxxa2uxx+|zt|m()2zt=0,in(0,1)×(0,),ρuutta3uxxa2zxx=0,in(0,1)×(0,),u(x,0)=u0(x),ut(x,0)=u1(x),z(x,0)=z0(x),zt(x,0)=z1(x),x[0,1],z(0,t)=z(1,t)=u(0,t)=u(1,t)=0,t0, (1.6)

    where the constituents z and u represent the displacement of the fluid and the elastic solid material, respectively. The positive constant coefficients ρu and ρz are the densities of each constituent. The coefficients a1,a2, and a3 are positive constants satisfying specific conditions. z0,z1,u0,u1 are given data, and m(.) is a variable function that satisfies some specific conditions.

    Here, we compare our problem (1.1) with other problems involving source terms of logarithmic-type and source terms of polynomial-type. Regarding swelling soils, many authors investigated the stability analysis of swelling soils problems with different damping mechanism without external forces (source terms). For example, Al-Mahdi et al. [42] and [43] proved the stability of the swelling soil problem with memory damping terms. Kafini et al. [] studied the stability of the swelling soils problem with time delay and variable exponents without source terms.

    Logarithmic sources terms have been added in the literature for some other models such as plate equations [19], [45], and [46]. For the polynomial source terms, we refer to the works [47], [48], and [49].

    We notice that adding source terms does not improve the stability rate decay. In addition, the logarithmic nonlinearity is weaker than the polynomial nonlinearity. However, we include the logarithmic source terms because they occur in some phenomena. Such phenomena are common in nature such as in inflation cosmology, nuclear physics, geophysics, and optics.

    In this section, we present some preliminaries necessary for proving the stability results. Throughout the paper, Ω denotes the interval (0,1) and c represents a generic positive constant.

    Let p:Ω[1,] be a measurable function. The Lebesgue space with a variable exponent p() is defined as:

    Lp()(Ω):={v:ΩR;measurable inΩ:ϱp()(λv)<,for someλ>0},

    where

    ϱp()(v)=Ω|v(x)|p(x)dx.

    Equipped with the following Luxembourg-type norm

    vp():=inf{λ>0:Ω|v(x)λ|p(x)dx<},

    the space Lp()(Ω) is a Banach space (see [50]), separable if p() is bounded and reflexive if 1<p1p2<, where

    p1:=essinfxΩp(x),p2:=esssupxΩp(x).

    The variable-exponent Sobolev space is defined as :

    W1,p()(Ω)={vLp()(Ω)such thatvxexistsandvxLp()(Ω)}.

    This is a Banach space with respect to the norm vW1,p()(Ω)=vp()+vxp() and it is separable if p() is bounded and reflexive if 1<p1p2<. Furthermore, we set W1,p(.)0(Ω) to be the closure of C0(Ω) in W1,p()(Ω).

    The exponent p():Ω[1,] is said to be satisfying for the log-Hölder continuity condition; that is, if there exists a constant A>0 such that, for all δ with 0<δ<1,

    |p(x)p(y)|Alog|xy|,for allx,yΩ,with|xy|<δ. (2.1)

    Lemma 2.1. [50] (Poincaré's inequality) Let Ω be a bounded domain of Rn and p() satisfies (2.1), then

    vp()cρvxp(),for allvW1,p()0(Ω),

    where the positive constant cρ depends on p1, p2, and Ω only. In particular, the space W1,p()0(Ω) has an equivalent norm given by vW1,p()0(Ω)=vxp().

    Lemma 2.2. [50] (Embedding property) Let Ω be a bounded domain in Rn with a smooth boundary Ω. Assume that p,kC(¯Ω) such that

    1<p1p(x)p2<+,1<k1k(x)k2<+,x¯Ω,

    and k(x)<p(x) in ¯Ω with

    p(x)={np(x)np(x),ifp2<n;+,ifp2n,

    then we have continuous and compact embedding W1,p(.)(Ω)Lk(.)(Ω). So, there exists ce>0 such that

    vkcevW1,p(.),vW1,p(.)(Ω).

    For more details about the Lebesgue and Sobolev spaces with variable exponents, [50,51,52]. We consider the following hypotheses:

    (A1) ν,ω:¯Ω[1,) are measurable functions on Ω that satisfy the following conditions

    2ν1ν(x)ν2<,2ω1ω(x)ω2<,

    where

    ν1:=essinfxΩν(x),ν2:=esssupxΩν(x),ω1:=essinfxΩω(x),ω2:=esssupxΩω(x),

    and they also satisfy the log-Hölder continuity condition; that is, for any λ with 0<λ<1, there exists a constant δ>0 such that,

    |f(x)f(y)|δlog|xy|,for allx,yΩ,with|xy|<λ. (2.2)

    (A2)The coefficients of the system ai,i=1,...,3 satisfy a1a3a22>0.

    (A3) The constant α in (1.1) satisfies 0<α<α0, where α0 is the positive real number satisfying

    2π˜cα0=e321α0, (2.3)

    where ˜c is a positive constant appearing in (3.7).

    Lemma 2.3. [14,53] (Logarithmic Sobolev inequality) Let v be any function in H10(Ω) and a>0 be any real number, then the following inequality holds:

    Ωv2ln|v|dx12v22lnv22+a22πvx22(1+lna)v22. (2.4)

    Remark 2.1. The function f(s)=2πse321s is continuous and decreasing on (0,), with

    lims0+f(s)=andlimsf(s)=e32.

    Therefore, there exists a unique α0>0 such that f(α0)=0, that is,

    2πα0=e321α0. (2.5)

    Moreover,

    e321s<2π˜cs,s(0,α0). (2.6)

    Lemma 2.4. [54] (Logarithmic Gronwall inequality) Let c>0, uL1(0,T;R+), and assume that the function v:[0,T][1,) satisfies

    v(t)c(1+t0u(s)v(s)lnv(s)ds),0tT, (2.7)

    then

    v(t)cexp(ct0u(s)ds),0tT. (2.8)

    The energy functional associated with system (1.1) is defined by

    E(t)=12Ω[ρzz2t+ρuu2t+a3u2x+a1z2x+2a2zxux]dx+α+24[z22+u22]12Ωz2ln|z|dx12Ωu2ln|u|dx. (2.9)

    Direct differentiation, using (1.1), gives

    E(t)=γΩ|zt|ν()dxβΩ|ut|ω()dx0. (2.10)

    Remark 2.2. The nonnegativity of the energy functional is obtained by (A2) and the following identity

    a3u2x+a1z2x+2a2zxux=(a3a22a1)u2x+(a1zx+a2a1ux)2. (2.11)

    Remark 2.3. The following inequality is needed for the proof of our main results:

    There exist two positive constants c0 and d0 such that

    c0(A2+B2)(A+B)2d0(A2+B2), A,BR, such that A+B0. (2.12)

    In fact, c0 is the largest positive constant, which satisfies c0(A+B)2A2+B2, and d0 is the smallest positive constant, which satisfies d0(A+B)2A2+B2.

    First, we multiply the first equation in (1.1) by ϕC0(Ω) and the second equation by ψC0(Ω), integrate each result over Ω, and use Green's formula and the boundary conditions to obtain the definition of the weak solution. Second, we provide a detailed proof of the local existence theorem by using the Faedo-Galerkin approximations.

    Definition 3.1. The pair of functions (z,u) is called a weak solution of (P), if it satisfies the following:

    {ddtΩρzztϕ(x)dx+a1Ωzxϕx(x)dx+a2Ωuxϕx(x)dx,+Ωzϕ(x)dx+γΩ|zt|ν(.)2ztϕ(x)dx=αΩzln|z|ϕ(x)dx,ddtΩρuutψ(x)dx+a3Ωuxψx(x)dx+a2Ωzxψx(x)dx,+Ωuψ(x)dx+βΩ|ut|ω(.)2utψ(x)dx=αΩuln|u|ψ(x)dx,z(0)=z0, zt(0)=z1, u(0)=u0, ut(0)=u1, (3.1)

    for a.e. t[0,T],

    (z,u)L([0,T),H10(Ω)),ztL([0,T),L2(Ω))Lν(Ω×(0,T)),

    utL([0,T),L2(Ω))Lω(Ω×(0,T)), and the test functions ϕ,ψH10(Ω). Note that C0(Ω) is dense in H10(Ω). Further, the spaces H10(Ω)Lν(.)(Ω)Lω(.)(Ω).

    Theorem 3.1. Assume that (A1)(A3) hold and let (z0,z1),(u0,u1)H10(Ω)×L2(Ω), then problem (1.1) has a unique local weak solution (z,u) on [0,T) in the sense of Definition 3.1.

    Proof. The proof of the existence of a weak solution of (1.1) consists of four steps:

    Step 1. Approximate problem: In this step, we consider {wj}j=1 an orthogonal basis of H10(Ω) and define, for all k1, (zk,uk) a sequence in the finite - dimensional subspace (Vk×Vk), where Vk=span{w1,w2,...,wk} as follows:

    zk(x,t)=kj=1aj(t)wj,uk(x,t)=kj=1bj(t)wj,

    for all xΩ and t(0,T), satisfying the following approximate problem:

    {ρzzktt,wjL2(Ω)+a1zxk,wjxL2(Ω)+a2ukx,wjxL2(Ω)+zk,wjL2(Ω)+γ|zkt|ν(x)2zkt,wjL2(Ω)=αzkln|zk|,wjL2(Ω),j=1,2,...,k,ρuuktt,wjL2(Ω)+a3uxk,wjxL2(Ω)+a2zkx,wjxL2(Ω)+uk,wjL2(Ω)+β|ukt|ω(x)2ukt,wjL2(Ω)=αukln|uk|,wjL2(Ω),j=1,2,...,k,zk(0)=zk0,zkt(0)=zk1,uk(0)=uk0,ukt(0)=uk1, (3.2)

    where  ,  is the inner product in L2(Ω) and

    zk0=ki=1z0,wiwi,uk0=ki=1u0,wiwi,zk1=ki=1z1,wiwi,uk1=ki=1u1,wiwi,

    such that

    {zk0z0 and uk0u0inH10(Ω),andzk1z1 and uk1u1inL2(Ω). (3.3)

    Based on standard existence theory for integro-differential equations, system (3.2) admits a unique local solution (zk,uk) on a maximal time interval [0,Tk),0<Tk<T, for each kN.

    Step 2. A priori estimates: In this step, we show, by priory estimates, that Tk=T for each kN. We multiply the first equation by aj(t) and the second equation by bj(t) in (3.2), sum over j=1,2,...k, and add the two equations to obtain

    12ddt[ρzzkt22+ρuukt22+a1zkx22+a3ukx22+2a2Ωukxzkxdx]+ddt[α+24[zk22+uk22]12Ω(zk)2ln|zk|dx12Ω(uk)2ln|uk|dx]=γΩ|zkt(x,t)|ν(.)dxβΩ|ukt(x,t)|ω(.)dx. (3.4)

    Integration of (3.4) over (0,t) leads to

    12(ρz||zkt||22+ρu||ukt||22+a1||zkx||22+a3||ukx||22+2a2Ωukxzkxdx)α+24[zk22+uk22]12Ω(zk)2ln|zk|dx12Ω(uk)2ln|uk|dx+γt0Ω|zkt(s)|ν(.)dxds+βt0Ω|ukt(s)|ω(.)dxds=12(ρz||zk1||22+ρu||uk1||22+ρz||zk0x||22+ρu||uk0x||22+2a2Ωzk0xuk0xdx)12Ω(ψk0)2ln|zk0|dx+12Ω(uk0)2ln|uk0|dx+α+24(||zk0||22+||uk0||22),for all tTk. (3.5)

    Using (2.11), Young's inequality, and convergence (3.3), we have

    12(ρz||zkt||22+ρu||ukt||22+(a3a22a1)||ukx||22+Ω(a1zkx+a2a1ukx)2dx)α+24[z22+u22]12Ω(zk)2ln|zk|dx12Ω(uk)2ln|uk|dx+γt0Ω|zkt(s)|ν(.)dxds+βt0Ω|ukt(s)|ω(.)dxdsC0, tTk,k1. (3.6)

    Using (2.12) and applying the logarithmic Sobolev inequality for (3.6), we obtain

    12(ρz||zkt||22+ρu||ukt||22+(˜cαa22π)||zkx||22+(a3a22a1+˜cαa22π)||ukx||22+2a2Ωukxzkxdx)(α+22+α(1+lna))[z22+u22]+γt0Ω|zkt(s)|ν(.)dxds+βt0Ω|ukt(s)|ω(.)dxdsC0+α2(zk22lnzk22+uk22lnuk22), tTk,k1, (3.7)

    where ˜c=min{c0a21,c0a22a1}, C0=cEk(0). Now, we select

    e321α<a<2π˜cα, (3.8)

    and use (A2) to obtain

    ˜cαa22π>0, a3a22a1+˜cαa22π>0andα+22+α(1+lna)>0. (3.9)

    Combining (3.7) and (3.9), we have

    zkt22+ukt22||zkt||22+||ukt||22+||zkx||22+||ukx||22+zk22+uk22+γct0Ω|zkt(s)|ν(.)dxds+βct0Ω|ukt(s)|ω(.)dxdsC0c+α2c(zk22lnzk22+uk22lnuk22). (3.10)

    Hence,

    zkt22+ukt22C0c+α2c(zk22lnzk22+uk22lnuk22)c(1+zk22lnzk22+uk22lnuk22). (3.11)

    Let us note that

    zk(.,t)=zk(.,0)+t0zks(.,s)ds, and uk(.,t)=uk(.,0)+t0uks(.,s)ds.

    Thus, applying the Cauchy-Schwarz' inequality, we get

    zk(t)222zk(0)22+2||t0zks(s)ds||222zk(0)22+2Tt0zkt(s)22ds,uk(t)222uk(0)22+2||t0uks(s)ds||222uk(0)22+2Tt0ukt(s)22ds. (3.12)

    The addition of the two estimates in (3.12) gives

    zk(t)22+uk(t)222zk(0)22+2uk(0)22+2Tt0zkt(s)22ds+2Tt0ukt(s)22ds. (3.13)

    Combining (3.11) and (3.13) leads to

    zk22+uk222zk(0)22+2uk(0)22+2cT(1+t0zk22lnzk22ds+t0uk22lnuk22ds)2C(1+t0zk22lnzk22ds+t0uk22lnuk22ds)2C1(1+t0(C1+zk22)ln(C1+zk22)ds+t0(C1+uk22)ln(C1+uk22)ds), (3.14)

    where, without loss of generality, C11. The logarithmic Gronwall inequality implies that

    zk22+uk222C1e2C1T:=C2,

    and hence,

    zk22lnzk22+uk22lnuk22C. (3.15)

    After combining (3.10) and (3.15), we obtain

    sup(0,Tk)[||zkt||22+||ukt||22+||zkx||22+||ukx||22]C.

    Therefore, the local solution (zk,uk) of system (3.2) can be extended to (0,T), for all k1. Furthermore, we have

    zk and uk are bounded in L((0,T),H10(Ω)),
    (zkt) is bounded in L((0,T),L2(Ω))Lν(.)(Ω×(0,T)),
    (ukt) is bounded in L((0,T),L2(Ω))Lω(.)(Ω×(0,T)).

    Consequently, we have, up to two subsequences,

    zkz and  uku  weakly * in L((0,T),H10(Ω)),zktzt weakly * in L((0,T),L2(Ω)) and weakly in Lν(.)(Ω×(0,T)),uktut weakly * in L((0,T),L2(Ω)) and weakly in Lω(.)(Ω×(0,T)). (3.16)

    Step 3. The logarithmic terms: In this step, we show that the approximate solutions (zk,uk) satisfy for all k1,

    zkln|zk|αzln|z|α strongly in L2(0,T;L2(Ω)),ukln|uk|αuln|u|α strongly in L2(0,T;L2(Ω)). (3.17)

    Making use of the arguments in (3.16) and applying the Aubin-Lions theorem, we find, up to subsequences, that

    zkz and uku strongly in L2(0,T;L2(Ω))

    and

    zkz and uku a.e. in Ω×(0,T). (3.18)

    Using (3.18), and the fact that the map ssln|s|α is continuous on R, then we have the convergence

    zkln|zk|αzln|z|α a.e. in Ω×(0,T).

    Using the embedding of H10(Ω) in L(Ω) (since ΩR), it is clear that zkln|zk|α is bounded in L(Ω×(0,T)). Next, taking into account the Lebesgue bounded convergence theorem (Ω is bounded), we get

    zkln|zk|αzln|z|α strongly in L2(0,T;L2(Ω)). (3.19)

    Similarly, we can establish the second argument of (3.17).

    Step 4. The nonlinear terms: In this step, we show that

    zktν(.)2zkt ztν(.)2zt weakly in  Lν(.)ν(.)1(Ω×(0,T)),
    uktω(.)2ukt utω(.)2ut weakly in Lω(.)ω(.)1(Ω×(0,T)),

    and that (z,u) satisfies the partial differential equations of (1.1) on Ω×(0,T).

    Since (zkt) is bounded in Lν(.)(Ω×(0,T)), then (|zkt|ν(.)2zkt) is bounded in Lν(.)ν(.)1(Ω×(0,T)). Hence, up to a subsequence,

    |zkt|ν(.)2zktχ1inLν(.)ν(.)1(Ω×(0,T)). (3.20)

    Similarly, we have

    |ukt|ω(.)2uktχ2inLω(.)ω(.)1(Ω×(0,T)). (3.21)

    We can show that

    χ1=|zt|ν(.)2zt  and χ2=|ut|ω(.)2ut,

    by following the same steps as in [55,56]. Now, integrate (3.2) on (0,t) to obtain j<k,

    Ωzktwj(x)dxΩzk1wj(x)dx+a1t0Ωzkxwjx(x)dxds+a2t0Ωukxwjx(x)dxds+t0Ωzkwj(x)dxds+γt0Ω|zkt|ν(.)2zktwj(x)dxds=αt0Ωwjzkln|zk|dxds,Ωuktwj(x)dxΩuk1wj(x)dx+a3t0Ωukxwjx(x)dxds+a2t0Ωzkxwjx(x)dxds+t0Ωukwj(x)dxds+βt0Ω|ukt|ω(.)2uktwj(x)dxds=αt0Ωwjukln|uk|dxds.

    Using all the above convergence and taking k+, we easily check that j<k,

    Ωztwj(x)dxΩz1wj(x)dx+a1t0Ωzxwjx(x)dxds+a2t0Ωuxwjx(x)dxds+t0Ωzwj(x)dxds+γt0Ω|zt|ν(.)2ztwj(x)dxds=αt0Ωwjzkln|zk|dxds,Ωutwj(x)dxΩu1wj(x)dx+a3t0Ωuxwjx(x)dxds+a2t0Ωzxwjx(x)dxds+t0Ωuwj(x)dxds+βt0Ω|ut|ω(.)2utwj(x)dxds=αt0Ωwjukln|uk|dxds.

    Consequently, we have wH10(Ω)

    Ωztw(x)dxΩz1w(x)dx+a1t0Ωzxwx(x)dxds+a2t0Ωuxwx(x)dxds+t0Ωzw(x)dxds+γt0Ω|zt|ν(.)2ztw(x)dxds=αt0Ωwzkln|zk|dxds,Ωutw(x)dxΩu1w(x)dx+a3t0Ωuxwx(x)dxds+a2t0Ωzxwx(x)dxds+t0Ωuw(x)dxds+βt0Ω|ut|ω(.)2utw(x)dxds=αt0Ωwukln|uk|dxds.

    All terms define absolute continuous functions, so we get, for a.e. t[0,T] and wH10(Ω),

    Ωzttw(x)dx+a1Ωzxwx(x)dx+a2Ωuxwx(x)dx+γΩ|zt|ν(.)2ztw(x)dx+Ωzw(x)dx=αΩwzkln|zk|dx,Ωuttw(x)dx+a3Ωuxwx(x)dx+a2Ωzxwx(x)dx+βΩ|ut|ω(.)2utw(x)dx+Ωuw(x)dx=αΩwzkln|zk|dx.

    This implies that

    ρzztta1zxxa2uxx+z+γ|zt|ν()2zt=αzln|z|, in D(Ω×(0,T)),ρuutta3uxxa2zxx+u+β|ut|ω()2ut=αuln|u|, in D(Ω×(0,T)).

    This implies that (z,u) satisfies the two differential equations in (1.1), on Ω×(0,T).

    Step 5. The initial conditions: We can handle the initial conditions like the one in [55]. Hence, we deduce that (z,u) is the unique local solution of (1.1). This completes the proof of Theorem 3.1.

    By using the potential wells, we prove the existence of the global solution to our problem. To this end, we define the following functionals:

    J(z,u)=12Ω[a3u2x+a1z2x+2a2zxux]dx+α+24[z22+u22]12Ωz2ln|z|dx12Ωu2ln|u|dx, (4.1)
    I(z,u)=Ω[a3u2x+a1z2x+2a2zxux]dx+z22+u22Ωz2ln|z|dxΩu2ln|u|dx. (4.2)

    Remark 4.1. (1) From the above definitions, it is clear that

    J(z,u)=12I(z,u)+α4(z22+u22), (4.3)
    E(t)=12(ρzzt22+ρuut22)+J(z,u). (4.4)

    (2) According to the logarithmic Sobolev inequality, J(z,u) and I(z,u) are well-defined.

    We define the potential well (stable set):

    W={(z,u)H10(Ω)×H10(Ω),I(z,u)>0}{(0,0)}.

    The potential well depth is defined by

    0<d=inf(z,u){supλ0J(λz,λu):(z,u)H10(Ω)×H10(Ω),zx20 and ux20}, (4.5)

    and the well-known Nehari manifold is

    N={(z,u):(z,u)H10(Ω)×H10(Ω)/I(z,u)=0,zx20 and ux20}. (4.6)

    Proceeding as in [57,58], one has

    0<d=inf(z,u)NJ(z,u). (4.7)

    Lemma 4.1. For any (z,u)H10(Ω)×H10(Ω), z20, and u20, let g(λ)=J(λz,λu), then we have

    I(λz,λu)=λg(λ){>0,0λ<λ,=0,λ=λ,<0,λ<λ<+,

    where

    λ=exp(α0||ux||22+Ω(a1zx+a2a1ux)2dx+z22+u22Ωz2ln|z|αdxΩu2ln|u|αdxα(z22+u22)),

    where α0=(a3a22a1)>0.

    Proof.

    g(λ)=J(λz,λu)=12λ2((a3a22a1)||ux||22+Ω(a1zx+a2a1ux)2dx)12λ2(Ωz2ln|z|αdx+Ωu2ln|u|αdx)+λ2(α+24α2ln|λ|)(z22+u22).

    Since z20 and u20, then g(0)=0, g(+)=, and

    I(λz,λu)=λdJ(λz,λu)dλ=λg(λ)=λ2((a3a22a1)||ux||22+Ω(a1zx+a2a1ux)2dx)λ2(Ωz2ln|z|αdx+Ωu2ln|u|αdx)+λ2(1αln|λ|)(z22+u22),

    which implies that ddλJ(λz,λu)λ=λ=0, J(λz,λu) is increasing on 0<λλ, decreasing on λλ<, and reaching its maximum value at λ=λ. In other words, there exists a unique λ(0,) such that I(λz,λu)=0, which establishes the desired result.

    Lemma 4.2. Let (z,u)H10(Ω)×H10(Ω) and β0=2π˜cαe1+1α. If 0<z2β0 and 0<u2β0, then I(z,u)0.

    Proof. Using the logarithmic Sobolev inequality (2.4), for any a>0, we have

    I(z,u)=Ω[a3u2x+a1z2x+2a2zxux]dx+z22+u22Ωz2ln|z|dxΩu2ln|u|dx(˜cαa22π)ux22+(˜cαa22π)zx22+12(1+α(1+lna)α2lnu22)u22+12(1+α(1+lna)α2lnz22)z22. (4.8)

    Taking a<min{2π˜cα,2π˜cα} in (4.8), we obtain

    I(z,u)12(α2+α(1+lna)α2lnu22)u22+12(α2+α(1+lna)α2lnz22)z22. (4.9)

    If 0<z2β0 and 0<u2β0, then

    α2+α(1+lna)α2lnu220 and α2+α(1+lna)α2lnz220,

    which gives I(z,u)0.

    Lemma 4.3. The potential well depth d satisfies

    d˜cπ2e2+2α. (4.10)

    Proof. The proof of this lemma is similar to the proof of Lemma 4.3. in [59].

    Lemma 4.4. Let (z0,z1),(u0,u1)H10(Ω)×L2(Ω) such that 0<E(0)<d and I(z0,u0)>0, then any solution of (1.1) is (z,u)W.

    Proof. Let T be the maximal existence time of a weak solution of (ψ,φ). From (2.10) and (4.4), we have

    12(ρzzt2+ρuut2)+J(z,u)12(ρzz12+ρuu12)+J(z0,u0)<d, for any t[0,T), (4.11)

    then we claim that (z(t),u(t))W for all t[0,T). If not, then there is a t0(0,T) such that I(z(t0),u(t0))<0. Using the continuity of I(z(t),u(t)) in t, we deduce that there exists a t(0,T) such that I(z(t),u(t))=0. Using the definition of d in (4.5) gives

    dJ(z(t),u(t))E(z(t),u(t))E(0)<d,

    which is a contradiction.

    In this section, we state and prove our main decay results. For this purpose, we present the following lemmas.

    Lemma 5.1. For any η>0, we have the following:

    βΩu|ut|ω()2utdxcηβΩu2xdx+βΩcη(x)|ut|ω(x)dx,ω12, (5.1)

    and if 1<ω1<2, we have

    βΩu|ut|ω()2utdxcηβΩu2xdx+c[βΩ|ut|ω(x)dx+(Ωβ|ut|ω(x)dx)ω11]. (5.2)

    Lemma 5.2. For any λ>0, we have the following:

    γΩz|zt|ν()2ztdxcλγΩz2xdx+γΩcλ(x)|zt|ν(x)dx,ν12, (5.3)

    and if 1<ν1<2, we have

    γΩz|zt|ν()2φtdxcλγΩz2xdx+c[γΩ|zt|ν(x)dx+(Ωγ|zt|ν(x)dx)ν11]. (5.4)

    Proof. We prove Lemma 5.1, and the proof of Lemma 5.2 will be similar. We start by applying Young's inequality with ξ(x)=ω(x)ω(x)1 and ξ(x)=ω(x). So, for a.e x(0,1) and any η>0, we have

    |ut|ω(x)2utuη|u|ω(x)+cη(x)|ut|ω(x),

    where

    cη(x)=η1ω(x)(ω(x))ω(x)(ω(x)1)ω(x)1.

    Hence,

    βΩu|ut|ω(x)2utdxηβΩ|u|ω(x)dx+βΩcη(x)|ut|ω(x)dx. (5.5)

    Next, using (2.9), (2.10), (4.8), Poincaré's inequality, and the embedding property, we get

    Ω|u|ω(x)dx=Ω+|u|ω(x)dx+Ω|u|ω(x)dxΩ+|u|ω2dx+Ω|u|ω1dxΩ|u|ω2dx+Ω|u|ω1dxcω1e||ux||ω12+cω2e||ux||ω22(cω1e||ux||ω122+cω2e||ux||ω222)||ux||22(cω1e(2π2π˜cαa2E(0))ω12+cω2e(2π2π˜cαa2E(0))ω22)||ux||22c1||ux||22, (5.6)

    where ce is the embedding constant,

    Ω+={x(0,L):|u(x,t)|1},Ω={x(0,L):|u(x,t)|<1}

    and

    c1=(cω1e(2π2cπ˜cαa2E(0))ω12+cω2e(2π2cπ˜cαa2E(0))ω22). (5.7)

    Thus, from (5.5) and (5.6), we find that

    βΩu|ut|ω(x)2utdxc1ηβΩu2xdx+βΩcη(x)|ut|ω(x)dx. (5.8)

    Combining all the above estimations, estimate (5.1) is established. To prove (5.2), we set

    Ω1={x(0,L):ω(x)<2}andΩ2={x(0,L):ω(x)2},

    then, we have

    βΩu|ut|ω(x)2utdx=βΩ1u|ut|ω(x)2utdxβΩ2u|ut|ω(x)2utdx. (5.9)

    We notice that on Ω1, we have

    2ω(x)2<ω(x),and2ω(x)22ω12. (5.10)

    Therefore, by using Young's and Poincaré's inequalities and (5.10), we find that

    βΩ1u|ut|ω(x)2utdxηβΩ1|u|2dx+β4ηΩ1|ut|2ω(x)2dxcηβ||ux||22+cηβ[Ω+1|ut|2ω(x)2dx+Ω1|ut|2ω(x)2dx]cηβ||ux||22+cηβ[Ω+1|ut|ω(x)dx+Ω1|ut|2ω12dx]cηβ||ux||22+cηβ[Ω|ut|ω(x)dx+(Ω1|ut|2dx)ω11]cηβ||ux||22+cηβ[Ω|ut|ω(x)dx+(Ω1|ut|ω(x)dx)ω11]cηβ||ux||22+cη[βΩ|ut|ω(x)dx+β2ω1(Ωβ|ut|ω(x)dx)ω11], (5.11)

    where

    Ω+1={xΩ1:|ut(x,t)|1}andΩ1={xΩ1:|ut(x,t)|<1}. (5.12)

    Next, by the case of ω(x)2, we have

    βΩ2u|ut|ω(x)2utdxcηβΩu2xdx+βΩcη(x)|ut|ω(x)dx. (5.13)

    Combining (5.11) and (5.13), the proof of (5.2) is completed.

    Remark 5.1. For the stability results, we assume that the coefficients ai,i=1,...,3 satisfy

    a1a34a22>0. (5.14)

    It is clear that (5.14) gives the condition in (A2).

    Lemma 5.3. Assume that (A1A3) and (5.14) hold and let (z0,z1),(u0,u1)H10(Ω)×L2(Ω). Assume further that 0<E(0)<τ<d, where

    τ=˜cπ2e2+2α,0<e1α˜ca0<1,a0=min{a1,a3}, (5.15)

    then the functional

    L(t)=NE(t)+ ρuΩuutdx+ ρzΩzztdx+12Ωu2dx+12Ωz2dx

    satisfies, along with the solutions of (1.1) and for a suitable choice of N,

    LE (5.16)

    and

    Ł(t){ϑE(t)+cΩz2tdx+cΩu2tdx,ν1,ω12,ϑE(t)+cΩz2tdx+cΩu2tdxcEα1(t)E(t),γ=0,β0,and1<ν1,ω1<2,ϑE(t)+cΩz2tdx+cΩu2tdxcEα2(t)E(t),β=0,γ0,and1<ν1,ω1<2,ϑE(t)+cΩz2tdx+cΩu2tdxcEα3(t)E(t),γ0,β0,and1<ν1,ω1<2, (5.17)

    where α1=2ω1ω11>0,α2=2ν1ν11>0,α3=2m1m11>0, and m1=min{ν1,ω1}.

    Proof. If we want to prove all cases, the proof will be very lengthy, so we prove (5.17)2 and the proofs of the other cases are very similar with minor modifications. To prove (5.17)2, we differentiate L(t) and use integrations by parts, to get

    L(t)=βΩ|ut|ω()dx+ Ω(ρu|ut|2+ρz|zt|2)dx Ω(a3|ux|2+a1|zx|2+2a2uxzx)dx+ αΩu2ln|u|dx+ αΩz2ln|z|dx Ωu2dx Ωz2dx βΩu|ut|ω()2utdx+ Ω(ρuuut+ρzzzt)dx+c[βΩ|ut|ω(x)dx+(Ωβ|ut|ω(x)dx)ω11]. (5.18)

    Using Young's inequality, we have for some positive constants λi,

    2a2uxzxλ1u2x+a22λ1z2x, (5.19)
    ρuuut+ρzzztλ2(u2+z2)+14λ2(ρ2uu2t+ρ2zz2t), (5.20)

    and

    ρuuut+ρzzztλ4(u2+z2)+ρ2u4λ4u2t+ρ2z4λ4z2t. (5.21)

    Using (5.2), (5.4), and (5.18)–(5.21), we have

    L(t)NβΩ|ut|ω()dx+λ4Ω(u2+z2)dx+c λ4Ω(u2t+z2t)dx Ω(a3cηβλ1)u2xdx Ω(a1a22λ1)z2xdx+ αΩu2ln|u|dx+ αΩz2ln|z|dx Ωu2dx Ωz2dx+c[βΩ|ut|ω(x)dx+(Ωβ|ut|ω(x)dx)ω11]. (5.22)

    Using (2.10) and the logarithmic Sobolev inequality, (5.22) becomes

    L(t)β(Nc)Ω|ut|ω()dx+c λ4Ω(u2t+z2t)dx Ω(a3a2α2πcηβλ1)u2xdx Ω(a1αa22πa22λ1)z2xdx(1α2lnu22λ4+α(1+lna))u22(1α2lnz22λ4+α(1+lna))z22+c(E(t))ω11. (5.23)

    Now, we select N large enough so that Nc>0, then we select a<2πa0α, where a0=min{a1,a3}, which makes

    a3αa22π>0, and a1αa22π>0.

    After that, we choose η=a3αa22π2cβ, and 2a22a1αa22π<λ1<a3αa22π2, to get

    a3a2α2πcηβλ1>0, a1αa22πa22λ1>0.

    This selection is possible thanks to (5.14). Using (2.9), (2.10), and the fact that uW,

    lnu22<ln(4αE(t))<ln(4αE(0))<ln(4ατ)<ln(2˜cπe2+2αα). (5.24)

    After taking a satisfying

    e1α2˜cπα<a<2πa0α,

    and λ4 is small enough, we guarantee the following:

    1α2lnu22λ4+α(1+lna)>0 and 1α2lnz22λ4+α(1+lna)>0.

    Then, (5.23) reduces to

    L(t)cE(t)+cΩz2tdx+cΩu2tdx+cβ(E(t))ω11. (5.25)

    Using Young's inequality with ζ=1ω11 and ζ=12ω1, for any ε>0, we estimate this term Eα(t)(E(t))ω11 as follows:

    Eα(t)(E(t))ω11εEα2ω1(t)+cε(E(t)).

    Multiplying both sides of the last inequality by Eα, where α=2ω1ω11, gives us

    (E(t))ω11εE(t)+cεEα(t)(E(t)).

    Inserting this estimate in the last term in (5.25), we find that

    L(t)(cε)E(t)+cΩz2tdx+cΩu2tdx+cεEα(t)(E(t)). (5.26)

    By taking ε small enough and using the nonincreasing property of E, (5.17) is established. On the other hand, we can choose N even larger (if needed) so that LE.

    Lemma 5.4. Assume that (A1) holds, then

    10z2tdxcE(t),ifν2=2,10u2tdxcE(t),ifω2=2, (5.27)

    and

    10z2tdxcE(t)+c(E(t))2ν2,ifν2>2,10u2tdxcE(t)+c(E(t))2ω2,ifω2>2. (5.28)

    Proof. By recalling (2.10), it is easy to establish (5.27). To prove the first estimate in (5.28), we set the following partitions

    Ω1={xΩ:|zt|1} andΩ2={xΩ:|zt|<1}. (5.29)

    The use of Hölder's and Young's inequalities and (2.9), give for Ω1,

    Ω1z2tdxΩ|zt|ω(x)dxcE(t), (5.30)

    and for Ω2, we get

    Ω2z2tdxc(Ω2|zt|ν2dx)2ν2c(Ω2|zt|ν(x)dx)2ν2c(Ω|zt|ν(x)dx)2ν2c(E(t))2ν2. (5.31)

    Combining (5.30) and (5.31), the first estimate in (5.28) is established, and we repeat the same steps to establish the second estimate in (5.28).

    Theorem 5.1. Assume that (A1A3) hold and ν1,ω12, then the energy functional (2.9) satisfies, for some positive constants λi,σi,μi>0,i=1,2,3, and for any t0,

    {E(t)<μ1eλ1t,ifγ=0,β0,andω2=2;E(t)<μ2eλ2t,ifγ0,β=0,andν2=2;E(t)<μ3eλ3t,ifγ0,β0,andν2=ω2=2, (5.32)

    and

    {E(t)<σ1(t+1)(ω222),ifγ=0,β0,andω2>2;E(t)<σ2(t+1)(ν222),ifγ0,β=0,andν2>2;E(t)<σ3(t+1)(m222),ifγ0,β0,andν2,ω2>2, (5.33)

    where m2=min{ν2,ω2}.

    Proof. To prove (5.32)1, we impose Lemma (5.4) in (5.17)1 to obtain

    L(t)cL(t)+c(E(t)), (5.34)

    which leads to

    L1(t)cL(t), (5.35)

    where L1=L+cEE. Integrating (5.35) over (0,t) and using the fact that L1,LE, the proof of (5.32)1 is finished, and the remaining proofs of (5.32)2 and (5.32)3 can be achieved in the same way. Now, it is enough to prove the estimate given in (5.33)3, and the remaining can be achieved in the same way. To this end, we also apply Lemma 5.4 in Eq (5.17)1 to have

    L(t)cL(t)+(E(t))2ν2+(E(t))2ω2. (5.36)

    By multiplying (5.36) by Eα, where α=ν222>0, we get

    EαL(t)cEαL(t)+Eα(E(t))2ν2+Eα(E(t))2ω2. (5.37)

    Applying Young's inequality twice in (5.37), we find that for ε>0,

    EαL(t)cEα+1L(t)+εEαν2ν22+εEαω2ω22+Cε(E(t)). (5.38)

    We discuss two cases:

    Case 1. If ν2<ω2, we will have

    EαL(t)cEα+1L(t)+εEαν2ν22+εEαν2ν22E2α(ν2ω2)(ν22)(ω22)+Cε(E(t)).

    Using the fact that E0, we get

    EαL(t)(cεcε)Eα+1L(t)+Cε(E(t)). (5.39)

    Choosing ε small enough, we see that (5.39) becomes

    L2(t)cEα+1(t),t0, (5.40)

    where L2=EαL+cEE. By integrating (5.40) over (0,t) and using the fact that EL2, we obtain

    E(t)<cν2(t+1)1/α,t>0, (5.41)

    where α=ν222.

    Case 2. If ω2<ν2, in this case we get

    E(t)<cω2(t+1)1/α,t>0, (5.42)

    where α=ω222. So, the proof of (5.33)3 can be completed by taking m2=min{ν2,ω2}.

    Theorem 5.2. Assume that (A1A3) hold, 1<ν1,ω1<2 and, ν2=ω2=2, then the energy functional (2.9) satisfies, for a positive constants Ci,i=1,2,3, and for any t>0,

    {E(t)<C1(t+1)(ω112ω1),ifγ=0andβ0,E(t)<C2(t+1)(ν112ν1),ifγ0andβ=0,E(t)<C3(t+1)(m112m1),ifγ0andβ0, (5.43)

    where m1=min{ν1,ω1}.

    Proof. To prove (5.43)1, we impose Lemma (5.4) in (5.17)2 to get

    L(t)cE(t)+(E(t))+(E(t))cEα1(t)E(t),

    where α1=2ω1ω11>0. By taking L1=L+cEE, this becomes

    L1(t)cE(t)cEα1(t)E(t). (5.44)

    Multiplying (5.44) by Eα1, we have

    Eα1(t)L1(t)cEα1+1(t)cE(t).

    By taking L2=EαL1+cEE, this becomes

    L2(t)cEα1+1(t).

    Therefore, we obtain the following decay estimate

    E(t)<cω1(t+1)1/α1,t>0, (5.45)

    where α1=2ω1ω11. The proof of (5.43)1 is completed, and the proof of (5.43)2 and (5.43)3 can be achieved in the same way.

    Theorem 5.3. Assume that (A1A3) hold, 1<ν1,ω1<2, and ν2,ω2>2, then the energy functional (2.9) satisfies, for a positive constants Ci,i=1,2,3, and for any t>0,

    {E(t)<C1(t+1)(2ω22),ifγ=0andβ0,E(t)<C2(t+1)(2ν22),ifγ0andβ=0,E(t)<C3(t+1)(2m22),ifγ0andβ0, (5.46)

    where m2=min{ν2,ω2}

    Proof. To prove (5.46)1, we impose Lemma (5.4) in (5.17)1 to get

    L(t)cE(t)+(E(t))2ν2+(E(t))2ω2cEα1(t)E(t),

    where α1=2ω1ω11>0. Multiplying by Eα where α=ω222>0, and using αα1>0 and Young's inequality twice, we obtain, for ε>0,

    EαL(t)cEα+1(t)+εEαν2ν22+εEαω2ω22+Cε(E(t)).

    Assuming that ω2>ν2,

    EαL(t)cEα+1L(t)+εEαω2ω22+εEαω2ω22E2α(ω2ν2)(ν22)(ω22)+Cε(E(t)).

    Using the fact that E is nonincreasing, we obtain

    EαL(t)(cεcε)Eα+1L(t)+Cε(E(t)).

    Taking ε small enough, the above estimate becomes:

    L2(t)cEα+1(t),t0, (5.47)

    where L2=EαL+cEE. Integration (5.47) over (0,t) and using EL2, we get

    E(t)<cω2(t+1)1/α,t>0, (5.48)

    where α=ω222. So, the proof of (5.46)1 is completed and the proofs of (5.46)2 and (5.46)3 will be the same.

    In this paper, we proved the local existence result of solutions of the nonlinear swelling porous-elastic system by using the Faedo-Galerkin method. Furthermore, we proved the global existence of solutions by using the well-depth method. Finally, we established several decay results by employing the multiplier method and the logarithmic Sobolev inequality. The problem will be very interesting if we consider the damping condiments γ and β as functions of x and t, i.e, γ=γ(x,t) and β=β(x,t).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.

    The authors declare no competing interests.



    [1] M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326
    [2] J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363
    [3] A. C. Eringen, A continuum theory of swelling porous elastic soils, Internat. J. Engrg. Sci., 32 (1994), 1337–1349. https://doi.org/10.1016/0020-7225(94)90042-6 doi: 10.1016/0020-7225(94)90042-6
    [4] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213–259. https://doi.org/10.1007/s00205-002-0208-7 doi: 10.1007/s00205-002-0208-7
    [5] M. R ǔžička, Electrorheological fluids: Modeling and mathematical theory, Springer, 2007.
    [6] S. Antontsev, Wave equation with p(x,t)-laplacian and damping term: Existence and blow-up, Differ. Equ. Appl., 3 (2011), 503–525.
    [7] S. Antontsev, Wave equation with p(x,t)-Laplacian and damping term: Blow-up of solutions, C. R. Mecanique, 339 (2011), 751–755. http://dx.doi.org/10.1016/j.crme.2011.09.001 doi: 10.1016/j.crme.2011.09.001
    [8] S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 96 (2017), 1509–1515. https://doi.org/10.1080/00036811.2016.1276170 doi: 10.1080/00036811.2016.1276170
    [9] S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024–3041. https://doi.org/10.1016/j.camwa.2017.07.048 doi: 10.1016/j.camwa.2017.07.048
    [10] I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Pol. Sci. Cl, 3 (1975), 461–466.
    [11] I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62–93. https://doi.org/10.1016/0003-4916(76)90057-9 doi: 10.1016/0003-4916(76)90057-9
    [12] P. Górka, Logarithmic klein-gordon equation, Acta Phys. Polon. B, 40 (2009), 59–66.
    [13] X. Han, Global existence of weak solutions for a logarithmic wave equation arising from q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275–283.
    [14] H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030 doi: 10.1016/j.jmaa.2014.08.030
    [15] M. M. Al-Gharabli, S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105–125. https://doi.org/10.1007/s00028-017-0392-4 doi: 10.1007/s00028-017-0392-4
    [16] M. M. Al-Gharabli, A. Guesmia, S. Messaoudi, Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 159–180. http://dx.doi.org/10.3934/cpaa.2019009 doi: 10.3934/cpaa.2019009
    [17] X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475–499. https://doi.org/10.1016/j.na.2019.06.019 doi: 10.1016/j.na.2019.06.019
    [18] W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [19] A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9
    [20] M. M. Al-Gharabli, A. M. Al-Mahdi, M. Kafini, Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities, AIMS Mathematics, 6 (2021), 10105–10129. http://dx.doi.org/10.3934/math.2021587 doi: 10.3934/math.2021587
    [21] E. Pişkin, S. Boulaaras, N. Irkil, Qualitative analysis of solutions for the p-laplacian hyperbolic equation with logarithmic nonlinearity, Math. Methods Appl. Sci., 44 (2021), 4654–4672. https://doi.org/10.1002/mma.7058 doi: 10.1002/mma.7058
    [22] H. Yüksekkaya, E. Piskin, Existence and exponential decay of a logarithmic wave equation with distributed delay, Miskolc Math. Notes, 24 (2023), 1057–1071. http://dx.doi.org/10.18514/MMN.2023.4155 doi: 10.18514/MMN.2023.4155
    [23] H. Yüksekkaya, E. Piskin, M. M. Kafini, A. M. Al-Mahdi, Well-posedness and exponential stability for the logarithmic lamé system with a time delay, Appl. Anal., 103 (2024), 506–518. https://doi.org/10.1080/00036811.2023.2196993 doi: 10.1080/00036811.2023.2196993
    [24] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051
    [25] L. Bociu, I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Appl. Math., 35 (2008), 281–304. http://dx.doi.org/10.4064/am35-3-3 doi: 10.4064/am35-3-3
    [26] L. Bociu, I. Lasiecka, Local hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differ. Equ., 249 (2010), 654–683. https://doi.org/10.1016/j.jde.2010.03.009 doi: 10.1016/j.jde.2010.03.009
    [27] D. Ieşan, On the theory of mixtures of thermoelastic solids, J. Thermal Stresses, 14 (1991), 389–408. https://doi.org/10.1080/01495739108927075 doi: 10.1080/01495739108927075
    [28] R. Quintanilla, Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation, J. Comput. Appl. Math., 145 (2002), 525–533. https://doi.org/10.1016/S0377-0427(02)00442-9 doi: 10.1016/S0377-0427(02)00442-9
    [29] J.-M. Wang, B.-Z. Guo, On the stability of swelling porous elastic soils with fluid saturation by one internal damping, IMA J. Appl. Math., 71 (2006), 565–582. https://doi.org/10.1093/imamat/hxl009 doi: 10.1093/imamat/hxl009
    [30] A. J. A. Ramos, M. M. Freitas, D. S. Almeida Jr, A. S. Noé, M. J. D. Santos, Stability results for elastic porous media swelling with nonlinear damping, J. Math. Phys., 61 (2020), 101505. https://doi.org/10.1063/5.0014121 doi: 10.1063/5.0014121
    [31] T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457–471. https://doi.org/10.1016/j.jmaa.2017.08.007 doi: 10.1016/j.jmaa.2017.08.007
    [32] A. Youkana, A. M. Al-Mahdi, S. A. Messaoudi, General energy decay result for a viscoelastic swelling porous-elastic system, Z. Angew. Math. Phys., 73 (2022), 88. https://doi.org/10.1007/s00033-022-01696-x doi: 10.1007/s00033-022-01696-x
    [33] A. M. Al-Mahdi, M. M. Al-Gharabli, T. A. Apalara, On the stability result of swelling porous-elastic soils with infinite memory, Appl. Anal., 102 (2023), 4501–4517. https://doi.org/10.1080/00036811.2022.2120865 doi: 10.1080/00036811.2022.2120865
    [34] A. M. Al-Mahdi, S. A. Messaoudi, M. M. Al-Gharabli, A stability result for a swelling porous system with nonlinear boundary dampings, J. Funct. Spaces, 2022 (2022), 8079707. https://doi.org/10.1155/2022/8079707 doi: 10.1155/2022/8079707
    [35] R. Quintanilla, On the linear problem of swelling porous elastic soils with incompressible fluid, Internat. J. Engrg. Sci., 40 (2002), 1485–1494. https://doi.org/10.1016/S0020-7225(02)00021-6 doi: 10.1016/S0020-7225(02)00021-6
    [36] R. Quintanilla, Exponential stability of solutions of swelling porous elastic soils, Meccanica, 39 (2004), 139–145. https://doi.org/10.1023/B:MECC.0000005105.45175.61 doi: 10.1023/B:MECC.0000005105.45175.61
    [37] T. A. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 4498. https://doi.org/10.3390/math10234498 doi: 10.3390/math10234498
    [38] T. A. Apalara, A. Soufyane, Energy decay for a weakly nonlinear damped porous system with a nonlinear delay, Appl. Anal., 101 (2022), 6113–6135. https://doi.org/10.1080/00036811.2021.1919642 doi: 10.1080/00036811.2021.1919642
    [39] T. A. Apalara, M. O. Yusuf, B. A. Salami, On the control of viscoelastic damped swelling porous elastic soils with internal delay feedbacks, J. Math. Anal. Appl., 504 (2021), 125429. https://doi.org/10.1016/j.jmaa.2021.125429 doi: 10.1016/j.jmaa.2021.125429
    [40] T. A. Apalara, M. O. Yusuf, S. E. Mukiawa, O. B. Almutairi, Exponential stabilization of swelling porous systems with thermoelastic damping, J. King Saud Univ. Sci., 35 (2023), 102460. https://doi.org/10.1016/j.jksus.2022.102460 doi: 10.1016/j.jksus.2022.102460
    [41] A. M. AL-Mahdi, M. M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: Theory and numerics, Z. Angew. Math. Phys., 74 (2023), 72. https://doi.org/10.1007/s00033-023-01962-6 doi: 10.1007/s00033-023-01962-6
    [42] A. M. Al-Mahdi, M. M. Al-Gharabli, T. A. Apalara, On the stability result of swelling porous-elastic soils with infinite memory, Appl. Anal., 102 (2023), 4501–4517. https://doi.org/10.1080/00036811.2022.2120865 doi: 10.1080/00036811.2022.2120865
    [43] A. M. Al-Mahdi, M. M. Al-Gharabli, M. Alahyane, Theoretical and computational results of a memory-type swelling porous-elastic system, Math. Comput. Appl., 27 (2022), 27. https://doi.org/10.3390/mca27020027 doi: 10.3390/mca27020027
    [44] M. M. Kafini, M. M. Al-Gharabli, A. M. Al-Mahdi, Asymptotic behavior of solutions to a nonlinear swelling soil system with time delay and variable exponents, Math. Comput. Appl., 28 (2023), 94. https://doi.org/10.3390/mca28050094 doi: 10.3390/mca28050094
    [45] M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, Decay results for a viscoelastic problem with nonlinear boundary feedback and logarithmic source term, J. Dyn. Control Syst., 28 (2020), 71–89. https://doi.org/10.1007/s10883-020-09522-1 doi: 10.1007/s10883-020-09522-1
    [46] A. M. Al-Mahdi, The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type, AIMS Mathematics, 8 (2023), 27439–27459. http://dx.doi.org/10.3934/math.20231404 doi: 10.3934/math.20231404
    [47] Y. Guo, M. A. Rammaha, S. Sakuntasathien, Energy decay of a viscoelastic wave equation with supercritical nonlinearities, Z. Angew. Math. Phys., 69 (2018), 65. https://doi.org/10.1007/s00033-018-0961-6 doi: 10.1007/s00033-018-0961-6
    [48] S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Methods Appl. Sci., 45 (2022), 8389–8411. https://doi.org/10.1002/mma.7141 doi: 10.1002/mma.7141
    [49] M. M. Al-Gharabli, A. M. Al-Mahdi, Existence and stability results of a plate equation with nonlinear damping and source term, Electron. Res. Arch., 30 (2022), 4038–4065. http://dx.doi.org/10.3934/era.2022205 doi: 10.3934/era.2022205
    [50] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.
    [51] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Press Paris, 2015. https://doi.org/10.2991/978-94-6239-112-3
    [52] V. D. Radulescu, D. D. Repovs, Partial differential equations with variable exponents: Variational methods and qualitative analysis, CRC press, 2015.
    [53] L. Gross, Logarithmic sobolev inequalities, Amer. J. Math., 97 (1975), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688
    [54] T. Cazenave, A. Haraux, Équations d'évolution avec non linéarité logarithmique, In: Annales de la Faculté des sciences de Toulouse: Mathématiques, 2 (1980), 21–51.
    [55] S. Messoaudi, M. Al-Gharabli, A. Al-Mahdi, On the existence and decay of a viscoelastic system with variable-exponent nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 2022. http://dx.doi.org/10.3934/dcdss.2022183 doi: 10.3934/dcdss.2022183
    [56] S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, M. A. Al-Osta, A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, 8 (2023), 7933–7966. http://dx.doi.org/10.3934/math.2023400 doi: 10.3934/math.2023400
    [57] H. Chen, G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329–349. https://doi.org/10.1007/s11868-012-0046-9 doi: 10.1007/s11868-012-0046-9
    [58] Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011
    [59] M. M. Al-Gharabli, S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454 (2017), 1114–1128. https://doi.org/10.1016/j.jmaa.2017.05.030 doi: 10.1016/j.jmaa.2017.05.030
  • This article has been cited by:

    1. Hocine Makheloufi, Stability Analysis of Viscoelastic Swelling Porous Elastic Soils With Nonlinear Kelvin–Voigt Dampings, 2025, 0170-4214, 10.1002/mma.10889
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(935) PDF downloads(76) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog