Processing math: 58%
Research article

Study on sensible beginning divided-search enhanced Karnik-Mendel algorithms for centroid type-reduction of general type-2 fuzzy logic systems

  • Received: 20 December 2023 Revised: 23 January 2024 Accepted: 19 February 2024 Published: 26 March 2024
  • MSC : 68WXX, 94D05

  • General type-2 fuzzy logic systems (GT2 FLSs) on the basis of alpha-plane representation of GT2 fuzzy sets (FSs) have attracted considerable attention in recent years. For the kernel type-reduction (TR) block of GT2 FLSs, the enhanced Karnik-Mendel (EKM) algorithm is the most popular approach. This paper proposes the sensible beginning divided-search EKM (SBDEKM) algorithms for completing the centroid TR of GT2 FLSs. Computer simulations are provided to show the performances of the SBDEKM algorithms. Compared with EKM algorithms and sensible beginning EKM (SBEKM) algorithms, the SBDEKM algorithms have almost the same accuracies and better computational efficiency.

    Citation: Yang Chen, Chenxi Li. Study on sensible beginning divided-search enhanced Karnik-Mendel algorithms for centroid type-reduction of general type-2 fuzzy logic systems[J]. AIMS Mathematics, 2024, 9(5): 11851-11876. doi: 10.3934/math.2024580

    Related Papers:

    [1] Yang Chen, Jinxia Wu, Jie Lan . Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. AIMS Mathematics, 2020, 5(6): 6149-6168. doi: 10.3934/math.2020395
    [2] Yang Chen, Jiaxiu Yang, Chenxi Li . Design of reasonable initialization weighted enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. AIMS Mathematics, 2022, 7(6): 9846-9870. doi: 10.3934/math.2022549
    [3] Yang Chen, Jinxia Wu, Jie Lan . Study on weighted-based noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. AIMS Mathematics, 2020, 5(6): 7719-7745. doi: 10.3934/math.2020494
    [4] Farah Liyana Azizan, Saratha Sathasivam, Nurshazneem Roslan, Ahmad Deedat Ibrahim . Logic mining with hybridized 3-satisfiability fuzzy logic and harmony search algorithm in Hopfield neural network for Covid-19 death cases. AIMS Mathematics, 2024, 9(2): 3150-3173. doi: 10.3934/math.2024153
    [5] Aceng Sambas, Ardashir Mohammadzadeh, Sundarapandian Vaidyanathan, Ahmad Faisal Mohamad Ayob, Amiral Aziz, Mohamad Afendee Mohamed, Ibrahim Mohammed Sulaiman, Mohamad Arif Awang Nawi . Investigation of chaotic behavior and adaptive type-2 fuzzy controller approach for Permanent Magnet Synchronous Generator (PMSG) wind turbine system. AIMS Mathematics, 2023, 8(3): 5670-5686. doi: 10.3934/math.2023285
    [6] Salma Iqbal, Naveed Yaqoob . Ranking of linear Diophantine fuzzy numbers using circumcenter of centroids. AIMS Mathematics, 2023, 8(4): 9840-9861. doi: 10.3934/math.2023497
    [7] Caicai Feng, Saratha Sathasivam, Nurshazneem Roslan, Muraly Velavan . 2-SAT discrete Hopfield neural networks optimization via Crow search and fuzzy dynamical clustering approach. AIMS Mathematics, 2024, 9(4): 9232-9266. doi: 10.3934/math.2024450
    [8] Omaima Alshanqiti, Ashutosh Pandey, Mani Shankar Pandey . A characterization of $ b $-generalized skew derivations on a Lie ideal in a prime ring. AIMS Mathematics, 2024, 9(12): 34184-34204. doi: 10.3934/math.20241628
    [9] Nasser Aedh Alreshidi, Muhammad Rahim, Fazli Amin, Abdulaziz Alenazi . Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy. AIMS Mathematics, 2023, 8(12): 30462-30486. doi: 10.3934/math.20231556
    [10] Xuejie Ma, Songhua Wang . A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
  • General type-2 fuzzy logic systems (GT2 FLSs) on the basis of alpha-plane representation of GT2 fuzzy sets (FSs) have attracted considerable attention in recent years. For the kernel type-reduction (TR) block of GT2 FLSs, the enhanced Karnik-Mendel (EKM) algorithm is the most popular approach. This paper proposes the sensible beginning divided-search EKM (SBDEKM) algorithms for completing the centroid TR of GT2 FLSs. Computer simulations are provided to show the performances of the SBDEKM algorithms. Compared with EKM algorithms and sensible beginning EKM (SBEKM) algorithms, the SBDEKM algorithms have almost the same accuracies and better computational efficiency.



    Interval T2 (IT2) FLSs [1,2,3] have been applied to many fields with higher uncertainties and nonlinear characteristics. Despite this, since the alpha-plane (or z-slice) representation theory [4,5,6,7] of GT2 FSs was put forward by a few different research groups, much of the academic attention has shifted from IT2 fuzzy logic to GT2 fuzzy logic. As the computational complexity has been decreased significantly, they are increasingly being applied to in fields like border detection [8,9], fuzzy logic control [10,11], permanent magnetic drive [12,13,14,15], and so forth. As the secondary membership grades of GT2 FSs exist between zero and one, so that, they may be considered as more advanced order parameter models compared with IT2 FSs. Because the design degrees of freedom increase, GT2 FLSs have more of an ability to cope with issues arising from uncertainties in contrast to IT2 FLSs.

    GT2 FLSs [7] are made up of five blocks: Fuzzifier, rules, inference, TR, and defuzzification. TR is the kernel block, which plays the role of transforming the GT2 FS to the type-1 (T1) FS. The block of defuzzification maps the T1 FS to the crisp output. The most popular enhanced Karnik-Mendel (EKM [16,17,18,19,20,21,22,23]) TR algorithms have the advantage of keeping the uncertainty flows between the lower membership functions (LMFs) and upper MFs (UMFs). Despite so, this kind of algorithm is still computationally intensive. Liu gave the initialization interpretations [18] for the EKM algorithms, then the sensible beginning (SB, or say reasonable initialization) EKM (SBEKM) algorithms [24] can be generated. Based on these studies, this paper further divides the search space [25] of SBEKM algorithms, and then proposes the sensible beginning divided-search EKM (SBDEKM) algorithms for performing the centroid TR for GT2 FLSs.

    The remainder is organized as follows: Section 2 provides the background knowledge of GT2 FLSs. The SBDEKM algorithms are proposed to complete the centroid TR and defuzzification of GT2 FLSs in Section 3. Section 4 provides computer simulations to show the performance of the SBDEKM algorithms compared with the EKM algorithms and SBEKM algorithms. Finally, Section 5 gives the conclusions and expectations.

    In general, we may categorize the GT2 FLSs into two types from the aspect of inference: Mamdani [7,26,27] and Takagi-Sugeno-Kang [12,29,30]. In this paper, without loss of generality, consider a GT2 FLS with n inputs x1X1,xnXn and one output ˜B, among which, the sth is given as:

    Rs: if x1 is ˜Fs1 and x2 is ˜Fs2 and  and xn is ˜Fsn, then y is ˜Gs (1)

    in which ˜Fsi(i=1,,n;s=1,,M) is the antecedent, and ˜Gs(s=1,2,,M) is the consequent.

    For the sake of simplifying the expressions, here the singleton fuzzifier xi=xi is used, only one vertical slice (secondary membership) ˜Fsi(xi) of antecedent ˜Fsi is activated, and the alpha-cut decomposition can be represented as:

    ˜Fsi(xi)=supα[0,1]α/[csi,α(xi),dsi,α(xi)]. (2)

    For each rule, the firing interval at the corresponding alpha-level is:

    Fα:{Fsα(x)[f_sα(x),¯fsα(x)]f_sα(x)Tpi=1csi,α(xi)¯fsα(x)Tpi=1csi,α(xi), (3)

    where p denotes the number of antecedents, and T represents the minimum or product t-norm.

    Let ˜Gsα be the alpha-plane of consequent ˜Gs under the corresponding alpha-level, i.e.,

    ˜Gsα=yY˜Gsα(y)/y=yY[gsL,α(y),gsR,α(y)]/y. (4)

    In the following, we merge the firing interval of each rule with the related rule consequent alpha-plane ˜Gsα to get the firing rule alpha-plane ˜Bsα, i.e.,

    ˜Bsα:{FOU(˜Bsα)=[f_˜Bsα(y|x),¯f˜Bsα(y|x)]f_˜Bsα(y|x)=f_sα(x)gsL,α(y)¯f˜Bsα(y|x)=¯fsα(x)gsR,α(y). (5)

    Aggregating all the ˜Bsα to get the output alpha-plane ˜Bα, i.e.,

    ˜Bα:{FOU(˜Bα)=[f_˜Bα(y|x),¯f˜Bα(y|x)]f_˜Bα(y|x)=f_˜B1α(y|x)f_˜BMα(y|x)¯f˜Bα(y|x)=¯f˜B1α(y|x)¯f˜BMα(y|x). (6)

    Calculating the centroid of ˜Bα at the corresponding alpha-level to obtain the type-reduced set l˜Bα=ξl˜Bα, i.e.,

    YC,α(x)=C˜Bα(x)=α/[l˜Bα(x),r˜Bα(x)], (7)

    in which r˜Bα(x) and l˜Bα(x) can be computed by many different kinds of TR algorithms [16,17,18,19,20,21,27,28] as:

    l˜Bα(x)=minf˜Bα(yi)[f_˜Bα(yi),¯f˜Bα(yi)]ni=1yifR˜Bα(yi)ni=1fR˜Bα(yi), (8)
    r˜Bα(x)=maxf˜Bα(yi)[f_˜Bα(yi),¯f˜Bα(yi)]ni=1yifR˜Bα(yi)ni=1fR˜Bα(yi), (9)

    where n is the number of sampling points, and the specific IT2 FS R˜Bα=α/˜Bα.

    Aggregating all the YC,α to obtain the final T1 type-reduced set YC, i.e.,

    YC=supα[0,1]α/YC,α(x). (10)

    Suppose that the number of alpha-planes is m, that is to say, alpha is decomposed into α1,α2,,αm, and then the output should:

    y(x)=mi=1αi[(l˜Bαi(x)+r˜Bαi(x))/2]/mi=1αi. (11)

    First of all, we provide the sensible beginning (or say reasonable initialization) EKM algorithms [18,24,31,32] for finishing the centroid TR and defuzzification of GT2 FLSs. According to the inference, let the output of the GT2 FLSs be ˜B, whose primary variable is discretized into c=y1<<yn=d, then l˜Bα and r˜Bα under the alpha-level can be computed by a continuous version of the KM algorithms:

    l˜Bα=minη[c,d]Fl˜Bα(η)=minη[c,d]ηcy¯fR˜Bα(y)dy+dηyf_R˜Bα(y)dyηc¯fR˜Bα(y)dy+dηf_R˜Bα(y)dy, (12)
    r˜Bα=maxη[c,d]Fr˜Bα(η)=maxη[c,d]ηcyf_R˜Bα(y)dy+dηy¯fR˜Bα(y)dyηcf_R˜Bα(y)dy+dη¯fR˜Bα(y)dy. (13)

    For computing the two end points, Tables 1 and 2 give the computation steps for CKM and CEKM algorithms. According to the representations Fl˜Bα in (12) and Fr˜Bα in (13), i.e.,

    ηl˜Bα=Fl˜Bα(η)=η, (14)
    ηr˜Bα=Fr˜Bα(η)=η. (15)
    Table 1.  CKM algorithms [7,16,17,18,31,32] for computing the centroid.
    Step For l˜Bα, l˜Bα=minθ(y)[f_R˜Bα(y),¯fR˜Bα(y)]dcyθ(y)dydcθ(y)dy
    1 Let θ(y)=[¯fR˜Bα(y)+f_R˜Bα(y)]/2, and calculate η=ccyθ(y)dydcθ(y)dy.
    2 Let θ(y)¯fR˜Bα(y) when yη, and θ(y)f_R˜Bα(y) when y>η, and calculate ηl˜Bα=dcyθ(y)dydcθ(y)dy.
    3 Check whether |ηηl˜Bα|ε, if so, pause and let l˜Bα=ηl˜Bα, if it were not true,
    go to Step 4.
    4 Let η=ηl˜Bα and go to the second step.
    Step For r˜Bα, r˜Bα=maxθ(y)[f_R˜Bα(y),¯fR˜Bα(y)]dcyθ(y)dydcθ(y)dy
    1 Let θ(y)=[¯fR˜Bα(y)+f_R˜Bα(y)]/2, and calculate η=dcyθ(y)dydcθ(y)dy.
    2 Let θ(y)=f_R˜Bα(y) when yη, and θ(y)=¯fR˜Bα(y) when y>η, and calculate ηr˜Bα=dcyθ(y)dydcθ(y)dy.
    3 Check whether |ηηr˜Bα|ε, if so, stop and let r˜Bα=ηr˜Bα, if it were not true,
    go to the next step.
    4 Let η=ηr˜Bα and go to Step 2.

     | Show Table
    DownLoad: CSV
    Table 2.  CEKM algorithms [7,16,17,18,31,32] for computing the centroid.
    Step For l˜Bα
    1 Let a=(dc)/2.4+c, and calculate α=acy¯fR˜Bα(y)dy+dayf_R˜Bα(y)dy,
    β=ac¯fR˜Bα(y)dy+daf_R˜Bα(y)dy, a=α/β.
    2 Check if |aa|ε, if so, stop and let a=l˜Bα, if it were not true, return to the fourth step.
    3 Calculate s=sign(aa), α=α+smax(a,a)min(a,a)y[¯fR˜Bα(y)f_R˜Bα(y)]dy,
    β=β+smax(a,a)min(a,a)[¯fR˜Bα(y)f_R˜Bα(y)]dy, a=α/β.
    4 Let a=a,a=a,α=α,β=β and go to the Step 2.
    Step For r˜Bα
    1 Let a=(dc)/1.7+c, and compute α=acyf_R˜Bα(y)dy+day¯fR˜Bα(y)dy,
    β=acf_R˜Bα(y)dy+da¯fR˜Bα(y)dy, a=α/β.
    2 Check if |aa|ε, if so, stop and let a=r˜Bα, if it were not true, return to the fourth step.
    3 Calculate s=sign(aa), α=αsmax(a,a)min(a,a)y[¯fR˜Bα(y)f_R˜Bα(y)]dy,
    β=βsmax(a,a)min(a,a)[¯fR˜Bα(y)f_R˜Bα(y)]dy, a=α/β.
    4 Let a=a,a=a,α=α,and β=β and go to the Step 2.

     | Show Table
    DownLoad: CSV

    When l˜Bα=ηl˜Bα, and r˜Bα=ηr˜Bα, the iteration finishes, and we have that,

    l˜Bα=Fl˜Bα(l˜Bα), and r˜Bα=Fr˜Bα(r˜Bα). (16)

    For initializing the algorithms, as y[c,d], let f_R˜Bα(y)=¯fR˜Bα(y)θ(y), so that, θ(y)=[¯fR˜Bα(y)+f_R˜Bα(y)]/2. Then Eqs (12) and (13) turn out to be the same.

    r˜Bα=l˜Bα=dcyθ(y)dydcθ(y)dy=dcy[¯fR˜Bα(y)+f_R˜Bα(y)]/2dydc[¯fR˜Bα(y)+f_R˜Bα(y)]/2dy. (17)

    The initialization of the CKM algorithms may be represented as η(1), that is to say,

    η(1)=dcyθ(y)dydcθ(y)dy. (18)

    Tables 3 and 4 give the computation steps for the discrete KM, and discrete EKM algorithms, respectively. Here the discrete representation of η(1) can be written as:

    k(1)={k|ykni=1yi[¯fR˜Bα(yi)+f_R˜Bα(yi)]ni=1[¯fR˜Bα(yi)+f_R˜Bα(yi)]<yk+1,1kn1}. (19)
    Table 3.  KM algorithms [7,16,17,18,31,32] for computing the centroid.
    Step l˜Bα=minθi[f_R˜Bα(yi),¯fR˜Bα(yi)]ni=1yiθini=1θi
    1 Let θ(i)=[f_R˜Bα(yi)+¯fR˜Bα(yi)]/2, and compute a=(ni=1yiθi)/(ni=1θi).
    2 Seek for k(1kn1), satisfying yka<yk+1.
    3 Let θi=¯fR˜Bα(yi) as ik, and θi=f_R˜Bα(yi) as i>k,
    and compute l˜Bα(k)=(ni=1yiθi)/(ni=1θi).
    4 Check if l˜Bα(k)=a, if so, pause and let l˜Bα(k)=l˜Bα, and k=L, if it does not satisfy, return to the next step.
    5 Let a=l˜Bα(k) and go to the second step.
    Step r˜Bα=maxθi[f_R˜Bα(yi),¯fR˜Bα(yi)]ni=1yiθini=1θi
    1 Let θ(i)=[f_R˜Bα(yi)+¯fR˜Bα(yi)]/2, and compute a=(ni=1yiθi)/(ni=1θi).
    2 Seek for k(1kn1), satisfying yka<yk+1.
    3 Let θi=f_R˜Bα(yi) as ik, and θi=¯fR˜Bα(yi) as i>k,
    and compute r˜Bα(k)=(ni=1yiθi)/(ni=1θi).
    4 Check if r˜Bα(k)=a, if so, pause and let r˜Bα(k)=r˜Bα, and k=R, if it is not true, return to the next step.
    5 Let a=r˜Bα(k) and go to the second step.

     | Show Table
    DownLoad: CSV
    Table 4.  EKM algorithms [7,16,17,18,31,32] for computing the centroid.
    Step For l˜Bα
    1 Let k=[n/2.4] and calculate
    α=ki=1yi¯fR˜Bα(yi)+ni=k+1yif_R˜Bα(yi), β=ki=1¯fR˜Bα(yi)+ni=k+1f_R˜Bα(yi), a=α/β.
    2 Seek for k(1k<n1), satisfying yka<yk+1.
    3 Check if k=k, if so, stop and let a=l˜Bα, k=L, if it is not true, return to
    the next step.
    4 Compute s=sign(kk), α=α+smax(k,k)i=min(k,k)+1yi[¯fR˜Bα(yi)f_R˜Bα(yi)],
    β=β+smax(k,k)i=min(k,k)+1[¯fR˜Bα(yi)f_R˜Bα(yi)], a=α/β.
    5 Let a=a,α=α,β=β,and k=k and go to Step 2.
    Step For r˜Bα
    1 Let k=[n/1.7] and calculate
    α=ki=1yif_R˜Bα(yi)+ni=k+1yi¯fR˜Bα(yi), β=ki=1f_R˜Bα(yi)+ni=k+1¯fR˜Bα(yi), a=α/β.
    2 Seek for k(1k<n1), satisfying yka<yk+1.
    3 Check if k=k, if so, stop and let a=r˜Bα, k=R, if it is not true, go to
    the next step.
    4 Calculate s=sign(kk), α=αsmax(k,k)i=min(k,k)+1yi[¯fR˜Bα(yi)f_R˜Bα(yi)],
    β=βsmax(k,k)i=min(k,k)+1[¯fR˜Bα(yi)f_R˜Bα(yi)], a=α/β.
    5 Let a=a,α=α,β=β,and k=k and go to Step 2.

     | Show Table
    DownLoad: CSV

    Suppose that,

    ρ=dc¯fR˜Bα(y)dyccf_R˜Bα(y)dy. (20)

    For y[c,d], as ¯fR˜Bα(y)f_R˜Bα(y), therefore, ρ1. Let both ¯fR˜Bα(y) and f_R˜Bα(y) be constants, that is to say, ¯fR˜Bα(y)=ρN>0, so that,

    Fl˜Bα(η)=ηcy¯fR˜Bα(y)dy+dηyf_R˜Bα(y)dyηc¯fR˜Bα(y)dy+dηf_R˜Bα(y)dy=ρ(η2c2)+(d2η2)2[ρ(ηc)+(dη)]. (21)

    Find the derivative of Fl˜Bα(η) to η, that is to say,

    Fl˜Bα(η)=(ρ1)[ρ(ηc)2(dη)2]2[ρ(ηc)+(dη)]2. (22)

    Let Fl˜Bα(η)=0, so that,

    (dη)2(ηc)2=ρdηηc=ρ. (23)

    Therefore,

    ηl˜Bα=c+dc1+ρ. (24)

    As η[a,ηl˜Bα), Fl˜Bα(η)<0; and as η(ηl˜Bα,b], Fl˜Bα(η)>0. So ηl˜Bα is the minimum value of Fl˜Bα(η).

    In a similar manner, let us seek the maximum value of Fr˜Bα(η), i.e.,

    Fr˜Bα(η)=ηcyf_R˜Bα(y)dy+dηy¯fR˜Bα(y)dyηcf_R˜Bα(y)dy+dη¯fR˜Bα(y)dy=(η2c2)+ρ(d2η2)2[(ηc)+ρ(dη)]. (25)

    Find the derivative of Fr˜Bα(η) to η, that is to say,

    Fr˜Bα(η)=(ρ1)[(ηa)2ρ(bη)2]2[(ηa)+ρ(bη)]2. (26)

    Let Fr˜Bα(η)=0, so that,

    (dη)2(ηc)2=1ρdηηc=1/ρ. (27)

    Therefore, the solution of above equation can be written as:

    ηr˜Bα=c+dc1+1/ρ. (28)

    As η[c,ηr˜Bα), Fr˜Bα(η)>0; and as η(ηr˜Bα,d], Fr˜Bα(η)<0. Therefore, ηr˜Bα is the minimum value of Fr˜Bα(η).

    Considering the Eqs (24) and (28) comprehensively, the sensible beginning method for η may be represented as η(2), i.e.,

    η(2)={c+dc1+ρ for l˜Bα,c+dc1+1/ρ for r˜Bα. (29)

    Comparing the initializations of discrete EKM and CEKM algorithms, we can get the discrete.

    form of Eq (29) as:

    k(2)={[n/(1+ρ)] for l˜Bα,[n/(1+1/ρ)] for r˜Bα. (30)

    in which ρ=ni=1¯fR˜Bα(y)/ni=1¯fR˜Bα(y)ni=1f_R˜Bα(y)ni=1f_R˜Bα(y).

    Interestingly, as ρ=2, 1+ρ=1+22.4, and 1+1/ρ=1+1/21.7, so the Eq (30) turns out to be the initialization of the EKM algorithms.

    Meanwhile, for the SBEKM algorithms, ρ should be determined according to the corresponding experiments. Then the computation steps of the SBEKM and SBCEKM algorithms are given in Tables 5 and 6, respectively.

    Table 5.  SBEKM algorithms [16,17,18,31,32] for computing the centroid.
    Step For l˜Bα
    1 Let k=[n/(1+ρ)] and compute
    α=ki=1yi¯fR˜Bα(yi)+ni=k+1yif_R˜Bα(yi), β=ki=1¯fR˜Bα(yi)+ni=k+1f_R˜Bα(yi), a=α/β.
    2 Seek for k(1k<n1), satisfying yka<yk+1.
    3 Check if k=k, if so, stop and let a=l˜Bα, k=L, if not, go to the next step.
    4 Compute s=sign(kk), α=α+smax(k,k)i=min(k,k)+1yi[¯fR˜Bα(yi)f_R˜Bα(yi)],
    β=β+smax(k,k)i=min(k,k)+1[¯fR˜Bα(yi)f_R˜Bα(yi)], a=α/β.
    5 Let r˜Bα and go to Step 2.
    Step For Δ=1:1:100
    1 Let k=[n/(1+1/ρ)] and compute
    α=ki=1yif_R˜Bα(yi)+ni=k+1yi¯fR˜Bα(yi), β=ki=1f_R˜Bα(yi)+ni=k+1¯fR˜Bα(yi), a=α/β.
    2 Seek for k(1k<n1), satisfying yka<yk+1.
    3 Check if k=k, if so, stop and let a=r˜Bα, k=R, if not, go to the next step.
    4 Calculate s=sign(kk), α=αsmax(k,k)i=min(k,k)+1yi[¯fR˜Bα(yi)f_R˜Bα(yi)],
    β=βsmax(k,k)i=min(k,k)+1[¯fR˜Bα(yi)f_R˜Bα(yi)], a=α/β.
    5 Let a=a,α=α,β=β,and k=k and go to Step 2.

     | Show Table
    DownLoad: CSV
    Table 6.  SBCEKM algorithms [16,17,18,31,32] for computing the centroid.
    Step For l˜Bα
    1 Let ρ=(dc¯fR˜Bα(y)dy)/(dcf_R˜Bα(y)dy), a=c+(dc)/(ρ+1),
    and compute α=acy¯fR˜Bα(y)dy+dayf_R˜Bα(y)dy,
    β=ac¯fR˜Bα(y)dy+daf_R˜Bα(y)dy, a=α/β.
    2 Check if |aa|ε, if so, stop and let a=l˜Bα, if not, go to the fourth step.
    3 Calculate s=sign(aa), α=α+smax(a,a)min(a,a)y[¯fR˜Bα(y)f_R˜Bα(y)]dy,
    β=β+smax(a,a)min(a,a)[¯fR˜Bα(y)f_R˜Bα(y)]dy, a=α/β.
    4 Let a=a,a=a,α=α,β=β and go to the Step 2.
    Step For r˜Bα
    1 Let ρ=(dc¯fR˜Bα(y)dy)/(dcf_R˜Bα(y)dy), a=c+(dc)/(1/ρ+1),
    and compute α=acyf_R˜Bα(y)dy+day¯fR˜Bα(y)dy,
    β=acf_R˜Bα(y)dy+da¯fR˜Bα(y)dy, a=α/β.
    2 Check if |aa|ε, if so, stop and let a=r˜Bα, if not, go to the fourth step.
    3 Compute s=sign(aa), α=αsmax(a,a)min(a,a)y[¯fR˜Bα(y)f_R˜Bα(y)]dy,
    β=βsmax(a,a)min(a,a)[¯fR˜Bα(y)f_R˜Bα(y)]dy, a=α/β.
    4 Let a=a,a=a,α=α,β=β and go to the Step 2.

     | Show Table
    DownLoad: CSV

    In order to give the proposed SBDEKM algorithms, we divide the searching space for SBEKM algorithms. Wang et al. proposed the divided-search EKM (DEKM) algorithms [20] for calculating the centroids of IT2 FSs. Here we first extend it for completing the centroid TR for GT2 FLSs. For computing l˜Bα, the initialization of the DEKM algorithms is:

    k=round(n/2.4). (31)

    The initialization of the SBDEKM algorithms is:

    k=round[n/(1+ρ)]. (32)

    Next, we introduce how to divide the searching points for the SBDEKM (or DEKM) algorithms. Here, they are given as: round(k/2), k(or round[(k+n)/2)]).The analysis process is as follows:

    At the corresponding alpha-level, for l˜Bα, initialize k and find k. Comparing the values of the current l˜Bα=α/β, yk, and yk+1. There may be three major situations:

    Major situation 1: If l˜Bα<yk, judge the relations between l˜Bα and yround(k/2), for which there are three minor situations: i) l˜Bα<yround(k/2), ii) yround(k/2)l˜Bα<yround(k/2)+1, and iii) yround(k/2)+1l˜Bα.

    In i): Search down from round(k/2)1 to 1, seek the k which satisfies ykα/βyk+1.

    In ii): L=round(k/2).

    In iii): Search up from round(k/2)+1 to k1, find the k which satisfies ykα/βyk+1.

    Major situation 2: If ykl˜Bα<yk+1, L=k.

    Major situation 3: If yk+1l˜Bα, then judge the relations between l˜Bα and yround[(k+n)/2]. There may be three minor situations: i)l˜Bα<yround[(k+n)/2], ii)yround[(k+n)/2]l˜Bα<yround[(k+n)/2]+1, and iii)yround[(k+n)/2]+1l˜Bα.

    In i): Search down from round[(k+n)/2] to 1, seek the k which satisfies ykα/βyk+1.

    In ii): L=round[(k+n)/2].

    In iii): Search up from L=round[(k+n)/2]+1 to n1, find the k which satisfies ykα/βyk+1.

    For r˜Bα, initialize k and find k. Comparing the values of the current r˜Bα=α/β, yk, and yk+1. There maybe three major situations:

    Major situation 1: If r˜Bα<yk, judge the relations between r˜Bα and yround(k/2), for which there are three minor situations: i) r˜Bα<yround(k/2), ii) yround(k/2)r˜Bα<yround(k/2)+1, and iii) yround(k/2)+1r˜Bα.

    In i): Search down from round(k/2)1 to 1, seek for the k which satisfies ykα/βyk+1.

    In ii): R=round(k/2).

    In iii): Search up from round(k/2)+1 to k1, find the k which satisfies ykα/βyk+1.

    Major situation 2: If ykr˜Bα<yk+1, R=k.

    Major situation 3: If yk+1r˜Bα, then judge the relations between r˜Bα and yround[(k+n)/2]. There may be three minor situations: i)r˜Bα<yround[(k+n)/2], ii)yround[(k+n)/2]r˜Bα<yround[(k+n)/2]+1, and iii)yround[(k+n)/2]+1r˜Bα.

    In i): Search down from round[(k+n)/2] to 1, seek for the k which satisfies ykα/βyk+1.

    In ii): R=round[(k+n)/2].

    In iii): Search up from R=round[(k+n)/2]+1 to n1, find the k which satisfies ykα/βyk+1.

    Finally, we provide the computation steps for the SBDEKM algorithms.

    For l˜Bα,

    Step 1. Set k=[n/(1+ρ)].

    Step 2. Compute α=ki=1yi¯f˜Bα(yi)+ni=k+1yif_˜Bα(yi), and β=ki=1¯f˜Bα(yi)+ni=k+1f_˜Bα(yi).

    Step 3. If α/β<yk and α/β<yround(k/2), then search down from round(k/2)1 to 1, seek the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 4. If yround(k/2)α/β<yround(k/2)+1, then l˜Bα=α/β, L=k, and go to Step 10.

    Step 5. If yround(k/2)α/β<yk, then search down from round(k/2)+1 to k1, find the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 6. If ykα/β<yk+1, then l˜Bα=α/β, L=k, and go to Step 10.

    Step 7. If yk+1α/β<yround[(k+n)/2], then search down from round[(k+n)/2]1 to k+1, find the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 8. If yround[(k+n)/2]α/β<yround[(k+n)/2]+1, let l˜Bα=α/β, L=round[(k+n)/2], and go to Step 10.

    Step 9. If yk+1α/β and yround[(k+n)/2]+1α/β, then search up from round[(k+n)/2]+1 to n1, seek for the k which meets ykα/βyk+1, and go to Step 10.

    Step 10. Calculate s=sign(kk),

    α=α+smax(k,k)i=min(k,k)+1yi[¯f˜Bα(yi)f_˜Bα(yi)], and β=β+smax(k,k)i=min(k,k)+1[¯f˜Bα(yi)f_˜Bα(yi)].

    Step 11. Update k=k.

    Step 12. Search down from k to 1, seek the k which satisfies ykα/βyk+1.

    Step 13. While kk.

    Step 14. Update α=αki=k+1yi[¯f˜Bα(yi)f_˜Bα(yi)], β=βki=k+1[¯f˜Bα(yi)f_˜Bα(yi)], and k=k.

    Step 15. Search down from k to 1, seek the k which satisfies ykα/βyk+1.

    Step 16. End while.

    Step 17. Let l˜B=α/β, L=k.

    For r˜Bα:

    Step 1. Set k=[n/(1+1/ρ)].

    Step 2. Compute α=ki=1yif_˜Bα(yi)+ni=k+1yi¯f˜Bα(yi), and β=ki=1f_˜Bα(yi)+ni=k+1¯f˜Bα(yi).

    Step 3. If α/β<yk and α/β<yround(k/2), then search down from round(k/2)1 to 1, seek for the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 4. If yround(k/2)+1α/β<yk, then search up from round(k/2)+1 to k1, find the k which meets ykα/βyk+1, and go to Step 10.

    Step 5. If yround(k/2)α/β<yround(k/2)+1, let r˜Bα=α/β, R=k, and go to Step 10.

    Step 6. If yk+1α/β and yround[(k+n)/2]+1α/β, then search up from round[(k+n)/2]+1 to n1, seek for the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 7. If yk+1α/β<yround[(k+n)/2], then search down from round[(k+n)/2]1 to k+1, find the k which satisfies ykα/βyk+1, and go to Step 10.

    Step 8. If yround[(k+n)/2]α/β<yround[(k+n)/2]+1, let r˜Bα=α/β, R=round[(k+n)/2], and go to Step 10.

    Step 9. If ykα/β<yk+1, then r˜Bα=α/β, R=k, and go to Step 10.

    Step 10. Calculate s=sign(kk),

    α=αsmax(k,k)i=min(k,k)+1yi[¯f˜Bα(yi)f_˜Bα(yi)], and β=βsmax(k,k)i=min(k,k)+1[¯f˜Bα(yi)f_˜Bα(yi)].

    Step 11. Update k=k.

    Step 12. Search up from k to n1, seek the k which satisfies ykα/βyk+1.

    Step 13. While kk.

    Step 14. Update α=αki=k+1yi[¯f˜Bα(yi)f_˜Bα(yi)], β=βki=k+1[¯f˜Bα(yi)f_˜Bα(yi)], and k=k.

    Step 15. Search up from k to n1, seek the k which satisfies ykα/βyk+1.

    Step 16. End while.

    Step 17. Let r˜Bα=α/β, R=k.

    Here we give four simulation examples. According to the fuzzy inference, by combining the firing fuzzy rule, let the output GT2 FS be known in advance.

    In example one, the footprint of uncertainty (FOU) of primary membership function (MF) is composed of piecewise linear functions [17,18,33,34,35], while the secondary MF (or say vertical slice) is selected as the trapezoidal MF. In example two, for the primary MF, FOU is composed of Gaussian functions and linear functions [36,37,38,39,40,41], while the vertical slice is selected as the trapezoidal MF. In example three, for the primary MF, whose FOU is completely composed of Gaussian functions [17,18,33,34,35], while the secondary MF is selected as the triangle MF. In instance four, for the primary MF, FOU is selected as the Gaussian T2 MF which has uncertain standard deviations [36,37,38,39,40,41], while the secondary MF is selected as the triangle MF.

    In computer simulation experiments, the alpha is equally decomposed into: 0,1/Δ,,1, where Δ represents the number of effective values. Here we let Δ be varied from one to a hundred with a step size of 1. First Table 7 and Figure 1 provide the defined FOUs for the four examples.

    Table 7.  Representation of FOUs [18,34,35,36].
    Num Representation
    1 f_˜B1(y)=max{[y16, 1y37y6, y(4, 7]0, else],[y36, y[3,5] 8y9, y(5, 8]0, else]},
    ¯f˜B1(y)=max{[y12, 1y37y4, y(3,7]0, else],[y25, y[2,6]162y5, 6 < y80, else]}.
    2 f_˜B2(y)={0.6(y+5)19,5y2.60.4(14y)19,2.6<y14,
    ¯f˜B2(y)={exp[12(y25)2],y[- 5, 7.185]exp[12(y91.75)2],y(7.185,14].
    3 f_˜B3(y)=max{0.5exp[(y3)22],0.4exp[(y6)22]},
    ¯f˜B3(y)=max{exp[0.5(y3)24],0.8exp[0.5(y6)24]}.
    4 f_˜B4(y)=exp[12(y30.25)2],
    ¯f˜B4(y)=exp[12(y31.75)2].

     | Show Table
    DownLoad: CSV
    Figure 1.  Graphs for FOUs; (a) instance one; (b) instance two; (c) instance three, and (d) instance four.

    Let the primary variable be y[0,10] in Examples 1, 3 and 4. Suppose that the primary variable is y[5, 14] in instance two. Moreover, the Table 8 and Figure 2 provide the vertical slices of four instances.

    Table 8.  Representations of secondary membership functions for four examples [18,27,28,29].
    Num Representation
    1 L(y)=f_(y)+0.6w[¯f(y)f_(y)],
    R(y)=¯f(y)35(1w)[¯f(y)f_(y)],
    and w is 0
    2 Just as in example one
    3 Apex=f_(y)+w[¯f(y)f_(y)], and w=0.5
    4 Just as in example three, and w=0.75

     | Show Table
    DownLoad: CSV
    Figure 2.  Graphs of secondaryMFs; (a) instance one; (b) instance two; (c) instance three, and (d) instance four.

    Because the computations of l˜Bα and r˜Bα are quite similar, only the l˜Bα is calculated in four simulations. Here the SBCEKM algorithms are considered as a benchmark. As the number of effective alpha-planes Δ=100, let the error accuracy ε=106, then the left centroid type-reduced sets calculated by the benchmark are given in Figure 3.

    Figure 3.  The left centroid type-reduced sets computed by the SBCEKM algorithms; (a) instance one; (b) instance two; (c) instance three, and (d) instance four.

    Then the left centroid type-reduced sets computed by the EKM algorithms, SBEKM algorithms and proposed SBDEKM algorithms are provided in Figure 4.

    Figure 4.  The left type-reduced sets computed by EKM, SBEKM, and SBDEKM algorithms; (a) instance one; (b) instance two; (c) instance three, and (d) instance four.

    Furthermore, for comparing the performances of these three algorithms, the defined graphs for the absolute errors of type-reduced sets between the benchmark SBCEKM, EKM algorithms, SBEKM algorithms and the proposed SBDEKM algorithms are provided in Figure 5, in which the independent variable is the grade of type-reduced MF.

    Figure 5.  Absolute errors of left type-reduced sets between the SBCEKM, EKM algorithms, SBEKM algorithms and SBDEKM algorithms; (a) Example 1; (b) Example 2; (c) Example 3, and (d) Example 4.

    In order to measure the calculational accuracies of the EKM, SBEKM, and SBDEKM algorithms quantitatively, we define the means of relative absolute errors as:|CEKMi,SBEKMi,SBDEKMiCSBCEKMi|/|CSBCEKMi|(i=1,2,,4), where CSBCEKMi is the benchmark results of SBCEKM algorithms. Table 9 provides the means of absolute errors of the EKM, SBDEKM, and SBDEKM algorithms, where the results in this table are divided by 104.

    Table 9.  Means of relative absolute errors of the EKM, SBEKM, and SBDEKM algorithms (/104).
    Algorithms EKM SBEKM SBDEKM
    Example 1 0.00058 0.00054 0.00052
    Example 2 0.41340 0.68047 0.68162
    Example 3 0.11373 0.11440 0.11451
    Example 4 0.00612 0.01134 0.00685
    Total average 0.13346 0.20169 0.20088

     | Show Table
    DownLoad: CSV

    Observing Figures 4, 5 and Table 9, we can make the following conclusions:

    For the absolute errors of type-reduced sets between the benchmark SBCEKM algorithms and the EKM, SBEKM, and SBDEKM algorithms, the results of all of them converge to certain values. In example one, the SBDEKM algorithms obtain the smallest value. In other three examples and for the total average, the EKM algorithms get the smallest value. However, as the results in Table 9 should be divided by 104, the differences between these results are very small (see the Figure 3), and so these three kinds of discrete algorithms can get almost the same computational accuracies. If more attention was paid to computational accuracy, we should use the SBWEKM algorithms.

    Next, the more important computational times for these three types of algorithms are researched for potential applications. Here the unrepeatable computational times rely on the computer hardware and software environments. The simulation platform consists of a dual core CPU desktop and MATLAB 2013a. In the test, as the number of samples of primary variable is selected as n=50:5000 with a stepsize of 50. The specific unrepeatable calculation times for four instances are given in Figure 6.

    Figure 6.  Computation times comparions for EKM, SBEKM and SBDEKM algorithms; (a) instance one; (b) instance two; (c) instance three, and (d) instance four.

    Generally speaking, the computational times of the three types of algorithms vary linearly in correspondence with the number of samples. Therefore, the linear regression model t=g+hn can be selected here for simulation, where t represents the calculation time, and g and h are two coefficients. Finally, Table 10 provides the regression coefficients. The calculational time variance rate is given as:

    (maxi=1,,4{ti}mini=1,,4{ti})/maxi=1,,4{ti}. (33)
    Table 10.  Regression coefficients of three types of algorithms.
    Coefficient/104(g,h) EKM SBEKM SBDEKM
    Example 1 0.0524 -1.4608 0.0682 13.8054 0.0330 11.5248
    Example 2 0.0531 -0.7299 0.0645 12.8895 0.0337 9.7175
    Example 3 0.0329 7.1359 0.0382 15.7954 0.0303 11.1144
    Example 4 0.0412 7.0540 0.0581 4.4558 0.0290 12.8824

     | Show Table
    DownLoad: CSV

    Observing Figure 6 and Table 10, it is clear that the computational times of proposed SBDEKM algorithms are much less than the EKM and SBEKM algorithms. The SBDEKM algorithms should be considered as the first, and the other two types of algorithms should be viewed as the second. As the start of the SBEKM algorithms is more complicated than the EKM algorithms, the computational times of EKM algorithms are better than SBEKM algorithms. In a word, the relation between the times of three kinds of algorithms is:

    SBDEKM < EKM < SBDEKM. Moreover, the computational time difference rate for these four instances is between 17.68%~71.16%.

    On the basis of the above analysis, it is reasonable to see that the initialization and searching spaces have an effect on completing the centroid TR. Therefore, we should adopt the SBDEKM algorithms for studying the TR. If we only consider the computational accuracies, these three types of algorithms almost have the same performances. However, if we consider both the calculational accuracies and times comprehensively, it is suggested that one uses the SBDEKM algorithms for performing the centroid TR with piece-wise defined primary MF and trapezoidal secondary MF as in instance 1, Gaussian and linear primary MFs and trapezoidal vertical slice as in Example 2, Gaussian primary MF and triangular secondary MF as in Example 3, and uncertain derivation primary MF and triangular secondary MF as in Example 4.

    This paper explains the sensible beginning and divides the searching space for EKM algorithms, and then the SBDEKM algorithms are put forward to complete the centroid TR. Compared with both the EKM and SBEKM algorithms, the SBDEKM algorithms can significantly improve the efficiencies of computations.

    Next, we will study the SBWEKM algorithms for finishing the TR of IT2 and GT2 FLSs. Both the computational accuracy and efficiency should be enhanced. Furthermore, the center-of-sets (COS) TR [42,43] of IT2 FLSs and GT2 FLSs should continue to be investigated, and designing and applying T2 FLSs optimized with the hybrid application of different kinds of optimization algorithms [9,10,40,41,42,43,44,45,46,47,48,49] will be further focused on.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The paper is supported by the National Natural Science Foundation of China (61973146, 61773188), and the Education Department of Liaoning Province (LJKQZ2021143).

    The author is thankful to the Professor Mendel, who has provided some important advices.

    The authors declare that they have no conflict of interest.



    [1] J. M. Mendel, R. I. John, F. L. Liu, Interval type-2 fuzzy logic systems made simple, IEEE T. Fuzzy Sys., 14 (2006), 808–821. https://doi.org/10.1109/TFUZZ.2006.879986 doi: 10.1109/TFUZZ.2006.879986
    [2] D. R. Wu, J. M. Mendel, Uncertainty measures for interval type-2 fuzzy sets, Inform. Sci., 177 (2007), 5378–5393. https://doi.org/10.1016/j.ins.2007.07.012 doi: 10.1016/j.ins.2007.07.012
    [3] A. Khosravi, S. Nahavandi, Load forecasting using interval type-2 fuzzy logic systems: Optimal type reduction, IEEE T. Indust. Inform., 10 (2014), 1055–1063. https://doi.org/10.1109/TII.2013.2285650 doi: 10.1109/TII.2013.2285650
    [4] J. M. Mendel, F. L. Liu, D. Y. Zhai, Alpha-plane representation for type-2 fuzzy sets: Theory and applications, IEEE T. Fuzzy Syst., 17 (2009), 1189–1207. https://doi.org/10.1109/TFUZZ.2009.2024411 doi: 10.1109/TFUZZ.2009.2024411
    [5] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices, IEEE T. Fuzzy Syst., 18 (2010), 637–660. https://doi.org/10.1109/TFUZZ.2010.2045386 doi: 10.1109/TFUZZ.2010.2045386
    [6] F. L. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Inf. Sci., 178 (2008), 2224–2236. https://doi.org/10.1016/j.ins.2007.11.014 doi: 10.1016/j.ins.2007.11.014
    [7] J. M. Mendel, General type-2 fuzzy logic systems made simple: A tutorial, IEEE T. Fuzzy Syst., 22 (2014), 1162–1182. https://doi.org/10.1109/TFUZZ.2013.2286414 doi: 10.1109/TFUZZ.2013.2286414
    [8] C. I. Gonzalez, P. Melin, J. R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic, Soft Comput., 20 (2016), 773–784. https://doi.org/10.1007/s00500-014-1541-0 doi: 10.1007/s00500-014-1541-0
    [9] P. Melin, C. I. Gonzalez, J. R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic, IEEE T. Fuzzy Syst., 22 (2014), 1515–1525. https://doi.org/10.1109/TFUZZ.2013.2297159 doi: 10.1109/TFUZZ.2013.2297159
    [10] M. A. Sanchez, O. Castillo, J. R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42 (2015), 5904–5914. https://doi.org/10.1016/j.eswa.2015.03.024 doi: 10.1016/j.eswa.2015.03.024
    [11] O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inform. Sci., 354 (2016), 257–274. https://doi.org/10.1016/j.ins.2016.03.026
    [12] Y. Chen, D. Z. Wang, W. Ning, Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms, Opt. Contr. Appl. Meth., 39 (2018), 393–409. https://doi.org/10.1002/oca.2353 doi: 10.1002/oca.2353
    [13] Y. Chen, C. X. Li, J. X. Yang, Design and application of Nagar-Bardini structure-based interval type-2 fuzzy logic systems optimized with the combination of backpropagation algorithms and recursive least square algorithms, Expert Syst. Appl., 211 (2023), 1–10. https://doi.org/10.1016/J.ESWA.2022.118596 doi: 10.1016/J.ESWA.2022.118596
    [14] Y. Chen, D. Z. Wang, Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms, Int. J. Contr. Auto. Syst., 15 (2017), 2950–2958. https://doi.org/10.1007/s12555-017-0793-0 doi: 10.1007/s12555-017-0793-0
    [15] L. X. Wang, A new look at type-2 fuzzy sets and type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 25 (2017), 693–706. https://doi.org/10.1109/tfuzz.2016.2543746 doi: 10.1109/tfuzz.2016.2543746
    [16] D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE T. Fuzzy Syst., 17 (2009), 923–934. https://doi.org/10.1109/TFUZZ.2008.924329 doi: 10.1109/TFUZZ.2008.924329
    [17] J. M. Mendel, On KM algorithms for solving type-2 fuzzy sets problems, IEEE T. Fuzzy Syst., 21 (2013), 426–446. https://doi.org/10.1109/TFUZZ.2012.2227488 doi: 10.1109/TFUZZ.2012.2227488
    [18] X. W. Liu, J. M. Mendel, D. R. Wu, Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements, Inform. Sci., 184 (2012), 75–91. https://doi.org/10.1016/j.ins.2011.07.042 doi: 10.1016/j.ins.2011.07.042
    [19] X. L. Liu, S. P. Wan, Combinatorial iterative algorithms for computing the centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 28 (2020), 607–617. https://doi.org/10.1109/TFUZZ.2019.2911918 doi: 10.1109/TFUZZ.2019.2911918
    [20] J. M. Mendel, X. W. Liu, Simplified interval type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 21 (2013), 1056–1069. https://doi.org/10.1109/TFUZZ.2013.2241771 doi: 10.1109/TFUZZ.2013.2241771
    [21] C. Chen, R. John, J. Twycross, J. M. Garibaldi, A direct approach for determining the switch points in the Karnik-Mendel algorithm, IEEE T. Fuzzy Syst., 26 (2018), 1079–1085. https://doi.org/10.1109/tfuzz.2017.2699168 doi: 10.1109/tfuzz.2017.2699168
    [22] Z. Zhang, X. Zhao, Y. Qin, H. Si, L. Zhou, Interval type-2 fuzzy TOPSIS approach with utility theory for subway station operational risk evaluation, J. Ambient Intel. Human. comput., 13 (2022), 4849–4863. https://doi.org/10.1007/s12652-021-03182-0 doi: 10.1007/s12652-021-03182-0
    [23] X. L. Liu, Y. C. Lin, New efficient algorithms for the centroid of an interval type-2 fuzzy set, Inform. Sci., 570 (2021), 1–19. https://doi.org/10.1016/j.ins.2021.04.032 doi: 10.1016/j.ins.2021.04.032
    [24] Y. Chen, J. X. Wu, J. Lan, Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Math., 5 (2020), 6149–6168. https://doi.org/10.3934/math.2020395 doi: 10.3934/math.2020395
    [25] J. H. Wang, W. Ji, X. K. Fang, S. S. Gu, Improvement of enhanced Karnik-Mendel algorithm for interval type-2 fuzzy sets, Contr. Deci., 28 (2013), 1165–1172. https://doi.org/10.13195/j.kzyjc.2013.08.002 doi: 10.13195/j.kzyjc.2013.08.002
    [26] Y. Chen, D. Z. Wang, S. C. Tong, Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: With combination of BP algorithms and KM algorithms, Neurocomputing, 174 (2016), 1133–1146. https://doi.org/10.1016/j.neucom.2015.10.032 doi: 10.1016/j.neucom.2015.10.032
    [27] Y. Chen, D. Z. Wang, Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms, Trans. Inst. Meas. Contr., 41 (2019), 2886–2896. https://doi.org/10.1177/0142331218816753 doi: 10.1177/0142331218816753
    [28] G. M. Méndez, M. D. L. A. Hernandez, Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi-Sugeno-Kang fuzzy logic systems, Inform. Sci., 220 (2013), 149–169. https://doi.org/10.1016/j.ins.2012.01.024 doi: 10.1016/j.ins.2012.01.024
    [29] Y. Chen, J. X. Yang, C. X. Li, Design of Takagi Sugeno Kang type interval type-2 fuzzy logic systems optimized with hybrid algorithms, Int. J. Fuzzy Syst., 25 (2023), 868–879. https://doi.org/10.1007/S40815-022-01410-Z doi: 10.1007/S40815-022-01410-Z
    [30] Y. Chen, Study on non-iterative algorithms for center-of-sets type-reduction of Takagi-Sugeno-Kang type general type-2 fuzzy logic systems, Compl. Intell. Syst., 9 (2023), 4015–4023. https://doi.org/10.1007/s40747-022-00927-y doi: 10.1007/s40747-022-00927-y
    [31] Y. Chen, Study on centroid type-reduction of general type-2 fuzzy logic systems with sensible beginning weighted enhanced Karnik-Mendel algorithms, Soft Comput., 27 (2023), 9261–9279. https://doi.org/10.1007/S00500-023-08269-8 doi: 10.1007/S00500-023-08269-8
    [32] Y. Chen, J. X. Yang, C. X. Li, Design of reasonable initialization weighted enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Math., 7 (2022), 9846–9870. https://doi.org/10.3934/math.2022549 doi: 10.3934/math.2022549
    [33] Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted Nie-Tan algorithms, Soft Comput., 22 (2018), 7659–7678. https://doi.org/10.1007/s00500-018-3551-9 doi: 10.1007/s00500-018-3551-9
    [34] Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms, Soft Comput., 22 (2018), 1361–1380. https://doi.org/10.1007/s00500-017-2938-3 doi: 10.1007/s00500-017-2938-3
    [35] Y. Chen, Study on centroid type-reduction of general type-2 fuzzy logic systems with sensible beginning weighted enhanced Karnik-Mendel algorithms, Soft Comput., 27 (2023), 9261–9279. https://doi.org/10.1007/S00500-023-08269-8 doi: 10.1007/S00500-023-08269-8
    [36] D. R. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons, IEEE T. Fuzzy Syst., 21 (2013), 80–99. https://doi.org/10.1109/TFUZZ.2012.2201728 doi: 10.1109/TFUZZ.2012.2201728
    [37] J. W. Li, R. John, S. Coupland, G. Kendall, On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets, IEEE T. Fuzzy Syst., 26 (2018), 1036–1039. https://doi.org/10.1109/TFUZZ.2017.2666842 doi: 10.1109/TFUZZ.2017.2666842
    [38] S. Greenfield, F. Chiclana, Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set, Int. J. Approx. Reason., 54 (2013), 1013–1033. https://doi.org/10.1016/j.ijar.2013.04.013 doi: 10.1016/j.ijar.2013.04.013
    [39] S. Greenfield, F. Chiclana, S. Coupland, R. John, The collapsing method of defuzzification for discretised interval type-2 fuzzy sets, Inform. Sci., 179 (2009), 2055–2069. https://doi.org/10.1016/j.ins.2008.07.011 doi: 10.1016/j.ins.2008.07.011
    [40] Y. Chen, Study on weighted-based noniterative algorithms for computing the centroids of general type-2 fuzzy sets, Int. J. Fuzzy Syst., 24 (2022), 587–606. https://doi.org/10.1007/S40815-021-01166-Y doi: 10.1007/S40815-021-01166-Y
    [41] C. Chen, D. Wu, J. M. Garibaldi, R. I. John, J. Twycross, J. M. Mendel, A comprehensive study of the efficiency of type-reduction algorithms, IEEE T. Fuzzy Syst., 29 (2020), 1556–1566. https://doi.org/10.1109/TFUZZ.2020.2981002 doi: 10.1109/TFUZZ.2020.2981002
    [42] M. A. Khanesar, A. Jalalian, O. Kaynak, H. Gao, Improving the speed of center of sets type reduction in interval type-2 fuzzy systems by eliminating the need for sorting, IEEE T. Fuzzy Syst., 25 (2017), 1193–1206. https://doi.org/10.1109/TFUZZ.2016.2602392 doi: 10.1109/TFUZZ.2016.2602392
    [43] Y. Chen, C. X. Li, J. X. Yang, Design of discrete noniterative algorithms for center-of-sets type reduction of general type-2 fuzzy logic systems, Int. J. Fuzzy Syst., 24 (2022), 2024–2035. https://doi.org/10.1007/S40815-022-01256-5 doi: 10.1007/S40815-022-01256-5
    [44] F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, O. Castillo, Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO, Appl. Soft Comput., 38 (2016), 860–871. https://doi.org/10.1016/j.asoc.2015.10.027 doi: 10.1016/j.asoc.2015.10.027
    [45] H. Mo, F. Y. Wang, M. Zhou, R. Li, Z. Xiao, Footprint of uncertainty for type-2 fuzzy sets, Inform. Sci., 272 (2014), 96–110. https://doi.org/10.1016/j.ins.2014.02.092 doi: 10.1016/j.ins.2014.02.092
    [46] F. Y. Wang, H. Mo, Some fundamental issues on type-2 fuzzy sets, Acta Auto. Sin., 43 (2017), 1114–1141. https://doi.org/10.16383/j.aas.2017.c160638 doi: 10.16383/j.aas.2017.c160638
    [47] C. H. Hsu, C. F. Juang, Evolutionary robot wall-following control using type-2 fuzzy controller with species-de-activated continuous ACO, IEEE T. Fuzzy Syst., 21 (2013), 100–112. https://doi.org/10.1109/TFUZZ.2012.2202665 doi: 10.1109/TFUZZ.2012.2202665
    [48] N. Mansoureh, F. Z. M. Hossein, B. Susan, A multilayer general type-2 fuzzy community detection model in large-scale social networks, IEEE T. Fuzzy Syst., 30 (2022), 4494–4503. https://doi.org/10.1109/TFUZZ.2022.3153745 doi: 10.1109/TFUZZ.2022.3153745
    [49] E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis, Inform. Sci., 525 (2020), 37–53. https://doi.org/10.1016/j.ins.2020.03.059 doi: 10.1016/j.ins.2020.03.059
  • This article has been cited by:

    1. Yang Chen, Design of weighted based divided-search enhanced Karnik–Mendel algorithms for type reduction of general type-2 fuzzy logic systems, 2025, 11, 2199-4536, 10.1007/s40747-025-01798-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(775) PDF downloads(33) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog