Citation: Yang Chen, Jinxia Wu, Jie Lan. Study on weighted-based noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems[J]. AIMS Mathematics, 2020, 5(6): 7719-7745. doi: 10.3934/math.2020494
[1] | O. Castillo, P. Melin, Type-2 fuzzy logic theory and applications, Berlin, Germany: Springer-Verlag, 2008. |
[2] | H. Hagras, C. Wagner, Towards the wide spread use of type-2 fuzzy logic systems in real world applications, IEEE Comput. Intell. M., 7 (2012), 14-24. |
[3] | Y. Chen, D. Z. Wang, S. C. Tong, Forecasting studies by designing Mamdani interval type-2 fuzzy logic systems: with combination of BP algorithms and KM algorithms, Neurocomputing, 174 (2016), 1133-1146. |
[4] | D. Z. Wang, Y. Chen, Study on permanent magnetic drive forecasting by designing Takagi Sugeno Kang type interval type-2 fuzzy logic systems, T. I. Meas. Control, 40 (2018), 2011-2023. |
[5] | S. Barkat, A. Tlemcani, H. Nouri, Noninteracting adaptive control of PMSM using interval type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 19 (2011), 925-936. |
[6] | Y. Chen, D. Z. Wang, Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms, T. I. Meas. Control, 41 (2019), 2886-2896. |
[7] | B. Safarinejadian, P. Ghane, H. Monirvaghefi, Fault detection in non-linear systems based on type-2 fuzzy logic, International Journal of Systems Sciences, 46 (2015), 394-404. |
[8] | C. S. Lee, M. H. Wang, H. Hagras, Type-2 fuzzy ontology and its application to personal diabetic-diet recommendation, IEEE T. Fuzzy Syst., 18 (2010), 316-328. |
[9] | O. Mendoza, P. Melin, O. Castillo, Interval type-2 fuzzy logic and modular networks for face recognition applications, Appl. Soft Comput., 9 (2009), 1377-1387. |
[10] | A. Niewiadomski, On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy sets in linguistic summarization of databases, IEEE T. Fuzzy Syst., 18 (2010), 532-545. |
[11] | J. M. Mendel, R. I. John, F. L. Liu, Interval type-2 fuzzy logic systems made simple, IEEE T. Fuzzy Syst., 14 (2006), 808-821. |
[12] | J. M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial, IEEE T. Fuzzy Syst., 22 (2014), 1162-1182. |
[13] | J. M. Mendel, On KM algorithms for solving type-2 fuzzy set problems, IEEE T. Fuzzy Syst., 21 (2013), 426-446. |
[14] | J. M. Mendel, F. L. Liu, Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 15 (2007), 309-320. |
[15] | D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE T. Fuzzy Syst., 17 (2009), 923-934. |
[16] | X. W. Liu, J. M. Mendel, D. R. Wu, Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements, Inform. Sciences, 184 (2012), 75-91. |
[17] | Y. Chen, D. Z. Wang, Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms, Soft Comput., 22 (2018), 1361-1380. |
[18] | Y. Chen, Study on centroid type-reduction of interval type-2 fuzzy logic systems based on noniterative algorithms, Complexity, 2019 (2019), 1-12. |
[19] | A. M. EI-Nagar, M. EI-Bardini, Simplified interval type-2 fuzzy logic system based on new type-reduction, J. Intell. Fuzzy Syst., 27 (2014), 1999-2010. |
[20] | J. W. Li, R. John, S. Coupland, G. Kendall, On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets, IEEE T. Fuzzy Syst., 26 (2018), 1036-1039. |
[21] | M. Biglarbegian, W. W. Melek, J. M. Mendel, On the robustness of type-1 and interval type-2 fuzzy logic systems in modeling, Inform. Sciences, 181 (2011), 1325-1347. |
[22] | M. Biglarbegian, W. W. Melek, J. M. Mendel, On the stability of interval type-2 TSK fuzzy logic systems, IEEE T. Cybernetics, 40 (2010), 798-818. |
[23] | S. Greenfield, F. Chiclana, S. Coupland, R. John, The collapsing method of defuzzification for discretised interval type-2 fuzzy sets, Inform. Sciences, 179 (2009), 2055-2069. |
[24] | H. W. Wu, J. M. Mendel, Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems, IEEE T. Fuzzy Syst., 10 (2002), 622-639. |
[25] | M. d. l. A. Hernandez, P. Melin, G. M. Méndez, O. Castillo, I. López-Juarez, A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems, Soft Comput., 19 (2015), 661-678. |
[26] | Y. Chen, D. Z. Wang, W. Ning, Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms, Optim. Contr. Appl. Met., 39 (2018), 393-409. |
[27] | A. Khosravi, S. Nahavandi, Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction, IEEE T. Ind. Inform., 10 (2014), 1055-1063. |
[28] | C. Wagner, H. Hagras, Towards general type-2 fuzzy logic systems based on zSlices, IEEE T. Fuzzy Syst., 18 (2010), 637-660. |
[29] | S. Greenfield, F. Chiclana, Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set, Int. J. Approx. Reason., 54 (2013), 1013-1033. |
[30] | J. H. Mathews, K. K. Fink, Numerical Methods Using Matlab, Prentice-Hall Inc, Upper Saddle River, NJ, 2004. |
[31] | X. W. Liu, J. M. Mendel, Connect Karnik-Mendel algorithms to root-finding for computing the centroid of an interval type-2 fuzzy set, IEEE T. Fuzzy Syst., 19 (2011), 652-665. |
[32] | Y. Chen, Study on sampling based discrete Nie-Tan algorithms for computing the centroids of general type-2 fuzzy sets, IEEE Access, 7 (2019), 156984-156992. |
[33] | D. R. Wu, Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons, IEEE T. Fuzzy Syst., 21 (2013), 80-99. |
[34] | M. A. Khanesar, A. Jalalian, O. Kaynak, Improving the speed of center of set type-reduction in interval type-2 fuzzy systems by eliminating the need for sorting, IEEE T. Fuzzy Syst., 25 (2017), 1193-1206. |
[35] | D. R. Wu, J. M. Mendel, Recommendations on designing practical interval type-2 fuzzy systems, Eng. Appl. Artif. Intel., 85 (2019), 182-193. |
[36] | F. Gaxiola, P. Melin, F. Valdez, J. R. Castro, O. Castillo, Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO, Appl. Soft Comput., 38 (2016), 860-871. |
[37] | C. H. Hsu, C. F. Juang, Evolutionary robot wall-following control using type- 2 fuzzy controller with species-de-activated continuous ACO, IEEE T. Fuzzy Syst., 21 (2013), 100-112. |
[38] | A. Khosravi, S. Nahavandi, D. Creighton, D. Srinivasan, Interval type-2 fuzzy logic systems for load forecasting: a comparative study, IEEE T. Power Syst., 27 (2012), 1274-1282. |
[39] | C. W. Tao, J. S. Taur, C. W. Chang, Y. H. Chang, Simplified type-2 fuzzy sliding controller for wing rocket system, Fuzzy Sets Syst., 207 (2012), 111-129. |
[40] | M. A. Sanchez, O. Castillo, J. R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42 (2015), 5904-5914. |
[41] | L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inform. Sciences, 324 (2015), 247-256. |
[42] | O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inform. Sciences, 354 (2016), 257-274. |
[43] | O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, J. Soria, A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics, Eng. Appl. Artif. Intel., 85 (2019), 666-680. |
[44] | E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika, 54 (2018), 175-201. |
[45] | E. Ontiveros-Robles, P. Melin, O. Castillo, New methodology to approximate type-reduction based on a continuous root-finding karnik mendel algorithm, Algorithms, 10 (2017), 77-96. |
[46] | Y. Chen, Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, J. Intell. Fuzzy Syst., 34 (2018), 2417-2428. |
[47] | Y. Chen, Study on weighted Nagar-Bardini algorithms for centroid type-reduction of general type-2 fuzzy logic systems, J. Intell. Fuzzy Syst., 37 (2019), 6527-6544. |
[48] | T. Kumbasar, Revisiting Karnik-Mendel algorithms in the framework of linear fractional programming, Int. J. Approx. Reason., 82 (2017), 1-21. |
[49] | Y. Chen, J. X. Wu, J. Lan, Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems, AIMS Math., 5 (2020), 6149-6168. |
[50] | S. C. Tong, Y. M. Li, Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties, Science China Information Sciences, 53 (2010), 307-324. |
[51] | S. C. Tong, Y. M. Li, Observer-based adaptive fuzzy backstepping control of uncertain pure-feedback systems, Science China Information Sciences, 57 (2014), 1-14. |
[52] | Q. F. Fan, T. Wang, Y. Chen, et al, Design and application of interval type-2 fuzzy logic system based on QPSO algorithm, Int. J. Fuzzy Syst., 20 (2018), 835-846. |
[53] | M. Deveci, I. Z. Akyurt, S. Yavuz, GIS-based interval type-2 fuzzy set for public bread factory site selection, Journal of Enterprise Information Management, 31 (2018), 820-847. |
[54] | L. Liu, Y. J. Liu, S. C. Tong, C. L. P. Chen, Integral barrier Lyapunov function based adaptive control for switched nonlinear systems, Science China Information Sciences, 63 (2020), 1-14. |
[55] | L. Liu, Y. J. Liu, D. P. Li, S. C. Tong, Z. S. Wang, Barrier Lyapunov function based adaptive fuzzy FTC for switched systems and its applications to resistance inductance capacitance circuit system, IEEE T. Cybernetics, 50 (2020), 3491-3502. |
[56] | F. Chiclana, S. M. Zhou, Type-reduction of general type-2 fuzzy sets: The type-1 OWA approach, Int. J. Intell. Syst., 28 (2013), 505-522. |
[57] | J. M. Mendel, H. Hagars, W. W. Tan, W. W. Melek, H. Ying, Introduction to type-2 fuzzy logic control: theory and applications, Wiley-IEEE Press, 2014. |