Research article

Invariant vector fields on contact metric manifolds under $\mathcal{D}$-homothetic deformation

  • Received: 28 August 2020 Accepted: 24 September 2020 Published: 09 October 2020
  • MSC : Primary 53C21; Secondary 53C24

  • In this paper, we study some vector fields on a contact metric manifold which are invariant under a $\mathcal{D}$-homothetic deformation.

    Citation: Yaning Wang, Hui Wu. Invariant vector fields on contact metric manifolds under $\mathcal{D}$-homothetic deformation[J]. AIMS Mathematics, 2020, 5(6): 7711-7718. doi: 10.3934/math.2020493

    Related Papers:

  • In this paper, we study some vector fields on a contact metric manifold which are invariant under a $\mathcal{D}$-homothetic deformation.


    加载中


    [1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Birkhauser, Basel, 2010.
    [2] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91 (1995), 189-214.
    [3] E. Boeckx, A full classification of contact metric (k, μ)-spaces, Illinois J. Math., 44 (2008), 212-219.
    [4] E. Boeckx. J. T. Cho, D-homothetic transforms of φ-symmetric spaces, Mediterr. J. Math., 11 (2014), 745-753.
    [5] H. Endo, On an extended contact Bochner curvature tensor on contact metric manifolds, Colloq. Math., 65 (1993), 33-41.
    [6] N. H. Gangadharappa, R. Sharma, D-homothetically deformed K-contact Ricci almost solitons, Results Math., 75, (2020), 1-8.
    [7] A. Ghosh, Holomorphically planar conformal vector fields on contact metric manifolds, Acta Math. Hungar., 129 (2010), 357-367.
    [8] A. Ghosh, R. Sharma, A generalization of K-contact and (k, μ)-contact manifolds, J. Geom., 103 (2012), 431-443.
    [9] I. Hinterleitner, V. A. Kiosak, $\varphi $(Ric)-vector fields in Riemannian spaces, Arch. Math. (Brno), 44 (2008), 385-390.
    [10] U. K. Kim, On a class of almost contact metric manifolds, JP J. Geom. Topol., 8 (2008), 185-201.
    [11] T. Koufogiorgos, Contact strongly pseudo-convex integrable CR metrics as critical points, J. Geom., 59 (1997), 94-102.
    [12] H. G. Nagaraja, C. R. Premalatha, Da-homothetic deformation of K-contact manifolds, ISRN Geom., 2013 (2013), 392608.
    [13] R. Sharma, Certain results on K-contact and (k, μ)-contact manifolds, J. Geom., 89 (2008), 138- 147.
    [14] R. Sharma, Conformal and projective characterizations of an odd dimensional unit sphere, Kodai Math. J., 42 (2019), 160-169.
    [15] R. Sharma, L. Vrancken, Conformal classification of (k, μ)-contact manifolds, Kodai Math. J., 33 (2010), 267-282.
    [16] S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J., 14 (1962), 416-430.
    [17] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math., 12 (1968), 700-717.
    [18] K. Yano, M. Kon, Structures on manifolds, World Scientific, Singapore, 1984.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2742) PDF downloads(113) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog