Research article

Stochastic solitons of a short-wave intermediate dispersive variable (SIdV) equation

  • Received: 16 January 2024 Revised: 08 March 2024 Accepted: 11 March 2024 Published: 19 March 2024
  • MSC : 35C05, 35C07, 35C08

  • It is necessary to utilize certain stochastic methods while finding the soliton solutions since several physical systems are by their very nature stochastic. By adding randomness into the modeling process, researchers gain deeper insights into the impact of uncertainties on soliton evolution, stability, and interaction. In the realm of dynamics, deterministic models often encounter limitations, prompting the incorporation of stochastic techniques to provide a more comprehensive framework. Our attention was directed towards the short-wave intermediate dispersive variable (SIdV) equation with the Wiener process. By integrating advanced methodologies such as the modified Kudrayshov technique (KT), the generalized KT, and the sine-cosine method, we delved into the exploration of diverse solitary wave solutions. Through those sophisticated techniques, a spectrum of the traveling wave solutions was unveiled, encompassing both the bounded and singular manifestations. This approach not only expanded our understanding of wave dynamics but also shed light on the intricate interplay between deterministic and stochastic processes in physical systems. Solitons maintained stable periodicity but became vulnerable to increased noise, disrupting predictability. Dark solitons obtained in the results showed sensitivity to noise, amplifying variations in behavior. Furthermore, the localized wave patterns displayed sharp peaks and periodicity, with noise introducing heightened fluctuations, emphasizing stochastic influence on wave solutions.

    Citation: Shabir Ahmad, Saud Fahad Aldosary, Meraj Ali Khan. Stochastic solitons of a short-wave intermediate dispersive variable (SIdV) equation[J]. AIMS Mathematics, 2024, 9(5): 10717-10733. doi: 10.3934/math.2024523

    Related Papers:

  • It is necessary to utilize certain stochastic methods while finding the soliton solutions since several physical systems are by their very nature stochastic. By adding randomness into the modeling process, researchers gain deeper insights into the impact of uncertainties on soliton evolution, stability, and interaction. In the realm of dynamics, deterministic models often encounter limitations, prompting the incorporation of stochastic techniques to provide a more comprehensive framework. Our attention was directed towards the short-wave intermediate dispersive variable (SIdV) equation with the Wiener process. By integrating advanced methodologies such as the modified Kudrayshov technique (KT), the generalized KT, and the sine-cosine method, we delved into the exploration of diverse solitary wave solutions. Through those sophisticated techniques, a spectrum of the traveling wave solutions was unveiled, encompassing both the bounded and singular manifestations. This approach not only expanded our understanding of wave dynamics but also shed light on the intricate interplay between deterministic and stochastic processes in physical systems. Solitons maintained stable periodicity but became vulnerable to increased noise, disrupting predictability. Dark solitons obtained in the results showed sensitivity to noise, amplifying variations in behavior. Furthermore, the localized wave patterns displayed sharp peaks and periodicity, with noise introducing heightened fluctuations, emphasizing stochastic influence on wave solutions.



    加载中


    [1] A.-M. Wazwaz, Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions, Nonlinear Dyn., 94 (2018), 2655–2663. https://doi.org/10.1007/s11071-018-4515-4 doi: 10.1007/s11071-018-4515-4
    [2] A.-M. Wazwaz, W. Alhejaili, S. A. El-Tantawy, Study on extensions of (modified) Korteweg–de Vries equations: Painlevé integrability and multiple soliton solutions in fluid mediums, Phys. Fluids, 35 (2023), 093110. https://doi.org/10.1063/5.0169733 doi: 10.1063/5.0169733
    [3] Y. Li, S.‐F. Tian, J.‐J. Yang, Riemann–Hilbert problem and interactions of solitons in the‐component nonlinear Schrödinger equations, Stud. Appl. Math., 148 (2022), 577–605. https://doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
    [4] Z.-Q. Li, S.-F. Tian, J.-J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [5] Z.-Q. Li, S.-F. Tian, J.-J. Yang, Soliton resolution for the Wadati–Konno–Ichikawa equation with weighted Sobolev initial data, Ann. Henri Poincaré, 23 (2022), 2611–2655. https://doi.org/10.1007/s00023-021-01143-z doi: 10.1007/s00023-021-01143-z
    [6] Z.-Q. Li, S.-F. Tian, J.-J. Yang, E. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equations, 329 (2022), 31–88. https://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003
    [7] Z.-Q. Li, S.-F. Tian, J.-J. Yang, On the asymptotic stability of N-soliton solution for the short pulse equation with weighted Sobolev initial data, J. Differ. Equations, 377 (2023), 121–187. https://doi.org/10.1016/j.jde.2023.08.028 doi: 10.1016/j.jde.2023.08.028
    [8] X.-Y. Gao, Considering the wave processes in oceanography, acoustics and hydrodynamics by means of an extended coupled (2+1)-dimensional Burgers system, Chinese J. Phys., 86 (2023), 572–577. https://doi.org/10.1016/j.cjph.2023.10.051 doi: 10.1016/j.cjph.2023.10.051
    [9] X.-Y. Gao, Letter to the Editor on the Korteweg-de Vries-type systems inspired by Results Phys. 51, 106624 (2023) and 50, 106566 (2023), Results Phys., 53 (2023), 106932. https://doi.org/10.1016/j.rinp.2023.106932 doi: 10.1016/j.rinp.2023.106932
    [10] X.-Y. Gao, Y.-J. Guo, W.-R. Shan, Ultra-short optical pulses in a birefringent fiber via a generalized coupled Hirota system with the singular manifold and symbolic computation, Appl. Math. Lett., 140 (2023), 108546. https://doi.org/10.1016/j.aml.2022.108546 doi: 10.1016/j.aml.2022.108546
    [11] X.-H. Wu, Y.-T. Gao, Generalized Darboux transformation and solitons for the Ablowitz–Ladik equation in an electrical lattice, Appl. Math. Lett., 137 (2023), 108476. https://doi.org/10.1016/j.aml.2022.108476 doi: 10.1016/j.aml.2022.108476
    [12] Y. Shen, B. Tian, T.-Y. Zhou, C.-D. Cheng, Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium, Chaos, Soliton. Fract., 171 (2023), 113497. https://doi.org/10.1016/j.chaos.2023.113497 doi: 10.1016/j.chaos.2023.113497
    [13] T.-Y. Zhou, B. Tian, Y. Shen, X.-T. Gao, Auto-Bäcklund transformations and soliton solutions on the nonzero background for a (3+1)-dimensional Korteweg-de Vries-Calogero-Bogoyavlenskii-Schif equation in a fluid, Nonlinear Dyn., 111 (2023), 8647–8658. https://doi.org/10.1007/s11071-023-08260-w doi: 10.1007/s11071-023-08260-w
    [14] C. Xu, M. Farman, Z. Liu, Y. Pang, Numerical approximation and analysis of epidemic model with constant proportional caputo(CPC) operator, Fractals, in press. https://doi.org/10.1142/S0218348X24400140
    [15] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., in press. https://doi.org/10.1007/s10910-023-01543-y
    [16] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Mathematics, 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [17] Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, et al., Bifurcation behavior and hybrid controller design of a 2D Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. https://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
    [18] C. Xu, M. Farman, A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., in press. https://doi.org/10.1142/S179352452350105X
    [19] W. X. Ma, Complexiton solutions to the Korteweg–de Vries equation, Phys. Lett. A, 301 (2002), 35–44. https://doi.org/10.1016/S0375-9601(02)00971-4 doi: 10.1016/S0375-9601(02)00971-4
    [20] L. Ma, H. Li, J. Ma, Single-peak solitary wave solutions for the generalized Korteweg–de Vries equation, Nonlinear Dyn., 79 (2015), 349–357. https://doi.org/10.1007/s11071-014-1668-7 doi: 10.1007/s11071-014-1668-7
    [21] Z.-Y. Ma, J.-X. Fei, J.-C. Chen, Nonlocal symmetry and explicit solution of the Alice-Bob modified Korteweg-de Vries equation, Commun. Theor. Phys., 70 (2018), 031. https://doi.org/10.1088/0253-6102/70/1/31 doi: 10.1088/0253-6102/70/1/31
    [22] X.-Y. Gao, Two-layer-liquid and lattice considerations through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system, Appl. Math. Lett., 152 (2024), 109018. https://doi.org/10.1016/j.aml.2024.109018 doi: 10.1016/j.aml.2024.109018
    [23] X.-Y. Gao, Oceanic shallow-water investigations on a generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt system, Phys. Fluids, 35 (2023), 127106. https://doi.org/10.1063/5.0170506 doi: 10.1063/5.0170506
    [24] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg–Landau equation with $\beta$-derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [25] L. Tang, A. Biswas, Y. Yıldırım, M. Aphane, A. A. Alghamdi, Bifurcation analysis and optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation, P. Est. Acad. Sci., 73 (2024), 17–28. https://doi.org/10.3176/proc.2024.1.03 doi: 10.3176/proc.2024.1.03
    [26] L. Tang, Bifurcations and dispersive optical solitons for the nonlinear Schrödinger–Hirota equation in DWDM networks, Optik, 262 (2022), 169276. https://doi.org/10.1016/j.ijleo.2022.169276 doi: 10.1016/j.ijleo.2022.169276
    [27] L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Soliton. Fract., 161 (2022), 112383. https://doi.org/10.1016/j.chaos.2022.112383 doi: 10.1016/j.chaos.2022.112383
    [28] A. Sen, D. P. Ahalpara, A. Thyagaraja, G. S. Krishnaswami, A KdV-like advection–dispersion equation with some remarkable properties, Commun. Nonlinear Sci., 17 (2012), 4115–4124. https://doi.org/10.1016/j.cnsns.2012.03.001 doi: 10.1016/j.cnsns.2012.03.001
    [29] O. González-Gaxiola, J. R. de Chávez, Traveling wave solutions of the generalized scale-invariant analog of the KdV equation by tanh–coth method, Nonlinear Engineering, 12 (2023), 20220325. https://doi.org/10.1515/nleng-2022-0325 doi: 10.1515/nleng-2022-0325
    [30] S. Saifullah, M. M. Alqarni, S. Ahmad, D. Baleanu, M. A. Khan, E. E. Mahmoud, Some more bounded and singular pulses of a generalized scale-invariant analogue of the Korteweg–de Vries equation, Results Phys., 52 (2023), 106836. https://doi.org/10.1016/j.rinp.2023.106836 doi: 10.1016/j.rinp.2023.106836
    [31] L. Alzaleq, V. Manoranjan, B. Alzalg, Exact traveling waves of a generalized scale-invariant analogue of the Korteweg-de Vries equation, Mathematics, 10 (2022), 414. https://doi.org/10.3390/math10030414 doi: 10.3390/math10030414
    [32] W. W. Mohammed, C. Cesarano, The soliton solutions for the (4+1)‐dimensional stochastic Fokas equation, Math. Method. Appl. Sci., 46 (2023), 7589–7597. https://doi.org/10.1002/mma.8986 doi: 10.1002/mma.8986
    [33] Y. Chen, Q. Wang, B. Li, The stochastic soliton-like solutions of stochastic KdV equations, Chaos, Soliton. Fract., 23 (2005), 1465–1473. https://doi.org/10.1016/j.chaos.2004.06.049 doi: 10.1016/j.chaos.2004.06.049
    [34] I. Onder, H. Esen, A. Secer, M. Ozisik, M. Bayram, S. Qureshi, Stochastic optical solitons of the perturbed nonlinear Schrödinger equation with Kerr law via Ito calculus, Eur. Phys. J. Plus, 138 (2023), 872. https://doi.org/10.1140/epjp/s13360-023-04497-x doi: 10.1140/epjp/s13360-023-04497-x
    [35] S. U. Rehman, J. Ahmad, T. Muhammad, Dynamics of novel exact soliton solutions to stochastic chiral nonlinear Schrödinger equation, Alex. Eng. J., 79 (2023), 568–580. https://doi.org/10.1016/j.aej.2023.08.014 doi: 10.1016/j.aej.2023.08.014
    [36] O. El-shamy, R. El-barkoki, H. M. Ahmed, W. Abbas, I. Samir, Exploration of new solitons in optical medium with higher-order dispersive and nonlinear effects via improved modified extended tanh function method, Alex. Eng. J., 68 (2023), 611–618. https://doi.org/10.1016/j.aej.2023.01.053 doi: 10.1016/j.aej.2023.01.053
    [37] X. Zhao, B. Tian, D.-Y. Yang, X.-T. Gao, Conservation laws, N-fold Darboux transformation, N-dark-bright solitons and the Nth-order breathers of a variable-coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber, Chaos, Soliton. Fract., 168 (2023), 113194. https://doi.org/10.1016/j.chaos.2023.113194 doi: 10.1016/j.chaos.2023.113194
    [38] S. Yasin, A. Khan, S. Ahmad, M. S. Osman, New exact solutions of (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation by Sardar-subequation method, Opt. Quant. Electron., 56 (2024), 90. https://doi.org/10.1007/s11082-023-05558-2 doi: 10.1007/s11082-023-05558-2
    [39] M. ur Rahman, M. Alqudah, M. A. Khan, B. E. H. Ali, S. Ahmad, E. E. Mahmoud, et al., Rational solutions and some interactions phenomena of a (3+1)-dimensional BLMP equation in incompressible fluids: A Hirota bilinear method and dimensionally reduction approach, Results Phys., 56 (2024), 107269. https://doi.org/10.1016/j.rinp.2023.107269 doi: 10.1016/j.rinp.2023.107269
    [40] J. Ahmad, Z. Mustafa, S. U. Rehman, N. B. Turki, N. A. Shah, Solitary wave structures for the stochastic Nizhnik–Novikov–Veselov system via modified generalized rational exponential function method, Results Phys., 52 (2023), 106776. https://doi.org/10.1016/j.rinp.2023.106776 doi: 10.1016/j.rinp.2023.106776
    [41] F. Liu, Y. Feng, The modified generalized Kudryashov method for nonlinear space–time fractional partial differential equations of Schrödinger type, Results Phys., 53 (2023), 106914. https://doi.org/10.1016/j.rinp.2023.106914 doi: 10.1016/j.rinp.2023.106914
    [42] P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 5905–5921. https://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
    [43] M. Chinnamuniyandi, S. Chandran, C. Xu, Fractional order uncertain BAM neural networks with mixed time delays: An existence and Quasi-uniform stability analysis, J. Intell. Fuzzy Syst., 46 (2024), 4291–4313. https://doi.org/10.3233/JIFS-234744 doi: 10.3233/JIFS-234744
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(740) PDF downloads(61) Cited by(7)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog