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and interaction. In the realm of dynamics, deterministic models often encounter limitations, prompting
the incorporation of stochastic techniques to provide a more comprehensive framework. Our attention
was directed towards the short-wave intermediate dispersive variable (SIdV) equation with the Wiener
process. By integrating advanced methodologies such as the modified Kudrayshov technique (KT),
the generalized KT, and the sine-cosine method, we delved into the exploration of diverse solitary
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was unveiled, encompassing both the bounded and singular manifestations. This approach not only
expanded our understanding of wave dynamics but also shed light on the intricate interplay between
deterministic and stochastic processes in physical systems. Solitons maintained stable periodicity but
became vulnerable to increased noise, disrupting predictability. Dark solitons obtained in the results
showed sensitivity to noise, amplifying variations in behavior. Furthermore, the localized wave patterns
displayed sharp peaks and periodicity, with noise introducing heightened fluctuations, emphasizing
stochastic influence on wave solutions.
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1. Introduction

Over the past several years, integrable systems (IS) have been a captivating field of research for
their applications in science and engineering [1]. The unique features of these IS and their wide
range of implications make them intriguing. In the context of science, IS provides insightful solutions
and analytical methods that improve our understanding of complex processes [2]. Moreover, they
serve as important tools for optimizing processes and addressing intricate problems in engineering
applications. Li and Tian systematically solved the Cauchy problem of the general n-component
nonlinear Schrödinger equations based on the Riemann-Hilbert method, and given the N-soliton
solutions. Moreover, they proposed a conjecture about the law of nonlinear wave propagation [3].
With respect to soliton resolution conjecture, Li, Tian, Yang, and Fan have done some interesting
work in deriving the solutions of Wadati-Konno-Ichikawa equation, complex short pulse equation and
short pulse equation with the help of Dbar-steepest descent method [4]. They solved the long-time
asymptotic behavior of the solutions of these equations, and proved the soliton resolution conjecture
and the asymptotic stability of solutions of these equations [5–7].

Throughout the recent years several useful works have been observed in the literature. For
instance, exploring wave phenomena across various disciplines such as oceanography, acoustics,
and hydrodynamics is achieved through an extended coupled (2+1)-dimensional Burgers system [8].
Investigation of ultra-short optical pulses within a birefringent fiber employs a generalized coupled
Hirota system, incorporating singular manifold analysis and symbolic computation [9, 10]. The
study of solitons and generalized Darboux transformations is conducted for the Ablowitz–Ladik
equation within an electrical lattice [11]. Analysis of multi-pole solitons is carried out in an
inhomogeneous multi-component nonlinear optical medium [12]. Auto-Bäcklund transformations and
soliton solutions on non-zero backgrounds are explored for a (3+1)-dimensional Korteweg-de Vries-
Calogero-Bogoyavlenskii-Schif equation in a fluid medium [13]. Some more works include [14–18].

The study of IS became significant when studying famous examples like the Korteweg-de-Vries
(KdV) equation [19]. During past years, researchers have focused on the KdV equation [20]. The
integrability of this system makes it a noteworthy illustration of an integrable system, connecting
theoretical phenomena with practical applications [21]. Two-layer liquid and lattice considerations
are investigated through a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system [22].
Similarly, oceanic shallow-water investigations are conducted on a generalized Whitham-Broer-Kaup-
Boussinesq-Kupershmidt system [23]. Recent works include the bifurcations and chaos analysis of
several PDEs. For example, the investigation delves into the dynamic behavior and the emergence
of multiple optical solitons in optical fibers through the fractional Ginzburg–Landau equation
incorporating β-derivative terms [24]. Analyzing bifurcation phenomena, the study explores optical
soliton perturbations employing the Radhakrishnan–Kundu–Lakshmanan equation [25]. Investigating
bifurcations and the existence of dispersive optical solitons, the research focuses on the nonlinear
Schrödinger–Hirota equation within DWDM networks [26]. Additionally, examining bifurcation
dynamics and the formation of multiple solitons, attention is given to birefringent fibers utilizing the
coupled Schrödinger-Hirota equation [27]. The basic version of KdV equation is expressed as:

Gt + 6GGx + Gxxx = 0. (1.1)

In the field of science, the study of nonlinear waves leads to the emergence of the KdV equation, giving
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a mathematical framework for analyzing phenomena like solitons. These solitary waves solutions find
implications in different physical contexts, containing fluid mechanics and plasma physics, where the
characteristics are expressed by the KdV equation. The integrability of the KdV equations permits
researchers to attain closed form solutions, leading to a more profound comprehension of the given
behavior. For Eq (1.1), the order one soliton is expressed as:

G(x, t) =
β

2
sech2

[ √
β

2
(x − βt − x0)

]
. (1.2)

A remarkable recent finding in the field of nonlinear PDEs is the SIdV equation. The SIdV equation
portrays an important extension of the famous KdV equation, renown for its capacity to study different
physical phenomena, specifically those related to waves in shallow water. The unique combination
of the short wave and intermediate dispersive properties in the SIdV equation is what makes it so
fascinating. By involving features from the both regimes, the SIdV acts a link between the KdV
equation and the conventional short wave, offering a more complex point of view. Compared to the
standard short wave equations or KdV equation, the equation’s applicability is increased by its special
mix of short wave and intermediate dispersive features, which allows it to simulate a wider range of
wave events. The equation of the SIdV is given as [28]:

Gt +

(
2Gxx

G

)
Gx = Gxxx. (1.3)

The SIdV equation is interesting owing to the way its intermediate features and short wave dispersive
characteristics are structured. Due to the capacity of the SIdV equation to capture intricate wave
dynamics that other models may ignore, the SIdV equation is desirable to both scholars and
practitioners. Exploring the SIdV equation thereby enriches our knowledge of nonlinear wave process
and offers new prospects to usage in fluid and plasma physics, among other fields. Its role as a
generalized KdV equation provides the basis for a better understanding of nonlinear PDEs and their
applications. The literature [29, 30] provides documentation of several studies on the SIdV equation.
The authors in [31] constructed the following version of SIdV equation as:

Gt +

(
3(1 − %)G + (1 + %)

Gxx

G

)
Gx − ΥGxxx = 0. (1.4)

An integrable system acquires the stochasticity when the random or probabilistic elements affect its
dynamics. This can occur from the system having random components such as a stochastic differential
equation (SDE), Brownian motion, or other causes. The analysis of the stochastic integrable system
is inspired by the demand to analyze and understand physical systems that contain both stochastic and
deterministic aspects. This approach is particulary useful in areas where the interaction of deterministic
laws with random oscillation is essential to the process under investigation such as quantum mechanics.
Many researchers have employed a stochastic technique to examine the soliton of integrable systems,
see [32–35]. Encouraged by proceeding studies, we seek to explore the Eq (1.4) using a stochastic
approach. The SIdV model (1.4) can be reconsidered in stochastic form as

Gt +

(
3(1 − %)G + (1 + %)

Gxx

G

)
Gx − ΥGxxx = ε

dW(t)
dt

. (1.5)
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In the above equation, theW(t) denotes the Wiener process (WP), where dW(t)
dt shows white noise. One

can obtain the Eq (1.4) when considering ε = 0 in the Eq (1.5). (I) The WP W(t) for t ≥ 0 has the
following characteristics:

1) W(t) = 0, for t = 0.
2) W(ti) −W(t j), for ti < t j is independent.
3) W(t), t ≥ 0 is a continuous function for t.
4) W(t j) −W(ti) has a Gaussian distribution having variance t j − ti and mean 0.

(II) The time derivative of a Wiener process, known as white noise, serves as a mathematical
abstraction representing phenomena characterized by significant and abrupt fluctuations.

To get analytic solutions for nonlinear PDEs, several methods have been devised. They consist
of the extended tanh function method [36], Darboux transformation [37], the Sardar-subequation
method [38], and additional ways [39–41]. Three analytical techniques are used in this study: the
sine-cosine approach, the modified Kudryashov Technique (KT), and the generalised Kudryashov
Technique (KT). These techniques are applied to explore novel analytic solutions for the given model
in the stochastic scenario. As far as we know from the literature, this model has not been studied with
the proposed methods in the stochastic perspective.

2. Generalized Kudryashov method

The significance and practicality of the generalized Kudryashov (GK) method are evident in its
ability to pinpoint analytical soliton solutions for nonlinear partial PDEs. In this section, we elucidate
the overall procedure of the GK technique to acquire a spectrum of precise solutions for the given
model. The GK technique is applied to establish the general form of the solution for the following
nonlinear PDE:

P(C,Cx,Ct,Cxx,Cxt, . . .) = 0, (2.1)

where C = C(x, t). Consider the transformation presented below

ξ = $x − βt. (2.2)

Now, putting Eq (2.2) into the Eq (2.1), the following ODE can be obtained:

G(C,C′,C′′,C′′′, . . .) = 0, (2.3)

where “′” denotes ordinary derivatives with respect to ξ. Subsequently, adopt the provided format for
the solution of Eq (2.3), we have

G(x, t) =
Q0 +

∑ς
Υ=1QΥR

Υ(ξ)
%0 +

∑σ
Υ=1 %ΥR

Υ(ξ)
, (2.4)

here, ς and σ are positive integers, and the coefficients QΥ and %Υ (where Υ takes values from 1 to ς
and from 1 to σ) are unspecified and will be determined subsequently. Further ξ is defined in Eq (2.2).
Additionally,

R(ξ) =
1

1 +Aexp(ξ)
, (2.5)
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hereA denotes constant of integration and R(ξ) satisfies the Riccati equation, which is given below:

R′(ξ) = R2(ξ) − R(ξ), (2.6)

In this context, the symbol “′” denotes an ordinary derivative w.r.t ξ. By applying the homogeneous
balance law, ς and σ may be found by comparing the major terms involving the nonlinear term and
the highest-order derivative in the resultant ODE, which is generated from several integrations of
Eq (2.3). Subsequently, inserting the solutions given by (2.4) and Eq (2.5) into the resulting ODE
yields a polynomial in different exponents of R(ξ). Additionally, by setting the powers of R(ξ) to
zero and equating them, an algebraic system emerges. Evaluating the obtained system allows for the
determination of the values of QΥ, %Υ, and other parameters, facilitating the finding of solitary waves
solution.

3. Modified Kudryashov method

Here, the general strategy for the modified KT method is explained. The first step involves
identifying an ODE given by Eq (2.3). Subsequently, the expansion that follows can be used:

G(ξ) =

ϑ∑
κ=0

Fκ

(1 + exp(ξ))κ
, (3.1)

where F0,F1,F2, . . . ,Fϑ provide constants which can be obtained from Eq (2.3). The values of ϑ may
be found by applying the homogeneous balancing principle to the ODE that is produced by repeatedly
integrating Eq (2.3). The resultant ODE may be solved by replacing Eq (3.1) and establishing a
polynomial in various powers of exp(ξ). An algebraic system results from putting the coefficients
of these exponents of exp(ξ) to zero. The results for Fκ and other parameters are obtained by analyzing
this system, which makes it easier to derive analytic solutions.

4. Applications of the proposed methods

Several novel soliton solutions are computed in this part by applying the suggested approaches to
the provided model. Using the following transformation, we start here in order to accomplish this:

G(x, t) = V(ξ) = ($x − βt)eεW(t)−ε2 t2
2 , ξ = $x − βt. (4.1)

On inserting the Eq (4.1) into Eq (1.5), following ODE can be obtained

V(ξ)
(
−$3 − ΥV(ξ)3 − βV′(ξ) +$V′(ξ)

(
$2(% + 1)V′′(ξ)

V(ξ)
+ 3(1 − %)V(ξ)

))
= 0. (4.2)

Integrating Eq (4.2) and considering integration constant as zero we get:

−2$3ΥV(ξ)V′′(ξ) +$3(Υ + % + 1)V′(ξ)2 − βV(ξ)2 − 2$(% − 1)V(ξ)3 = 0. (4.3)

By the homogenenous balancing rule, we can articulate:

ς = σ + 2, (4.4)

where σ , 0.
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4.1. Solutions with GK method

To study implications of the GK technique, considering Eq (4.4) withσ = 1, it follows from Eq (4.4)
that ς = 3. Consequently, the general solution of the Eq (4.3) takes the form:

G(x, t) = V(ξ) =
Q0 + Q1R(ξ) + Q2R

2(ξ) + Q3R
3(ξ)

ζ0 + ζ1R(ξ)
. (4.5)

Inserting Eq (4.5) into the Eq (4.3), we get

− 2$3Υ(R(ξ)) − 1)R(ξ))R(ξ)2(Q2 + Q3) + Q1) + Q0) (R(ξ)) (R(ξ))(Q2 + Q3)(ζ1R(ξ))(2ζ1R(ξ))

+6ζ0 − ζ1) + 3ζ0(2ζ0 − ζ1)) + ζ0ζ1(Q1 − 2Q0) − Q0ζ
2
1 + 2ζ2

0 (Q1 − 2(Q2 + Q3))
)

+ ζ0(Q0ζ1 − Q1ζ0)
)

+$3(R(ξ)) − 1)2R(ξ))2(Υ + % + 1)(R(ξ))(Q2 + Q3)(ζ1R(ξ)) + 2ζ0) − Q0ζ1 + Q1ζ0)2

− 2$(% − 1)(ζ1R(ξ)) + ζ0) × R(ξ)2(Q2 + Q3) + Q1) + Q0)3 − β(ζ1R(ξ)) + ζ0)2R(ξ)2

× (Q2 + Q3) + Q1) + Q0)2 = 0.

(4.6)

By comparing various powers of R(ξ), we derived a system of algebraic equations, the solution of
which yields the following values for the unknown parameters:

S et I : Q0 = −
$2Υζ0

% − 1
,Q2 = −Q3, ζ1 =

Q1 − %Q1

$2Υ
, β = 2$3Υ

S et II : Q0 = −
$2Υζ0

% − 1
,Q1 =

$2Υζ0

% − 1
,Q2 = −Q3, ζ1 = −ζ0, β = 2$3Υ

S et III : Q0 = 0,Q1 = −
2$2ζ0(% − 2Υ + 1)

% − 1
,Q2 =

2%$2ζ0 − 4$2Υζ0 + 2$2ζ0 − %Q3 + Q3

% − 1
,

ζ1 = 0, β = $3(−Υ + 1 + %).

Inserting the aforementioned sets of parameters into Eq (4.5) and utilizing Eq (4.1), one derive:

S 1 = eεW(t)−ε2 t2
2


Q3(

Ae$x−2$3Υt+1
)3 −

Q3(
Ae$x−2$3Υt+1

)2 −
$2Υζ0
%−1 +

$2Υζ0

(%−1)
(
Ae$x−2$3Υt+1

)
ζ0 −

ζ0

Ae$x−2$3Υt+1

 . (4.7)

S 2 = eεW(t)−ε2 t2
2


$2Υζ0

(%−1)(Ae$x−βt+1) −
$2Υζ0
%−1 −

Q3

(Ae$x−βt+1)2 + Q3

(Ae$x−βt+1)3

ζ0 −
ζ0

Ae$x−βt+1

 . (4.8)

S 3 = eεW(t)−ε2 t2
2


Q3(

Ae$x−$3t(%−Υ+1)+1
)3 +

2%$2ζ0−4$2Υζ0+2$2ζ0−%Q3+Q3

(%−1)
(
Ae$x−$3t(%−Υ+1)+1

)2 −
2$2ζ0(%−2Υ+1)

(%−1)
(
Ae$x−$3t(%−Υ+1)+1

)
ζ0

 . (4.9)
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4.2. Solutions with MK method

In this section, we demonstrate the implication of the MK method. By employing the homogeneous
balance principle on Eq (3.1), we determine that ϑ = 2. Consequently, using Eq (3.1), one obtain:

G(x, t) = V(ξ) = F0 +
F1

1 + exp(ξ)
+

F2

(1 + exp(ξ))2 . (4.10)

By substituting Eq (4.10) into Eq (4.2), we derive the following:

− 2$3Υe$x+βt
(
F1

(
e2$x+βt − 1

)
+ 2F2

(
2e$x+βt − 1

)) (
F0

(
e$x+βt + 1

)2
+ F1e$x+βt + F1 + F2

)
+ 2(1 − %)$

(
F0

(
e$x+βt + 1

)2
+ F1e$x+βt + F1 + F2

)3
−

(
e$x+βt + 1

)2
%
(
F0

(
e$x+βt + 1

)2

+F1e$x+βt + F1 + F2

)2
+$3e2$x+βt(β + Υ + 1)

(
F1e$x+βt + F1 + 2F2

)2
= 0.

(4.11)

Comparing various powers of exp(ξ), ξ = 2$x + βt, we get

(eξ)0 : − 2%F 3
0 $ + 2F 3

0 $ − 6%F 2
0 F1$ + 6F 2

0 F1$ − 6%F 2
0 F2$ + 6F 2

0 F2$ − F
2

0 β − 6%F0F
2

1 $

− 12%F0F1F2$ + 12F0F1F2$ − 2F0F1β − 6%F0F
2

2 $ + 6F0F
2

2 $ − 2F0F2β − 2%F 3
1 $ + 2F 3

1 $

− 6%F 2
1 F2$ + 6F 2

1 F2$ − F
2

1 β − 6%F1F
2

2 $ + 6F1F
2

2 $ − 2F1F2β − 2%F 3
2 $ + 2F 3

2 $ − F
2

2 β

+ 6F0F
2

1 $ = 0
(eξ)1 : − 2%F 3

0 $ + 2F 3
0 $ − F

2
0 β = 0

(eξ)2 : − 12%F 3
0 $ + 12F 3

0 $ − 6%F 2
0 F1$ + 6F 2

0 F1$ − 6F 2
0 β − 2F0F1$

3Υ − 2F0F1β = 0
(eξ)3 : − 30%F 3

0 $ + 30F 3
0 $ − 30%F 2

0 F1$ + 30F 2
0 F1$ − 6%F 2

0 F2$ + 6F 2
0 F2$ − 15F 2

0 β

+ 6F0F
2

1 $ − 4F0F1$
3Υ − 10F0F1β − 8F0F2$

3Υ − 2F0F2β + %F 2
1 $

3 − F 2
1 $

3Υ + F 2
1 $

3

− F 2
1 β − 6%F0F

2
1 $ = 0

(eξ)4 : − 40%F 3
0 $ + 40F 3

0 $ − 60%F 2
0 F1$ + 60F 2

0 F1$ − 24%F 2
0 F2$ + 24F 2

0 F2$

+ 24F0F
2

1 $ − 12%F0F1F2$ + 12F0F1F2$ − 20F0F1β − 12F0F2$
3Υ − 8F0F2β − 2%F 3

1 $

+ 2%F 2
1 $

3 + 2F 2
1 $

3 − 4F 2
1 β + 4%F1F2$

3 − 6F1F2$
3Υ + 4F1F2$

3 − 2F1F2β − 20F 2
0 β

− 24%F0F
2

1 $ + 2F 3
1 $ = 0

exp(ξ)5 : − 12%F 3
0 $ + 12F 3

0 $ − 30%F 2
0 F1$ + 30F 2

0 F1$ − 24%F 2
0 F2$ + 24F 2

0 F2$ − 6F 2
0 β

+ 24F0F
2

1 $ − 36%F0F1F2$ + 36F0F1F2$ + 2F0F1$
3Υ − 10F0F1β − 12%F0F

2
2 $ + 12F0F

2
2 $

+ 4F0F2$
3Υ − 8F0F2β − 6%F 3

1 $ + 6F 3
1 $ − 12%F 2

1 F2$ + 12F 2
1 F2$ + 2F 2

1 $
3Υ − 4F 2

1 β

− 6%F1F
2

2 $ + 6F1F
2

2 $ + 6F1F2$
3Υ − 6F1F2β + 4F 2

2 $
3Υ − 2F 2

2 β − 24%F0F
2

1 $ = 0
(eξ)6 : − 30%F 3

0 $ + 30F 3
0 $ − 60%F 2

0 F1$ + 60F 2
0 F1$ − 36%F 2

0 F2$ + 36F 2
0 F2$ − 15F 2

0 β

+ 36F0F
2

1 $ − 36%F0F1F2$ + 36F0F1F2$ + 4F0F1$
3Υ − 20F0F1β − 6%F0F

2
2 $ + 6F0F

2
2 $

− 12F0F2β − 6%F 3
1 $ + 6F 3

1 $ − 6%F 2
1 F2$ + 6F 2

1 F2$ + %F 2
1 $

3 + 3F 2
1 $

3Υ + F 2
1 $

3 − 6F 2
1 β

+ 4%F1F2$
3 + 4F1F2$

3 − 6F1F2β + 4%F 2
2 $

3 − 4F 2
2 $

3Υ + 4F 2
2 $

3 − F 2
2 β − 36%F0F

2
1 $ = 0.

(4.12)

Upon solving the aforementioned system, we acquire:

F0 = 0,F1 = −
2$2(% − 2Υ + 1)

% − 1
,F2 =

2
(
%$2 − 2$2Υ +$2

)
% − 1

, β = $3(% − Υ + 1), (4.13)
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Putting the values presented above in Eq (4.10), we obtained the following solution

S 4 = eεW(t)−ε2 t2
2

 2
(
%$2 − 2$2Υ +$2

)
(% − 1)

(
e$x−$3t(%−Υ+1) + 1

)2 −
2$2(% − 2Υ + 1)

(% − 1)
(
e$x−$3t(%−Υ+1) + 1

)
 . (4.14)

4.3. Solutions with sine-cosine procedure

Here, the sine-cosine method to compute more closed form solutions for the proposed stochastic
nonlinear equation is presented. This method involves utilizing the sine expansion give as:

G(x, t) = V(ξ) = Ωsin(µξ)r, (4.15)

where

V(ξ)
′′

= r(r − 1)Ωµ2sin(µξ)r−2 − r2Ωµ2sin(µξ)r. (4.16)

Inserting Eq (4.15) and the Eq (4.16) into Eq (4.2), we get

− Ω2β(sin(µξ))2r − 2$(−1 + β)Ω3(sin(µξ))3r + ($)3r2(1 + β + Υ)Ω2 (µ)2

(1 − (sin(µξ))2)(sin(µξ))−2+2r − 2$3ΥΩ(sin(µξ))r((−1 + r)rΩµ2

(1 − (sin(µξ))2)(sin(µξ))−2+r − rΩ(µ)2(sin(µξ))r) = 0.
(4.17)

One reach to:

r − 2 , 0
3r + 2 − 2r = 0
βr2$3Ω2µ2 − r2$3ΥΩ2µ2 + r2$3Ω2µ2 + 2r$3ΥΩ2µ2 − 2%$Ω3 + 2$Ω3 = 0
− %r2$3Ω2µ2 + r2$3ΥΩ2µ2 −$3r2Ω2µ2 − Ω2ν = 0.

(4.18)

Solving system (4.18), we get the following

r = −2, µ = −

√
µ

2
√
−%$3 +$3Υ −$3

, Ω =
−%µ + 2Υµ − µ

2(−1 + %)$(−Υ + % + 1)
,

r = −2, µ =

√
µ

2
√
−%$3 +$3Υ −$3

, Ω =
−%µ + 2Υµ − µ

2(−1 + %)$(−Υ + % + 1)
.

(4.19)

By substituting the aforementioned values into Eq (4.15), we reach:

S 5 = eεW(t)−ε2 t2
2


(−%µ + 2Υµ − µ) csc2

(
√
µ($x−βt)

2
√
−%$3+$3Υ−$3

)
2(−1 + %)$(−Υ + % + 1)

 . (4.20)

S 6 = eεW(t)−ε2 t2
2


(−%µ + 2Υµ − µ) csc2

(
√
µ($x−βt)

2
√
−%$3+$3Υ−$3

)
2(−1 + %)$(−Υ + % + 1)

 . (4.21)
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Next suppose the Cosine expansion:

G(x, t) = V(ξ) = Ωcos(µξ)r, (4.22)

here

V(ξ)
′′

= r(r − 1)Ωµ2cos(µξ)r−2 − r2Ωµ2cos(µξ)r. (4.23)

Inserting Eq (4.22) and the Eq (4.23) into Eq (4.2), we get

− Ω2β(cos(µξ))(2r) − 2$(−1 + β)Ω3(cos(µξ))3r +$3r2(1 + β + Υ)Ω2 µ2

(1 − (cos(µξ))2)(cos(µξ))−2+2r − 2$3ΥΩ(cos(µξ))r((−1 + r)rΩµ2

(1 − (cos(µξ))2)(cos(µξ))−2+r − rΩµ2(cos(µξ))r) = 0.
(4.24)

One scenario that may occur is as:

r − 2 , 0
3r + 2 − 2r = 0
βr2$3Ω2µ2 − r2$3ΥΩ2µ2 + r2$3Ω2µ2 + 2r$3ΥΩ2µ2 − 2%$Ω3 + 2$Ω3 = 0
− %r2$3Ω2µ2 + r2$3ΥΩ2µ2 −$3r2Ω2µ2 − Ω2ν = 0.

(4.25)

The values obtained by solving the given system are:

r = −2, µ = −

√
µ

2
√
−%$3 +$3Υ −$3

, Ω =
−%µ + 2Υµ − µ

2(−1 + %)$(−Υ + % + 1)
,

r = −2, µ =

√
µ

2
√
−%$3 +$3Υ −$3

, Ω =
−%µ + 2Υµ − µ

2(−1 + %)$(−Υ + % + 1)
.

(4.26)

We obtain the following solutions by entering the aforementioned values into Eq (4.22).

S 7 = eεW(t)−ε2 t2
2


(−%β + 2Υβ − β) sec2

(
√
β($x−βt)

2
√
−%$3+$3Υ−$3

)
2(−1 + %)$(−Υ + % + 1)

 . (4.27)

S 8 = eεW(t)−ε2 t2
2


(−%β + 2Υβ − β) sec2

(
√
β($x−βt)

2
√
−%$3+$3Υ−$3

)
2(−1 + %)$(−Υ + % + 1)

 . (4.28)

4.4. Graphical illustrations and discussion

This section provides a detailed analysis of the geometric characteristics of various solutions we
have derived. It includes both 2D and 3D visual representations to elucidate their physical implications.
Specifically, we examine the shape of solution S 1, as depicted in Figure 1. Here, the behavior of
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the kink solitary wave is presented in both two and three dimensions, characterized by a localized
wave profile with a sharply defined amplitude shift. Additionally, Figure 1 contains subfigures that
investigate the influence of noise on these observations. We particularly focus on how the kink solitary
waves respond to varying levels of ω, demonstrating that these waves undergo significant changes.
This observation underscores the sensitivity of kink solitary wave dynamics to fluctuations in the ω
parameter, thereby shedding light on the impact of noise on the dynamic properties of the solutions
being studied.

(a) ε = 0 (b) ε = 0.1 (c) ε = 0.2

(d) ε = 0, x = 0.1 (e) ε = 0.1, x = 0.1 (f) ε = 0.2, x = 0.1

Figure 1. Three and two dimensional dynamics of S 1 for Υ = 2, A = 2, $ = 1, Q3 =

1 , ζ0 = 1, % = −1.1.

The graphical view of the solution S 2 is presented in Figure 2, revealing periodic solitonic patterns
in two- and three-dimensional representations. Solitons are waves that travel alone and maintain their
shape and speed. The steady, recurring waveforms in this illustration are known as soliton waveforms.
Additionally, a graphic explanation of the noise term’s influence is provided. A comparable increase
in the periodic soliton’s unpredictability is observed when the noise term’s amplitude increases. The
impact of the noise factor on the formerly stable and periodic solitonic patterns is well depicted in this
visual aid, highlighting the system’s vulnerability to changes in the noise parameter.

Furthermore, Figure 3 shows the dynamics of the solution S 4 in two- and three-dimensional
representations, illustrating a dark soliton configuration typical. The visualization’s subfigures
illuminate how the noise term affects the dynamics that are intrinsic to the dark soliton structure.
In particular, a visual representation of the effect of changing the noise term is provided. There is
a discernible impact on the dark soliton’s behaviour as the noise term’s amplitude increases. This
indicates a significant rise in the variation that the dark soliton displays. Essentially, the graphic
conveys how sensitive the behavior of the dark soliton is to changes in the noise parameter, offering
important information on the complex interactions between the soliton structure and the stochasticity
of the environment.
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(a) ε = 0 (b) ε = 0.8 (c) ε = 1.8

(d) ε = 0, x = 0.1 (e) ε = 0.8, x = 0.1 (f) ε = 1.8, x = 0.1

Figure 2. Three and two dimensional dynamics of S 2 for Υ = 1, A = 1, $ = 0.1, Q3 =

1 , ζ0 = 0.2, % = 0.1.

(a) ε = 0 (b) ε = 0.3 (c) ε = 0.6

(d) ε = 0, x = 0.1 (e) ε = 0.3, x = 0.1 (f) ε = 0.6, x = 0.1

Figure 3. Three and two dimensional dynamics of S 4 for % = 1, Υ = 1, $ = 1.

A graphic depiction of the solution S 5 is shown in Figure 4, which depicts a localised wave
with sharp peaks and periodicity. Localized wave patterns become crucial in our analysis, as the
well-defined, sharp peaks they exhibit signify the presence of a distinct wave packet. The graphical
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representation not only offers insights into the periodic behavior and amplitude distribution of these
localized waves but also elucidates their dynamic properties. The series culminates with Figure 5,
presenting a detailed portrayal of the geometric attributes of solution S 6. The bell-shaped contour
characteristic of this solution distinctly indicates a localized wave. The clearly defined concentration
region suggests that the bell-shaped form may mirror specific physical events. The graphical
depiction facilitates a better understanding of solution S 6, which has unique wave profile properties.
Additionally, by incorporating noise terms in the subfigures, we explore the impact of unpredictability
on the system. Observations from these subfigures reveal that as the value of the noise term increases,
the dynamics of the wave behavior fluctuate more intensely. This research underscores how stochastic
factors influence localized wave solutions and provides valuable insights into the system’s response to
heightened ambient noise levels.

(a) ε = 0 (b) ε = 0.1 (c) ε = 0.5

(d) ε = 0, x = 0.1 (e) ε = 0.1, x = 0.1 (f) ε = 0.5, x = 0.1

Figure 4. Three and two dimensional dynamics of S 5 for % = 0.1, Υ = 1.5, β = 1, $ = 1.
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(a) ε = 0 (b) ε = 0.2 (c) ε = 0.8

(d) ε = 0, x = 0.1 (e) ε = 0.2, x = 0.1 (f) ε = 0.8, x = 0.1

Figure 5. Three and two dimensional dynamics of S 6 for % = 0.1, Υ = −2, β = 5, $ = 1.

5. Conclusions

In summary, the inherent stochasticity of many physical systems necessitates the use of stochastic
methods to effectively seek soliton solutions. Incorporating randomness into our models provides
invaluable insights into the impact of uncertainty on soliton dynamics, offering a deeper understanding
of their stability and interactions within real-world scenarios. By introducing the Wiener process into
the SIdV equation, we aim to capture the realistic behavior of solitons under stochastic influences.
Through meticulous analysis utilizing advanced techniques like the generalized KT, its modified
counterpart, and the sine-cosine procedure, we unveil a diverse array of traveling wave solutions.
These solutions encompass both solitary waves and bounded waveforms, offering a comprehensive
view of soliton dynamics. This underscores the significance of stochastic methodologies in unraveling
the complexities of physical systems, emphasizing their role in enhancing our comprehension of
fundamental phenomena.

Solitons exhibit stable, periodic waveforms unaffected by external influences, while increased
noise disrupts their predictability, revealing system vulnerability. Dark solitons, depicted in Figure 3,
display sensitivity to noise, with amplified variation in behavior as noise amplitude rises, highlighting
complex soliton-environment interactions. Localized wave patterns in Figures 4 and 5 reveal
distinct wave packets, with sharp peaks and periodicity, while noise introduction demonstrates
heightened fluctuations in wave behavior, emphasizing stochastic influence on localized wave
solutions. Furthermore, the diverse physical explanation of acquired solutions highlight the wide-
ranging evolution produced by the generalized stochastic SIdV equation. The findings offer new
perspectives on wave propagation in stochastic environments, unveiling various phenomena like dark
soliton structures, periodic solitonic patterns, and kink-solitary waves. Analyzing and interpreting
these geometric characteristics is vital for unraveling the complex relationship between dispersive and
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nonlinear effects in various physical contexts. Future work includes analysis of the proposed model
where the neural networks will be carried out [42, 43].
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