Research article Special Issues

On the solutions of the second-order $ (p, q) $-difference equation with an application to the fixed-point theory

  • Received: 23 January 2024 Revised: 02 March 2024 Accepted: 08 March 2024 Published: 18 March 2024
  • MSC : 39A13, 39A21, 47H10

  • In this paper, we examined the existence and uniqueness of solutions to the second-order $ (p, q) $-difference equation with non-local boundary conditions by using the Banach fixed-point theorem. Moreover, we introduced a special case of this equation called the Euler-Cauchy-like $ (p, q) $-difference equation and provide its solution. We also studied the oscillation of solutions for this equation in $ (p, q) $-calculus and proved the $ (p, q) $-Sturm-type separation theorem and $ (p, q) $-Kneser theorem about the oscillation of solutions.

    Citation: Nihan Turan, Metin Başarır, Aynur Şahin. On the solutions of the second-order $ (p, q) $-difference equation with an application to the fixed-point theory[J]. AIMS Mathematics, 2024, 9(5): 10679-10697. doi: 10.3934/math.2024521

    Related Papers:

  • In this paper, we examined the existence and uniqueness of solutions to the second-order $ (p, q) $-difference equation with non-local boundary conditions by using the Banach fixed-point theorem. Moreover, we introduced a special case of this equation called the Euler-Cauchy-like $ (p, q) $-difference equation and provide its solution. We also studied the oscillation of solutions for this equation in $ (p, q) $-calculus and proved the $ (p, q) $-Sturm-type separation theorem and $ (p, q) $-Kneser theorem about the oscillation of solutions.



    加载中


    [1] F. H. Jackson, $q$-difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [2] R. P. Agarwal, B. Ahmad, H. A. Hutami, A. Alsaedi, Existence results for nonlinear multi-term impulsive fractional $q$-integro-difference equations with nonlocal boundary conditions, AIMS Math., 8 (2023), 19313–19333. https://doi.org/10.3934/math.2023985 doi: 10.3934/math.2023985
    [3] R. Floreanini, L. Vinet, $q$-gamma and $q$-beta functions in quantum algebra representation theory, J. Comput. Appl. Math., 68 (1996), 57–68. https://doi.org/10.1016/0377-0427(95)00253-7 doi: 10.1016/0377-0427(95)00253-7
    [4] H. Jafari, A. Haghbin, S. Hesam, D. Baleanu, Solving partial $q$-differential equations within reduced $q$ -differential transform method, Rom. Journ. Phys., 59 (2014), 399–407.
    [5] M. Vogel, An introduction to the theory of numbers, 6th edition, by G. H. Hardy and E. M. Wright, Contemp. Phys., 51 (2010), 283. https://doi.org/10.1080/00107510903184414 doi: 10.1080/00107510903184414
    [6] V. Kac, C. Pokman, Quantum calculus, USA: Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [7] T. Yaying, M. İ. Kara, B. Hazarika, E. E. Kara, A study on $q$-analogue of Catalan sequence spaces, Filomat, 37 (2023), 839–850. https://doi.org/10.2298/FIL2303839Y doi: 10.2298/FIL2303839Y
    [8] R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991), 711–718. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002
    [9] P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z
    [10] N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for $(p, q)$-difference equations, Differ. Equations Appl., 10 (2018), 183–195. https://doi.org/10.7153/dea-2018-10-11 doi: 10.7153/dea-2018-10-11
    [11] İ. Gençtürk, Boundary value problems for a second-order $(p, q)$-difference equation with integral conditions, Turk. J. Math., 46 (2022), 499–515. https://doi.org/10.3906/mat-2106-90 doi: 10.3906/mat-2106-90
    [12] M. N. Hounkonnou, J. D. B. Kyemba, $R(p, q)$-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145–167. https://doi.org/10.55937/sut/1394548362 doi: 10.55937/sut/1394548362
    [13] S. Araci, U. G. Duran, M. Acikgoz, H. M. Srivastava, A certain $(p, q)$-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. https://doi.org/10.1186/s13660-016-1240-8 doi: 10.1186/s13660-016-1240-8
    [14] M. Mursaleen, M. Nasiruzzaman, A. Khan, K. J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by $(p, q)$-integers, Filomat, 30 (2016), 639–648. https://doi.org/10.2298/FIL1603639M doi: 10.2298/FIL1603639M
    [15] C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum $(p, q)$-difference equations with separated boundary conditions, Adv. Math. Phys., 2018 (2018), 9089865. https://doi.org/10.1155/2018/9089865 doi: 10.1155/2018/9089865
    [16] U. Duran, M. Acikgoz, S. Araci, A study on some new results arising from $(p, q)$-calculus, Preprints, 2018. https://doi.org/10.20944/preprints201803.0072.v1 doi: 10.20944/preprints201803.0072.v1
    [17] J. Soontharanon, T. Sitthiwirattham, On sequential fractional Caputo $(p, q)$-integrodifference equations via three-point fractional Riemann-Liouville $(p, q)$-difference boundary condition, AIMS Math., 7 (2021), 704–722. https://doi.org/10.3934/math.2022044 doi: 10.3934/math.2022044
    [18] M. Başarır, N. Turan, The solutions of some equations in $(p, q)$-calculus, Konuralp J. Math., in press, 2024.
    [19] C. Sturm, Mémoire sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl., 1 (1836), 106–186.
    [20] M. Bôcher, The theorems of oscillation of Sturm and Klein, Bull. Amer. Math. Soc., 4 (1898), 295–313.
    [21] M. Bôcher, Non-oscillatory linear differential equations of the second order, Bull. Amer. Math. Soc., 7 (1901), 333–340. https://doi.org/10.1090/S0002-9904-1901-00808-7 doi: 10.1090/S0002-9904-1901-00808-7
    [22] A. Kneser, Untersuchungen über die reellen nullstellen der integrale linearer differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/BF01444165 doi: 10.1007/BF01444165
    [23] W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., 19 (1918), 341–352. https://doi.org/10.1090/S0002-9947-1918-1501107-2 doi: 10.1090/S0002-9947-1918-1501107-2
    [24] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234–252. https://doi.org/10.1090/S0002-9947-1948-0027925-7 doi: 10.1090/S0002-9947-1948-0027925-7
    [25] A. Wintner, On the comparison theorem of Kneser-Hille, Math. Scand., 5 (1957), 255–260.
    [26] P. Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math., 74 (1952), 389–400. https://doi.org/10.2307/2372004 doi: 10.2307/2372004
    [27] R. A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math., 5 (1955), 125–145. https://doi.org/10.2140/PJM.1955.5.125 doi: 10.2140/PJM.1955.5.125
    [28] H. J. Li, Oscillation criteria for second order linear differential equations, J. Math. Anal. Appl., 194 (1955), 217–234. https://doi.org/10.1006/jmaa.1995.1295 doi: 10.1006/jmaa.1995.1295
    [29] M. Bohner, S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 34 (2004), 1239–1254. https://doi.org/10.1216/rmjm/1181069797 doi: 10.1216/rmjm/1181069797
    [30] M. Bohner, M. Ünal, Kneser's theorem in $q$-calculus, J. Phys. A, 38 (2005), 6729–6739. https://doi.org/10.1088/0305-4470/38/30/008 doi: 10.1088/0305-4470/38/30/008
    [31] A. Şahin, Some results of the Picard-Krasnoselskii hybrid iterative process, Filomat, 33 (2019), 359–365. https://doi.org/10.2298/FIL1902359S doi: 10.2298/FIL1902359S
    [32] A. Şahin, Z. Kalkan, H. Arısoy, On the solution of a nonlinear Volterra integral equation with delay, Sakarya Univ. J. Sci., 21 (2017), 1367–1376. https://doi.org/10.16984/saufenbilder.305632 doi: 10.16984/saufenbilder.305632
    [33] A. G. Lakoud, N. Hamidane, R. Khaldi, Existence and uniqueness of solution for a second order boundary value problem, Commun. Fac. Sci. Univ. Ank. Ser. A, 62 (2013), 121–129.
    [34] A. Şahin, Some new results of $M$-iteration process in hyperbolic spaces, Carpathian J. Math., 35 (2019), 221–232.
    [35] S. Khatoon, I. Uddin, M. Başarır, A modified proximal point algorithm for a nearly asymptotically quasi-nonexpansive mapping with an application, Comput. Appl. Math., 40 (2021), 250. https://doi.org/10.1007/s40314-021-01646-9 doi: 10.1007/s40314-021-01646-9
    [36] A. Şahin, E. Öztürk, G. Aggarwal, Some fixed-point results for the $KF$-iteration process in hyperbolic metric spaces, Symmetry, 15 (2023), 1360. https://doi.org/10.3390/sym15071360 doi: 10.3390/sym15071360
    [37] B. Ahmad, S. K. Ntouyas, Boundary value problems for $q$-difference equations and inclusions with non-local and integral boundary conditions, Math. Modell. Anal., 19 (2014), 647–663. https://doi.org/10.3846/13926292.2014.980345 doi: 10.3846/13926292.2014.980345
    [38] L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear evolution non-local Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U
    [39] L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Int. J., 40 (1991), 11–19. https://doi.org/10.1080/00036819008839989 doi: 10.1080/00036819008839989
    [40] M. Bohner, A. Peterson, Dynamic equations on time scales, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [41] N. Turan, M. Başarır, On the $\Delta_{g}$-statistical convergence of the function defined time scale, AIP Conf. Proc., 2183 (2019), 040017. https://doi.org/10.1063/1.5136137 doi: 10.1063/1.5136137
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1088) PDF downloads(135) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog