In this paper, we introduced a new contraction principle via altering distance and $ C $-class functions with rational forms which extends and generalizes the existing version provided by Hasan Ranjbar et al. [H. Ranjbar, A. Niknam, A fixed point theorem in Hilbert $ C^\ast $-modules, Korean J. Math., 30 (2022), 297–304]. Specifically, the rational forms involved in the contraction condition we presented involve the $ p $-th power of the displacements which can exceed the second power mentioned in Hasan Ranjbar et al.'s paper. Moreover, we also proved a fixed point theorem for this type of contraction in the Hilbert $ C^\ast $-module. Some adequate examples were provided to support our results. As an application, we applied our result to prove the existence of a unique solution to an integral equation and a second-order $ (p, q) $-difference equation with integral boundary value conditions.
Citation: Mi Zhou, Arsalan Hojjat Ansari, Choonkil Park, Snježana Maksimović, Zoran D. Mitrović. A new approach for fixed point theorems for $ C $-class functions in Hilbert $ C^{*} $-modules[J]. AIMS Mathematics, 2024, 9(10): 28850-28869. doi: 10.3934/math.20241400
In this paper, we introduced a new contraction principle via altering distance and $ C $-class functions with rational forms which extends and generalizes the existing version provided by Hasan Ranjbar et al. [H. Ranjbar, A. Niknam, A fixed point theorem in Hilbert $ C^\ast $-modules, Korean J. Math., 30 (2022), 297–304]. Specifically, the rational forms involved in the contraction condition we presented involve the $ p $-th power of the displacements which can exceed the second power mentioned in Hasan Ranjbar et al.'s paper. Moreover, we also proved a fixed point theorem for this type of contraction in the Hilbert $ C^\ast $-module. Some adequate examples were provided to support our results. As an application, we applied our result to prove the existence of a unique solution to an integral equation and a second-order $ (p, q) $-difference equation with integral boundary value conditions.
[1] | M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8 |
[2] | H. Sahin, M. Aslantas, A. A. Nasir Nasir, Some extended results for multivalued F-contraction mappings, Axioms, 12 (2023), 116. https://doi.org/10.3390/axioms12020116 doi: 10.3390/axioms12020116 |
[3] | F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci., 53 (1965), 1272–1276. https://doi.org/10.1073/pnas.53.6.1272 doi: 10.1073/pnas.53.6.1272 |
[4] | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[5] | D. Göhde, Zum prinzip der kontraktiven abbildung, Math. Nach., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312 |
[6] | W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[7] | Z. H. Ma, L. N. Jiang, Q. L. Xin, Fixed point theorems on operator-valued metric space, Transactions of Beijing institute of Technology, 34 (2014), 1078–1080. |
[8] | Z. H. Ma, L. N. Jiang, H. K. Sun, $C^*$-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[9] | Z. H. Ma, L. N. Jiang, $C^*$-Algebra-valued $b$-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 222. https://doi.org/10.1186/s13663-015-0471-6 doi: 10.1186/s13663-015-0471-6 |
[10] | S. Batul, T. Kamran, $C^*$-valued contractive type mappings, Fixed Point Theory Appl., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3 |
[11] | H. Ranjbar, A. Niknam, A fixed point theorem in Hilbert $C^*$-modules, Korean J. Math., 30 (2022), 297–304. https://doi.org/10.11568/kjm.2022.30.2.297 doi: 10.11568/kjm.2022.30.2.297 |
[12] | A. H. Ansari, Note on "$\varphi$-$\psi$-contractive type mappings and related fixed point", In: The 2nd regional conference on mathematics and applications, 11 (2014), 377–380. |
[13] | A. H. Ansari, A. Kaewcharoen, $C$-class functions and fixed point theorems for generalized $\alpha$-$\eta$-$\psi$-$\varphi$-$F$-contraction type mappings in $\alpha$-$\eta$-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177–4190. https://doi.org/10.22436/jnsa.009.06.60 doi: 10.22436/jnsa.009.06.60 |
[14] | A. H. Ansari, W. Shatanawi, $C$-class functions on fixed and common fixed point results for cyclic mappings of Omega-distance, Nonlinear Anal. Model., 22 (2017), 739–752. https://doi.org/10.15388/NA.2017.6.1 doi: 10.15388/NA.2017.6.1 |
[15] | A. H. Ansari, S. Chandok, C. Ionescu, Fixed point theorems on $b$-metric spaces for weak contractions with auxiliary functions, J. Inequal. Appl., 2014 (2014), 429. https://doi.org/10.1186/1029-242X-2014-429 doi: 10.1186/1029-242X-2014-429 |
[16] | M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1–9. https://doi.org/10.1017/S0004972700001659 doi: 10.1017/S0004972700001659 |
[17] | P. Chuadchawna, A. Kaewcharoen, S. Plubtieng, Fixed point theorems for generalized $\alpha$-$\eta$-$\psi$-Geraghty contraction type mappings in $\alpha$-$\eta$-complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 471–485. https://doi.org/10.22436/jnsa.009.02.13 doi: 10.22436/jnsa.009.02.13 |
[18] | A. Latif, H. Isik, A. H. Ansari, Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings, J. Nonlinear Sci. Appl., 9 (2016), 1129–1142. https://doi.org/10.22436/jnsa.009.03.40 doi: 10.22436/jnsa.009.03.40 |
[19] | P. Njionou Sadjang, On the fundamental theorem of $(p, q)$-calculus of some $(p, q)$-Taylor formular, Results Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z |
[20] | I. Gençtürk, Boundary value problems for second-order $(p, q)$-difference equation with integral conditions, Turk. J. Math., 46 (2022), 499–515. https://doi.org/10.3906/mat-2106-90 doi: 10.3906/mat-2106-90 |