Research article

Managing incomplete general hesitant linguistic preference relations and their application

  • Received: 26 August 2024 Revised: 19 September 2024 Accepted: 29 September 2024 Published: 14 October 2024
  • MSC : 03E72, 94D05

  • Hesitant linguistic preference relations (HLPRs) are useful tools for decision makers (DMs) to express their qualitative judgements. However, the traditional HLPRs have one prominent drawback, which is to sort the linguistic values in a hesitant linguistic set. This will distort the DMs' initial judgements. In the present paper, a revised definition of HLPR, called general HLPR (GHLPR), was proposed. A characterization was explored for LPRs. Then, the characterization was extended to GHLPRs. Based on the characterization, the estimation of unknown entries in incomplete GHLPRs were carried out by two algorithms. The group decision-making problems with incomplete GHLPRs were settled by another algorithm. Finally, a case study was illustrated, and comparisons showed that our methods were more reasonable than the existent methods.

    Citation: Lei Zhao. Managing incomplete general hesitant linguistic preference relations and their application[J]. AIMS Mathematics, 2024, 9(10): 28870-28894. doi: 10.3934/math.20241401

    Related Papers:

    [1] Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214
    [2] Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277
    [3] Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101
    [4] Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719
    [5] Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464
    [6] Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279
    [7] Shuang Li, Xiao-mei Wang, Hong-ying Qin, Shou-ming Zhong . Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays. AIMS Mathematics, 2021, 6(8): 8044-8063. doi: 10.3934/math.2021467
    [8] Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262
    [9] Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666
    [10] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172
  • Hesitant linguistic preference relations (HLPRs) are useful tools for decision makers (DMs) to express their qualitative judgements. However, the traditional HLPRs have one prominent drawback, which is to sort the linguistic values in a hesitant linguistic set. This will distort the DMs' initial judgements. In the present paper, a revised definition of HLPR, called general HLPR (GHLPR), was proposed. A characterization was explored for LPRs. Then, the characterization was extended to GHLPRs. Based on the characterization, the estimation of unknown entries in incomplete GHLPRs were carried out by two algorithms. The group decision-making problems with incomplete GHLPRs were settled by another algorithm. Finally, a case study was illustrated, and comparisons showed that our methods were more reasonable than the existent methods.



    Let q3 be an integer, and χ be a Dirichlet character modulo q. The characters of the rational polynomial are defined as follows:

    N+Mx=N+1χ(f(x)),

    where M and N are any given positive integers, and f(x) is a rational polynomial. For example, when f(x)=x, for any non-principal Dirichlet character χ mod q, Pólya [1] and Vinogradov [2] independently proved that

    |N+Mx=N+1χ(x)|<qlnq,

    and we call it Pólya-Vinogradov inequality.

    When q=p is an odd prime, χ is a p-th order character modulo p, Weil [3] proved

    N+Mx=N+1χ(f(x))p12lnp,

    where f(x) is not a perfect p-th power modulo p, AB denotes |A|<kB for some constant k, which in this case depends on the degree of f.

    Many authors have obtained numerous results for various forms of f(x). For example, W. P. Zhang and Y. Yi [4] constructed a special polynomial as f(x)=(xr)m(xs)n and deduced

    |qa=1χ((ar)m(as)n)|=q,

    where (rs,q)=1, and χ is a primitive character modulo q. This shows the power of q in Weil's result is the best possible!

    Also, when χ is a primitive character mod q, W. P. Zhang and W. L. Yao [5] obtained

    qa=1χ(am(1a)m)=q¯χ(4m),

    where q is an odd perfect square and m is any positive integer with (m,q)=1.

    When q=pα11pα22pαss is a square full number with pi3mod4, χ=χ1χ2χs with χi being any primitive even character mod pαii(i=1,2,,s), W. P. Zhang and T. T. Wang [6] obtained the identity

    |qa=1χ(ma2k1+n¯a)|=qp|q(1+(mn(2k1)p)), (1.1)

    where a¯a1modq, and (p) denotes the Legendre symbol. Besides, k, m and n also satisfying some special conditions. Other related work about Dirichlet characters of the rational polynomials can be found in references [7,8,9,10,11,12,13,14]. Inspired by these, we will study the sum

    qa=1χ(ma+¯a).

    Following the way in [6], we obtain W. P. Zhang and T. T. Wang's identity (1.1) under a more relaxed situation. Then by adding some new ingredients, we derive some new identities for the fourth power mean of it.

    Noting that if χ is an odd character modulo q, m is a positive integer with (m,q)=1, we can get

    qa=1χ(ma+¯a)=qa=1χ(ma+¯(a))=qa=1χ(ma+¯a).

    That is to say, under this condition,

    qa=1χ(ma+¯a)=0.

    So, we will only discuss the case of χ an even character. To the best of our knowledge, the following identities dealing with arbitrary odd square-full number cases are new and have not appeared before.

    Theorem 1.1. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    |qa=1χ(ma+¯a)|=qpq(1+(mp)),

    where pq denotes the product over all distinct prime divisors p of q.

    Remark 1.1. It is obvious that Theorem 1.1 is W. P. Zhang and T. T. Wang's identity (1.1) with k=n=1 by removing the condition pi3mod4 (i=1,2,,s). Besides, using our results, we can directly obtain the absolute values of the sums of Dirichlet characters satisfying some conditions, which avoids complex calculations. What's more, the result of Theorem 1.1 also shows that the order of q in Weil's result can not be improved.

    To understand the result better, we give the following examples:

    Example 1.1. Let q=32, χ be a Dirichlet character modulo 9 defined as follows:

    χ(n)={e2πiind2n3,if (n,9)=1;0,if (n,9)>1.

    Obviously, χ is a primitive even character modulo 9. Taking m=1,2, then we have

    |9a=1χ(ma+¯a)|=|9a=1χ(a+¯a)|=|3χ(2)+3χ(7)|=|3e2πi3+3e2πi43|=6,|9a=1χ(ma+¯a)|=|9a=1χ(2a+¯a)|=|2χ(3)+2χ(6)+2χ(9)|=0.

    Example 1.2. Let q=52, χ be a primitive even character modulo 25 defined as follows:

    χ(n)={e2πiind2n5,if (n,25)=1;0,if (n,25)>1.

    Taking m=1,2, then we have

    |25a=1χ(ma+¯a)|=|25a=1χ(a+¯a)|=|5χ(2)+5χ(23)|=|5e2πi5+5e2πi115|=10,|25a=1χ(ma+¯a)|=|25a=1χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(7)+4χ(8)+4χ(12)|=|4e2πi5+4e2πi75+4e2πi55+4e2πi35+4e2πi95|=0.

    Example 1.3. Let q=132, χ be a primitive even character modulo 169 defined as follows:

    χ(n)={e2πiind2n13,if (n,169)=1;0,if (n,169)>1.

    Taking m=1,2, then we have

    |169a=1χ(ma+¯a)|=|169a=1χ(a+¯a)|=|4χ(1)+26χ(2)+4χ(4)+4χ(9)+4χ(12)+4χ(14)+4χ(17)+4χ(22)+4χ(25)+4χ(27)+4χ(30)+4χ(35)+4χ(38)+4χ(40)+4χ(43)+4χ(48)+4χ(51)+4χ(53)+4χ(56)+4χ(61)+4χ(64)+4χ(66)+4χ(69)+4χ(74)+4χ(77)+4χ(79)+4χ(82)|=|8+8eπi13+34e2πi13+8e3πi13+8e4πi13+8e5πi13+8e6πi13+8e7πi13+8e8πi13+8e9πi13+8e10πi13+8e11πi13+8e12πi13|=26,
    |169a=1χ(ma+¯a)|=|169a=1χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(5)+4χ(8)+4χ(10)+4χ(11)+4χ(15)+4χ(16)+4χ(18)+4χ(21)+4χ(23)+4χ(24)+4χ(28)+4χ(29)+4χ(31)+4χ(34)+4χ(36)+4χ(37)+4χ(41)+4χ(42)+4χ(44)+4χ(47)+4χ(49)+4χ(50)+4χ(54)+4χ(55)+4χ(57)+4χ(60)+4χ(62)+4χ(63)+4χ(67)+4χ(68)+4χ(70)+4χ(73)+4χ(75)+4χ(76)+4χ(80)+4χ(81)+4χ(83)|=|12+12eπi13+12e2πi13+12e3πi13+12e4πi13+12e5πi13+12e6πi13+12e7πi13+12e8πi13+12e9πi13+12e10πi13+12e11πi13+12e12πi13|=0.

    The above examples can be easily achieved by our Theorem 1.1. From Theorem 1.1, we may immediately obtain the following two corollaries:

    Corollary 1.1. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαi (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    |qa=1χ(ma+¯a)|={2ω(q)q, if m is a quadratic residue modulo q;0, otherwise,

    where ω(q) denotes the number of all distinct prime divisors of q.

    Corollary 1.2. Let q=pα11pα22pαss be an odd number with αi1 (i=1,2,,s), χi be any primitive even character mod pαii and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the inequality

    |qa=1χ(ma+¯a)|2ω(q)q.

    Theorem 1.2. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integers k and m with k1 and (m,q)=1, we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|2k=qk2ω(q)J(q)pq(1+(mp))2k,

    where J(q) denotes the number of primitive characters modulo q, and χmodq denotes the summation over all primitive characters modulo q.

    Example 1.4. Taking q=52, m=1,2, then we have

    χmod25χ(1)=1|25a=1χ(ma+¯a)|2k=χmod25χ(1)=1|25a=1χ(a+¯a)|2k=8102k,χmod25χ(1)=1|25a=1χ(ma+¯a)|2k=χmod25χ(1)=1|25a=1χ(2a+¯a)|2k=0,

    which can be easily achieved by our Theorem 1.2.

    Taking k=2 in Theorem 1.2, we may immediately obtain the followings:

    Corollary 1.3. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then for any integer m with (m,q)=1, we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|4=q22ω(q)J(q)pq(1+(mp))4.

    Corollary 1.4. Let q=pα11pα22pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,,s) and χ=χ1χ2χs. Then we have the identity

    χmodqχ(1)=1|qa=1χ(ma+¯a)|4={8ω(q)q2J(q), if m is a quadratic residue modulo q;0, otherwise.

    Theorem 1.3. Let p be an odd prime, χ be any non-principal character mod p. Then for any integer m with (m,p)=1, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p36p2+44(p23p+2)(mp)+(p1)E,if p3mod4;2p36p2+44(p2+p2)(mp)+(p1)E,if p1mod4,

    where

    E=p1a=1p1b=1((a2b1)(b1)bp)p1d=1((¯a2d1)(d1)dp).

    Remark 1.2. From [8], we know that when f(x) is a polynomial of odd degree n3, Weil's estimate ([15,16])

    |p1x=0(f(x)p)|(n1)p,

    implies that E<4p28p. Noting that qa=1χ(ma+¯a) can be regarded as a dual form of Kloosterman sums, which defined as qa=1e2πima+ˉaq, we can obtain some distributive properties of qa=1χ(ma+¯a) from Theorem 1.2 and 1.3.

    From Theorem 1.3, we also have the following corollaries:

    Corollary 1.5. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic residue m mod p, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p310p2+12p4+(p1)E,if p3mod4;2p310p24p+12+(p1)E,if p1mod4.

    Corollary 1.6. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic non-residue m mod p, we have the identity

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4={2p32p212p+4+(p1)E,if p3mod4;2p32p2+4p4+(p1)E,if p1mod4.

    To prove our Theorems, we need some Lemmas as the following:

    Lemma 2.1. Let q, q1, q2 be integers with q=q1q2 and (q1,q2)=1, χi be any non-principal character mod qi (i=1,2). Then for any integer m with (m,q)=1 and χ=χ1χ2, we have the identity

    qa=1χ(ma+¯a)=q1b=1χ1(mb+¯b)q2c=1χ2(mc+¯c).

    Proof. From the properties of Dirichlet characters, we have

    qa=1χ(ma+¯a)=q1q2a=1χ1χ2(ma+¯a)=q1b=1q2c=1χ1χ2(m(bq2+cq1)+¯bq2+cq1)=q1b=1q2c=1χ1(m(bq2+cq1)+¯bq2+cq1)χ2(m(bq2+cq1)+¯bq2+cq1)=q1b=1χ1(mbq2+¯bq2)q2c=1χ2(mcq1+¯cq1)=q1b=1χ1(mb+¯b)q2c=1χ2(mc+¯c).

    This completes the proof of Lemma 2.1.

    Lemma 2.2. Let p be an odd prime, α and m be integers with α1 and (m,p)=1. Then for any primitive even character χ mod pα, we have the identity

    pαa=1χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)),

    where χ02=(p), τ(χ)=pαa=1χ(a)e(apα), χ1 is a primitive character mod pα and χ=χ21.

    Proof. For any primitive even character χ mod pα, there exists one primitive character χ1 mod pα such that χ=χ21. From the properties of Gauss sum, we can obtain

    pαa=1χ(ma+¯a)=1τ(¯χ)pαa=1pαb=1¯χ(b)e(b(ma+¯a)pα)=1τ(¯χ)pαa=1¯χ(a)pαb=1¯χ(b)e(b(ma2+1)pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ(a)e(bma2pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a2)e(bma2pα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1(1+χ02(a))¯χ1(a)e(bmapα)=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a)e(bmapα)+1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1χ02(a)¯χ1(a)e(bmapα):=B1+B2.

    Now we compute B1 and B2 respectively.

    B1=1τ(¯χ)pαb=1¯χ(b)e(bpα)pαa=1¯χ1(a)e(bmapα)=1τ(¯χ)pαb=1¯χ(b)χ1(bm)e(bpα)pαa=1¯χ1(bma)e(bmapα)=χ1(m)τ(¯χ1)τ(¯χ)pαb=1¯χ(b)χ1(b)e(bpα)=χ1(m)τ(¯χ1)τ(¯χ)pαb=1¯χ1(b)e(bpα)=χ1(m)τ2(¯χ1)τ(¯χ).

    Similarly, we have

    B2=χ1(m)χ02(m)τ2(χ02¯χ1)τ(¯χ).

    Therefore, we can obtain

    pαa=1χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)).

    Lemma 2.3. Let p be an odd prime. Then for any integer n, we have the identity

    pa=1(a2+np)={1,if (n,p)=1;p1,if (n,p)=p.

    Proof. See Theorem 8.2 of [17].

    Lemma 2.4. Let p be an odd prime. Then we have the identity

    p2a=2p1b=1((a2b1)(b1)bp)=2×(1)p12+2.

    Proof. From the properties of character sum, we have

    p2a=2p1b=1((a2b1)(b1)bp)=p1b=1(b1p)p2a=2((a2b1)bp)=p1b=1(b1p)p2a=2(b2(a2¯b)p)=p1b=1(b1p)p2a=2(a2¯bp)=p1b=1(b1p)(pa=1(a2¯bp)(1¯bp)((p1)2¯bp)(p2¯bp))=p1b=1(b1p)(12(1¯bp)(¯bp))=p1b=1(b1p)2p1b=1(b1p)(1¯bp)p1b=1(b1p)(¯bp)=p2b=0(bp)2p1b=1(b1p)((1¯b)b2p)p1b=1(¯b1p)=2p2b=0(bp)2p1b=1((b1)2bp)=2(p1b=0(bp)(p1p))2×(1)=2×(1)p12+2.

    This completes the proof of Lemma 2.4.

    Now we come to prove our Theorems.

    Firstly, we prove Theorem 1.1. With the help of Lemma 2 in [6], when α2, we have

    τ2(χ02¯χ1)τ2(¯χ1)=(1p)2=1,

    which implies from Lemma 2.2, we can obtain

    |pαa=1χ(ma+¯a)|=|χ1(m)τ2(¯χ1)τ(¯χ)(1+(mp))|=pα(1+(mp)).

    Then, applying Lemma 2.1, we can obtain

    |qa=1χ(ma+¯a)|=|pα11a1=1χ1(ma1+¯a1)||pαssas=1χs(mas+¯as)|=qpq(1+(mp)).

    This completes the proof of Theorem 1.1.

    Then, from Lemma 2.1 and Lemma 2.2, we can prove Theorem 1.2 as following:

    χmodqχ(1)=1|qa=1χ(ma+¯a)|2k=χ1modpα11χ1(1)=1|pα11a1=1χ1(ma1+¯a1)|2kχsmodpαssχs(1)=1|pαssas=1χs(mas+¯as)|2k=si=1[12J(pαii)pkαii|1+(mpi)|2k]=qk2ω(q)J(q)pq(1+(mp))2k.

    Finally, we prove Theorem 1.3. For any integer m with (m,p)=1, we have

    p1a=1χ(ma+¯a)=p1u=1χ(u)p1a=1am+¯aumodp1=p1u=1χ(u)p1a=1a2m2amu+m0modp1=p1u=1χ(u)p1a=0(2amu)2u24mmodp1=p1u=1χ(u)p1a=0a2u24mmodp1=p1u=1χ(u)(1+(u24mp))=p1u=1χ(u)(u24mp)=χ(2)p1u=1χ(u)(u2mp).

    So from the orthogonality of Dirichlet characters and the properties of reduced residue system modulo p, we have

    χmodpχ(1)=1|p1a=1χ(ma+¯a)|4=χmodpχ(1)=1|χ(2)p1u=1χ(u)(u2mp)|2|χ(2)p1u=1χ(u)(u2mp)|2=χmodpχ(1)=1p1a=1p1b=1p1c=1p1d=1χ(ac¯bd)(a2mp)(b2mp)(c2mp)(d2mp)=χmodpχ(1)=1p1a=1p1b=1p1c=1p1d=1χ(ac)(a2b2mp)(b2mp)(c2d2mp)(d2mp)=p1a=1p1b=1p1c=1p1d=1(a2b2mp)(b2mp)(c2d2mp)(d2mp)χmodpχ(1)=1χ(ac)=p12p1a=1p1b=1p1c=1p1d=1a¯cmodp(a2b2mp)(b2mp)(c2d2mp)(d2mp)+p12p1a=1p1b=1p1c=1p1d=1a¯cmodp(a2b2mp)(b2mp)(c2d2mp)(d2mp)=(p1)p1a=1p1b=1p1d=1(a2b2mp)(b2mp)(¯a2d2mp)(d2mp)=(p1)p1a=1p1b=1(1+(bp))(a2bmp)(bmp)p1d=1(1+(dp))(¯a2dmp)(dmp)=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(¯a2d1p)(d1p)+(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(mp)((¯a2d1)(d1)dp)+(p1)p1a=1p1b=1(mp)((a2b1)(b1)bp)p1d=1(¯a2d1p)(d1p)+(p1)p1a=1p1b=1(mp)((a2b1)(b1)bp)p1d=1(mp)((¯a2d1)(d1)dp):=A1+A2+A3+A4.

    Now we compute A1, A2, A3, A4 respectively. Noticing that χ(1)=1, from the properties of the complete residue system modulo p, we have

    p1b=1(a2b1p)(b1p)=p1b=0(a2b1p)(b1p)1=p1b=0(4a2p)((a2b1)(b1)p)1=p1b=0((2a2ba21)2(a21)2p)1=p1b=0(b2(a21)2p)1.

    Applying Lemma 2.3, we can get

    A1=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(¯a2d1p)(d1p)=(p1)p1a=1(p1b=0(b2(a21)2p)1)(p1d=0(d2(¯a21)2p)1)=(p1)[2p1b=0(b2p)p1d=0(d2p)+p2a=2p1b=0(b2(a21)2p)p1d=0(d2(¯a21)2p)]2(p1)p1a=1p1b=0(b2(a21)2p)+(p1)2=2p36p2+4.

    Then, we compute A2. With the aid of Lemma 2.4, we have

    A2=(p1)p1a=1p1b=1(a2b1p)(b1p)p1d=1(mp)((¯a2d1)(d1)dp)=(p1)p1a=1[p1b=0(b2(a21)2p)1]p1d=1(mp)((¯a2d1)(d1)dp)=(p1)2p1d=1(mp)((d1)2dp)(p1)p2a=2p1d=1(mp)((¯a2d1)(d1)dp)+(p1)2p1d=1(mp)(((p1)2d1)(d1)dp)(p1)p1a=1p1d=1(mp)((¯a2d1)(d1)dp)=(p23p+2)[p1d=1(mp)((d1)2dp)+p1d=1(mp)(((p1)2d1)(d1)dp)]2(p1)p2a=2p1d=1(mp)((a2d1)(d1)dp)=2(p23p+2)(mp)p1d=1((d1)2dp)4(p1)[(1)p12+1](mp)=2(p23p+2)(mp)p1b=2(bp)4(p1)[(1)p12+1](mp)=2(p23p+2)(mp)4(p1)[(1)p12+1](mp).

    Similarly, we have

    A3=2(p23p+2)(mp)4(p1)[(1)p12+1](mp).

    Note that

    A4=(p1)p1a=1p1b=1((a2b1)(b1)bp)p1d=1((¯a2d1)(d1)dp),

    which completes the proof of Theorem 1.3.

    Three Theorems are stated in the main results. The Theorem 1.1 obtains an exact computational formula for qa=1χ(ma+¯a), which broadens the scope of q by removing the condition p3mod4 in the previous article, where p is the prime divisor of q. The Theorem 1.2 derives a new identity for the mean value of it by adding some different ingredients. What's more, the Theorem 1.3 bridges the fourth power of Dirichlet characters with Legendre symbols of certain polynomials, which may be useful in the related future research. However, due to some technical reasons, we can only deal with the odd square-full number q case.

    The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work is supported by the National Natural Science Foundation of China (No. 11871317), and the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2021JC-29).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. L. Saaty, The analytic hierarchy process, New York: McGraw-Hill, 1980. https://doi.org/10.21236/ADA214804
    [2] T. Tanino, Fuzzy preference orderings in group decision making, Fuzzy Set. Syst., 12 (1984), 117–131. https://doi.org/10.1016/0165-0114(84)90032-0 doi: 10.1016/0165-0114(84)90032-0
    [3] C. C. Li, Y. C. Dong, Y. J. Xu, F. Chiclana, E. Herrera-Viedma, F. Herrera, An overview on managing additive consistency of reciprocal preference relations for consistency-driven decision making and fusion: Taxonomy and future directions, Inform. Fusion, 52 (2019), 143–156. https://doi.org/10.1016/j.inffus.2018.12.004 doi: 10.1016/j.inffus.2018.12.004
    [4] Y. J. Xu, Q. Q. Wang, F. Chiclana, E. Herrera-Viedma, A local adjustment method to improve multiplicative consistency of fuzzy reciprocal preference relations, IEEE Trans. Syst. Man Cy.-S., 53 (2023), 5702–5714. https://doi.org/10.1109/TSMC.2023.3275167 doi: 10.1109/TSMC.2023.3275167
    [5] M. Q. Li, Z. Y. Wang, Y. J. Xu, W. J. Dai, Two-stage group decision making methodology with hesitant fuzzy preference relations under social network: Multiplicative consistency determination and personalized feedback, Inform. Sciences, 681 (2024), 121155. https://doi.org/10.1016/j.ins.2024.121155 doi: 10.1016/j.ins.2024.121155
    [6] X. Liu, Y. Y. Zhang, Y. J. Xu, M. Q. Li, E. Herrera-Viedma, A consensus model for group decision-making with personalized individual self-confidence and trust semantics: A perspective on dynamic social network interactions, Inform. Sciences, 627 (2023), 147–168. https://doi.org/10.1016/j.ins.2023.01.087 doi: 10.1016/j.ins.2023.01.087
    [7] F. Herrera, A sequential selection process in group decision making with a linguistic assessment approach, Inform. Sciences, 85 (1995), 223–239. https://doi.org/10.1016/0020-0255(95)00025-K doi: 10.1016/0020-0255(95)00025-K
    [8] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [9] M. W. Jang, J. H. Park, M. J. Son, Probabilistic picture hesitant fuzzy sets and their application to multi-criteria decision-making, AIMS Math., 8 (2023), 8522–8559. https://doi.org/10.3934/math.2023429 doi: 10.3934/math.2023429
    [10] A. Nazra, Jenison, Y. Asdi, Zulvera, Generalized hesitant intuitionistic fuzzy N-soft sets-first result, AIMS Math., 7 (2022), 12650–12670. https://doi.org/10.3934/math.2022700 doi: 10.3934/math.2022700
    [11] W. Y. Zeng, R. Ma, D. Q. Li, Q. Yin, Z. S. Xu, A. M. Khalil, Novel operations of weighted hesitant fuzzy sets and their group decision making application, AIMS Math., 7 (2022), 14117–14138. https://doi.org/10.3934/math.2022778 doi: 10.3934/math.2022778
    [12] A. Dey, T. Senapati, M. Pal, G. Y. Chen, A novel approach to hesitant multi-fuzzy soft set based decision-making, AIMS Math., 5 (2020), 1985–2008. https://doi.org/10.3934/math.2020132 doi: 10.3934/math.2020132
    [13] R. M. Rodríguez, L. Martı́nez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE T. Fuzzy Syst., 20 (2012), 109–119. https://doi.org/10.1109/TFUZZ.2011.2170076 doi: 10.1109/TFUZZ.2011.2170076
    [14] M. M. Xia, Z. S. Xu, Managing hesitant information in GDM problems under fuzzy and multiplicative preference relations, Int. J. Uncertain. Fuzz., 21 (2013), 865–897. https://doi.org/10.1142/S0218488513500402 doi: 10.1142/S0218488513500402
    [15] Y. J. Xu, W. J. Dai, J. Huang, M. Q. Li, E. Herrera-Viedma, Some models to manage additive consistency and derive priority weights from hesitant fuzzy preference relations, Inform. Sciences, 586 (2022), 450–467. https://doi.org/10.1016/j.ins.2021.12.002 doi: 10.1016/j.ins.2021.12.002
    [16] Y. J. Xu, M. Q. Li, F. Chiclana, E. Herrera-Viedma, Multiplicative consistency ascertaining, inconsistency repairing, and weights derivation of hesitant multiplicative preference relations, IEEE T. Syst. Man Cy-S., 52 (2022), 6806–6821. https://doi.org/10.1109/TSMC.2021.3099862 doi: 10.1109/TSMC.2021.3099862
    [17] B. Zhu, Z. S. Xu, Consistency measures for hesitant fuzzy linguistic preference relation, IEEE T. Fuzzy Syst., 22 (2014), 35–45. https://doi.org/10.1109/TFUZZ.2013.2245136 doi: 10.1109/TFUZZ.2013.2245136
    [18] Z. M. Zhang, C. Wu, On the use of multiplicative consistency in hesitant fuzzy linguistic preference relations, Knowl.-Based Syst., 72 (2014), 13–27. http://dx.doi.org/10.1016/j.knosys.2014.08.026 doi: 10.1016/j.knosys.2014.08.026
    [19] Z. B. Wu, J. P. Xu, Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations, Omega, 65 (2016), 28–40. http://dx.doi.org/10.1016/j.omega.2015.12.005 doi: 10.1016/j.omega.2015.12.005
    [20] X. Chen, L. J. Peng, Z. B. Wu, W. Pedrycz, Controlling the worst consistency index for hesitant fuzzy linguistic preference relations in consensus optimization models, Comput. Ind. Eng., 143 (2020), 106423. https://doi.org/10.1016/j.cie.2020.106423 doi: 10.1016/j.cie.2020.106423
    [21] C. L. Zheng, Y. Y. Zhou, L. G. Zhou, H. Y. Chen, Clustering and compatibility-based approach for large-scale group decision making with hesitant fuzzy linguistic preference relations: An application in e-waste recycling, Expert Syst. with Appl., 197 (2022), 116615. https://doi.org/10.1016/j.eswa.2022.116615 doi: 10.1016/j.eswa.2022.116615
    [22] P. Wu, L. G. Zhou, H. Y. Chen, Z. F. Tao, Additive consistency of hesitant fuzzy linguistic preference relation with a new expansion principle for hesitant fuzzy linguistic term sets, IEEE T. Fuzzy Syst., 27 (2019), 716–730. https://doi.org/10.1109/TFUZZ.2018.2868492 doi: 10.1109/TFUZZ.2018.2868492
    [23] Y. J. Xu, F. J. Cabrerizo, E. Herrera-Viedma, A consensus model for hesitant fuzzy preference relations and itsapplication in water allocation management, Appl. Soft Comput., 58 (2017), 265–284. https://doi.org/10.1016/j.asoc.2017.04.068 doi: 10.1016/j.asoc.2017.04.068
    [24] C. C. Li, R. M. Rodríguez, F. Herrera, L. Martínez, Y. C. Dong, Consistency of hesitant fuzzy linguistic preference relations: An interval consistency index, Inform. Sciences, 432 (2018), 347–361. https://doi.org/10.1016/j.ins.2017.12.018 doi: 10.1016/j.ins.2017.12.018
    [25] C. C. Li, R. M. Rodríguez, L. Martínez, Y. C. Dong, F. Herrera, Personalized individual semantics based on consistency in hesitant linguistic group decision making with comparative linguistic expressions, Knowl.-Based Syst., 145 (2018), 156–165. https://doi.org/10.1016/j.knosys.2018.01.011 doi: 10.1016/j.knosys.2018.01.011
    [26] Y. J. Xu, X. W. Wen, H. Sun, H. M. Wang, Consistency and consensus models with local adjustment strategy for hesitant fuzzy linguistic preference relations, Int. J. Fuzzy Syst., 20 (2018), 2216–2233. https://doi.org/10.1007/s40815-017-0438-3 doi: 10.1007/s40815-017-0438-3
    [27] H. B. Liu, L. Jiang, Optimizing consistency and consensus improvement process for hesitant fuzzy linguistic preference relations and the application in group decision making, Inform. Fusion, 56 (2020), 114–127. https://doi.org/10.1016/j.inffus.2019.10.002 doi: 10.1016/j.inffus.2019.10.002
    [28] M. Fedrizz, S. Giove, Incomplete pairwise comparison and consistency optimization, Eur. J. Oper. Res., 183 (2007), 303–313. https://doi.org/10.1016/j.ejor.2006.09.065 doi: 10.1016/j.ejor.2006.09.065
    [29] Z. S. Xu, Incomplete linguistic preference relations and their fusion, Inform. Fusion, 7 (2006), 331–337. https://doi.org/10.1016/j.inffus.2005.01.003 doi: 10.1016/j.inffus.2005.01.003
    [30] Y. J. Xu, C. Y. Li, X. W. Wen, Missing values estimation and consensus building for incomplete hesitant fuzzy preference relations with multiplicative consistency, Int. J. Comput. Int. Syst., 11 (2018), 101–119. https://doi.org/10.2991/ijcis.11.1.9 doi: 10.2991/ijcis.11.1.9
    [31] Y. L. Lu, Y. J. Xu, E. Herrera-Viedma, Consensus progress for large-scale group decision making in social networks with incomplete probabilistic hesitant fuzzy information, Appl. Soft Comput., 126 (2022), 109249. https://doi.org/10.1016/j.asoc.2022.109249 doi: 10.1016/j.asoc.2022.109249
    [32] Y. L. Lu, Y. J. Xu, J. Huang, J. Wei, Social network clustering and consensus-based distrust behaviors management for large-scale group decision-making with incomplete hesitant fuzzy preference relations, Appl. Soft Comput., 117 (2022), 108373. https://doi.org/10.1016/j.asoc.2021.108373 doi: 10.1016/j.asoc.2021.108373
    [33] J. Huang, Y. J. Xu, X. W. Wen, X. T. Zhu, E. Herrera-Viedma, Deriving priorities from the fuzzy best-worst method matrix and its applications: A perspective of incomplete reciprocal preference relation, Inform. Sciences, 634 (2023), 761–778. https://doi.org/10.1016/j.ins.2023.03.125 doi: 10.1016/j.ins.2023.03.125
    [34] P. Wu, H. Y. Li, J. M. Merigó, L. G. Zhou, Integer programming modeling on group decision making with incomplete hesitant fuzzy linguistic preference relations, IEEE Access, 7 (2019), 136867–136881. https://doi.org/10.1109/ACCESS.2019.2942412 doi: 10.1109/ACCESS.2019.2942412
    [35] H. B. Liu, Y. Ma, L. Jiang, Managing incomplete preferences and consistency improvement in hesitant fuzzy linguistic preference relations with applications in group decision making, Inform. Fusion, 51 (2019), 19–29. https://doi.org/10.1016/j.inffus.2018.10.011 doi: 10.1016/j.inffus.2018.10.011
    [36] Z. L. Li, Z. Zhang, W. Y. Yu, Consensus reaching with consistency control in group decision making with incomplete hesitant fuzzy linguistic preference relations, Comput. Ind. Eng., 170 (2022), 108311. https://doi.org/10.1016/j.cie.2022.108311 doi: 10.1016/j.cie.2022.108311
    [37] P. J. Ren, Z. N. Hao, X. X. Wang, X. J. Zeng, Z. S. Xu, Decision-making models based on incomplete hesitant fuzzy linguistic preference relation with application to site selection of hydropower stations, IEEE T. Eng. Manage., 69 (2022), 904–915. https://doi.org/10.1109/TEM.2019.2962180 doi: 10.1109/TEM.2019.2962180
    [38] Y. M. Song, G. X. Li, A mathematical programming approach to manage group decision making with incomplete hesitant fuzzy linguistic preference relations, Comput. Ind. Eng., 135 (2019), 467–475. https://doi.org/10.1016/j.cie.2019.06.036 doi: 10.1016/j.cie.2019.06.036
    [39] F. Herrera, E. Herrera-Viedma, J. L. Verdegay, Direct approach processes in group decision making using linguistic OWA operators, Fuzzy Set. Syst., 79 (1994), 175–190. https://doi.org/10.1016/0165-0114(95)00162-X doi: 10.1016/0165-0114(95)00162-X
    [40] Z. S. Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inform. Sciences, 166 (2004), 19–30. https://doi.org/10.1016/j.ins.2003.10.006 doi: 10.1016/j.ins.2003.10.006
    [41] Y. C. Dong, Xu, Y. F., H. Y. Li, On consistency measures of linguistic preference relations, Eur. J. Oper. Res., 189 (2008), 430–444. https://doi.org/10.1016/j.ejor.2007.06.013 doi: 10.1016/j.ejor.2007.06.013
    [42] H. Wang, Extended hesitant fuzzy linguistic term sets and their aggregation in group decision making, Int. J. Comput. Int. Syst., 8 (2015), 14–33. https://doi.org/10.1016/j.ejor.2007.06.013 doi: 10.1016/j.ejor.2007.06.013
    [43] H. C. Liao, Z. S. Xu, X.-J. Zeng, J. M. Merigó, Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets, Knowl.-Based Syst., 76 (2015), 127–138. http://dx.doi.org/10.1016/j.knosys.2014.12.009 doi: 10.1016/j.knosys.2014.12.009
    [44] E. Herrera-Viedma, F. Herrera, F. Chiclana, M. Luque, Some issues on consistency of fuzzy preference relations, Eur. J. Oper. Res., 154 (2004), 98–109. https://doi.org/10.1016/S0377-2217(02)00725-7 doi: 10.1016/S0377-2217(02)00725-7
    [45] Y. J. Xu, K. W. Li, H. M. Wang, Incomplete interval fuzzy preference relations and their applications, Comput. Ind. Eng., 67 (2014), 93–103. https://doi.org/10.1016/j.cie.2013.10.010 doi: 10.1016/j.cie.2013.10.010
    [46] M. Tang, H. C. Liao, Z. M. Li, Z. S. Xu, Nature disaster risk evaluation with a group decision making method based on incomplete hesitant fuzzy linguistic preference relations, Int. J. Env. Res. Pub. He, 15 (2018), 751. https://doi.org/10.3390/ijerph15040751 doi: 10.3390/ijerph15040751
    [47] Y. J. Xu, F. Ma, F. Tao, H. M. Wang, Some methods to deal with unacceptable incomplete 2-tuple fuzzy linguistic preference relations in group decision making, Knowl.-Based Syst., 56 (2014), 179–190. http://dx.doi.org/10.1016/j.knosys.2013.11.008 doi: 10.1016/j.knosys.2013.11.008
  • This article has been cited by:

    1. Donghui Wu, Ying Zhao, Hong Sang, Shuanghe Yu, Reachable set estimation for switched T-S fuzzy systems with a switching dynamic memory event-triggered mechanism, 2024, 490, 01650114, 109050, 10.1016/j.fss.2024.109050
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(504) PDF downloads(34) Cited by(0)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog