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Abstract: In this paper, we introduced a new contraction principle via altering distance and C-
class functions with rational forms which extends and generalizes the existing version provided by
Hasan Ranjbar et al. [H. Ranjbar, A. Niknam, A fixed point theorem in Hilbert C*-modules, Korean J.
Math., 30 (2022), 297-304]. Specifically, the rational forms involved in the contraction condition we
presented involve the p-th power of the displacements which can exceed the second power mentioned
in Hasan Ranjbar et al.’s paper. Moreover, we also proved a fixed point theorem for this type of
contraction in the Hilbert C*-module. Some adequate examples were provided to support our results.
As an application, we applied our result to prove the existence of a unique solution to an integral
equation and a second-order (p, g)-difference equation with integral boundary value conditions.

Keywords: fixed point; Hilbert C*-modules; C-class function
Mathematics Subject Classification: 47H10, 54H25

1. Introduction

Fixed point theory, which emerged in the 20th century, has significantly contributed to nonlinear
analysis across various disciplines. A key result of this theory is the Banach contraction
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principle (BPC), asserting the existence of a unique fixed point for self-mappings exhibiting
contraction properties in complete metric spaces. The BPC has been extended in different directions,
particularly focusing on contraction conditions and the characteristics of the underlying space,
see [1,2]. In 1965, Browder demonstrated a fixed point theorem in Hilbert spaces in [3], asserting that
every Hilbert space exhibits the fixed point property (FPP). This property is characterized by the
presence of a fixed point for every nonexpansive self-mapping defined on a nonempty, closed, convex,
bounded subset within the Hilbert space. In the same year, Browder [4] and Gohde [5] researched
fixed point theorems in convex Banach spaces, while Kirk [6] established similar results in reflexive
Banach spaces. Additionally, a study by Ma [7] delved into operator-valued metric spaces, presenting
fixed point theorems. Following this, Ma et al. [8] introduced the concept of C*-algebra-valued metric
spaces, which extend the notions of metric and operator-valued metric spaces. They demonstrated
various fixed point theorems for self-maps under contractive or expansive conditions in these spaces,
emphasizing the use of positive elements from a unital C*-algebra instead of real numbers. Ma and
Jiang (2017) [9] introduced a novel class of metric spaces known as C*-algebra-valued b-metric
spaces, extending the concepts of b-metric spaces and operator-valued metric spaces. They
established fundamental fixed point theorems for self-mappings satisfying contractive conditions in
this new space. Building upon this work, Batul and Kamran (2018) [10] defined continuity in
C*-algebra-valued metric spaces and demonstrated the continuity of C*-valued contraction mappings
based on this notion. They also relaxed the contractive conditions for C*-valued contraction mappings
proposed by Ma et al. [8], proposing a fixed point theorem for such mappings. It is worth noting that
the initial Banach spaces with the fixed point property (FPP) were the Hilbert spaces. Conversely,
Hilbert C-modules, serving as a valuable tool in operator and operator algebra theory, generalize the
concept of Hilbert spaces [3]. Recently, Ranjbar and Niknam (2020) [11] achieved fixed point results
for continuous self-mappings in Hilbert C*-modules under rational conditions.

In 2014 the concept of C-class functions (see Definition 1) was introduced by A. H. Ansari in [12]
stated in the following.
Definition 1.1. //2] A mapping G : [0, +00)?> — R is called a C-class function if it is continuous and
satisfies the following axioms:

(1) G(s,1) < s;

(2) G(s,t) = s implies that either s = 0 or ¢ = 0; for all s, ¢ € [0, +00).

Note that, for some G, we have that G(0, 0) = 0. We denote the set of C-class functions by C.
Example 1.2. /73] The following functions G : [0, +00)? — R are elements of C, for all s, t € [0, +00):

(D) G(s,p)=s5—-1;

(2) G(s,t) = ms for some m € (0, 1);

3) G(s, 1) = ﬁ for some r € (0, +0);

4) G(s,t) =1g(t +a’)/(1 + t) for some a > 1;

B G(s,p)=In(1+a%)/2forl <a<e;

(6) G(s,t) = (s + DV — [ [ > 1 for r € (0, +o0);

(7) G(s,t) = slog,,,a,a > 1. Indeed, F(s,t) = s = s=0ort=0;

(8) Gs.1) = 5 — (£2)(i5);

(9) G(s,1) = sB(s), where B : [0, +00) — (0, 1) is a continuous function;

(10) G(s, 1) = s — =

(11) G(s,t) = s — @(s) where ¢ : [0, +00) — [0, +0o0) is a continuous function such that ¢(7) = 0
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t=0;

(12) G(s,1t) = sh(s,t) where h : [0, +o0) X [0, +00) — [0, +00) is a continuous function such that
h(t,s) < 1forallt,s > 0;

(13) G(s,1) = s — (F)r;

(14) G(s,1) = VIn(1 + s"), F(s,1) = s = s = 0;

(15) G(s,t) = ¢(s) where ¢ : [0,+00) — [0, +0c0) is an upper semi-continuous function such that
¢(0) =0, and ¢(¢r) < t for t > 0;

(16) G(s,1) = ﬁ for some r € (0, +00). For more examples, see [14, 15].
Definition 1.3. [/6] A function ¢ : [0, +00) — [0, +0c0) is called an altering distance function if the
following properties are satisfied:

(i) ¢ is nondecreasing and continuous,

(i) Yy(r) = 0 if and only if r = 0.

We denote the set of altering distance functions by P.
Definition 1.4. [/2] Let @, denote the class of the functions ¢ : [0, +c0) — [0, +00) which satisfy the
following conditions:

(i) ¢ is continuous;

(i) () > 0, ¢ > 0, and ¢(0) > 0.
Definition 1.5. [/2] An ultra-altering distance function is a continuous, nondecreasing mapping ¢ :
[0, +00) — [0, +00) such that ¢(t) > 0, t > 0, and ¢(0) > 0.
Definition 1.6. [ /2] A tripled (¥, ¢, G) where ¢ € ¥, ¢ € @, and G € C is said to be monotone if for
any x,y € [0, +00)

x < y implies G(¥(x), (x)) < GW(y), ().
Example 1.7. [12] Let G(s,1) = s — t, o(x) = /x,

w(x):{\/}, if 0<x<l,

X, if x> 1,

then (¢, ¢, G) is monotone.
Example 1.8. [12] Let G(s,1) = s — t, o(x) = x2,

X2, if x> 1,

w(x):{«/}, if 0<x<l,

then (i, ¢, G) is not monotone.

Let A be a C*—algebra. A (right) inner-product A-module is a linear space E, which is a right
A-module and A(xa) = (Ax)a = x(da) for all x € E, a € A, 1 € C together with an inner product
(-,+) : EX E — A satisfying the following conditions:

(@) (x,x) > 0 and (x, x) = 0 if and only if x = 0;

(i) (x, Ay + 2) = A%, y) + (X, 2);

(ifi) (x, ya)y = (x,y) a;

(@) {x,y)" =y, x), forall x,y,z€ E,a€ A,and 1 € C.

A Hilbert A-module (Hilbert C*-module) is an inner product A-module £ which is complete under
the norm [|x]| = [|¢x, x)||'/%.
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Lemma 1.9. [/7] Let E be a Hilbert C*-module and {x,} be a sequence in E such that ||x, — x,41]| = 0
as n — +oo. If {x,} is not a Cauchy sequence, then there exist an £ > 0 and sequences of positive
integers {m(k)} and {n(k)} with m(k) > n(k) > k such that

(i) iMoo | X1 = Xncyet || = &

(@) limy 4 o ||xm(k) = Xuo|| = &

(@) limy, 4o ||Xm(k)—1 — Xno|| = &

(v) limy ;.o ||xm(k)+l — Xn+1|| = &5

(v) limy 40 ||Xm(k) = Xn(hy-1|| = &.
Example 1.10. //8] Let E be a Hilbert C*-module. Let {x,} be a sequence in E such that ||x, — x,.1|| =
0 as n — +oo. If {xy,} is not a Cauchy sequence, then there exist £ > 0 and two sequences {ny}
and {n;} of positive integers such that n, > m; > k and the following four sequences tend to £* when
) |X2nk = X2my+1 |, Xom—1 — szk”, ||X2nk—1 - szk+1||-

Motivated by the work going on in this direction, in this paper, we aim to introduce a contraction
principle via altering distance and C-class functions and prove a fixed point theorem for this type of
contraction in the Hilbert C*-module.

k — +o0 :||-x2nk = Xomy,

2. Fixed point results

Now, we will present our main theorem in the following.
Theorem 2.1. Let S be a nonempty closed subset of a Hilbert C*-module E. Let T be a self-mapping
on S such that

Y(ITx = Tyll) < G (M(x,y)), ¢ (M(x,y))), (2.1)
where
M(x.y) = a(IITx = x|P + Ty =yII” + 1Ty = xII” + ITx - yll”)
’ UITx = x| + 1Ty = yll + 1Ty = x|l + |Tx = yll)P~!

( 17 — x|I” + 1Ty = ylI” +1ly — A" )
(Tx = xll + 1Ty = yll + lly — x>~
( 1Ty — xII” + ITx — ylI”
(ITy = x| + ITx = ylhr-!

)+d||x—y||,

forall x,y € S and a,b,c,d >0,pe N,p >2withda+3b+2c+d=1andy e ¥,op € ®,,G € C.
Assume that the tripled (¢, ¢, G) is monotone. Then T has a unique fixed point.

Proof. Let xy be any arbitrary point in . We define a sequence x,,; = Tx,, for all n > 1. From (2.1),
we have

w(”xrﬁl - xn”) = W(HTXn - Txn—l”) (22)
< G(W (M(Xn, Xn-1 ))’ "% (M(Xn, Xn—1 )))
< W(M(xm xn—l))’

where
M (xp, Xu-1) (2.3)
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3 a(llxn = Txall” + l1x0-1 = T lI” + 10 = Txu il + 101 = Txll”
(”xn - Tan + ”xn—l - Txn—l” + ”xn - Txn—l” + ”xnfl - Txn”)lj_1

( 10 = TxlI7 + X1 = Tt I + [1x0-1 — x,l1° )
(1 = Txull + 101 = T X1 [l + [1x-1 = X,l[)P~!
C( X0 = Txu i II” + |X0-1 = Tx,|I”

(lx, = Txp1 |l + [1x0-1 = Tx,l)P!
(len — Xt P + =1 = Xall? + 1l = X1 + [l — xn+1||”)

) +d x4 = xll)

(120 = Xt |+ 11X0=1 = Xall + 11260 = Xull + 1X0m1 = Xpa [P
( 1%, = X 17 + 1101 = Xall” + 1201 = Xall” )
(120 = gl + 101 = Xall + 12021 = x,lDP!
( 12 = Xall” + 201 = X1 lI”
(1260 = Xull + l1X0-1 = X1 [P

< a(”xn - xn+1|| + ”-xn—l - -xn” + ”-xn—l - xn+1||)

) +d ”xn—l - xn”)

+ D (|, = Xnrtll + %01 = Xall + 1x0-1 = XalD) + € l1X0-1 = X1l
+ d X1 — Xl
< a(llx, = Xpall + 1101 = Xall + 1101 = Xall + 260 = X111
+ b (|1x, = Xptll + 101 = Xall + 121 — x4l

+ ¢ (I1xa-1 = Xl + 11w = Xnaa I + d l1X0-1 = Xl
Owing to the monotonicity assumption on ¥, we have

||xn+1 - xn” < M(-xna-xn—l)

< a(|lx, = Xperll + =1 = Xl + 1x0=1 = X0l + 15 = X1

+ b(”xn - xn+l|| + ||xn—1 - an + ”xn—l - xn”)
+ C(”xn—l - xn” + ”-xn - xn+1||) +d ”-xn—l - xn” ’
and

(I1-2a-b—-0)|lx1 = x| £ Qa+2b+c+d)|x,—1 — x|

So, we have
||-xn+1 - -xn” < ”xn—l - xn” .

(2.4)

(2.5)

Inequality (2.5) implies that {||x,.; — x,||} is a monotone decreasing sequence. Consequently, there

exists r > 0 such that
|1 = Xull @ r as n — +oo.

Letting n — +oc0 in (2.2) and (2.4), we obtain that

w(r) <GW((4a+3b+2c+dy),e(r(4a+3b+2c+d)))
=G (r),e(r).

From Definition 1.1, we get r = 0. Hence,

lim [|x,41 — x|l = 0.
n—+oo
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Next, we show that {x,} is a Cauchy sequence. If {x,} is not a Cauchy sequence, then, by Lemma 1.9,
there exists € > 0 for which we can find subsequences {x,,} and {x,u} of {x,} with n(k) > m(k) > k
such that
im -1 = Xag || = 1im [ — x|
= kl_igloo ||xm(k)—1 - -xn(k)”
= €. (2.6)

Now, consider the (2.6) and (2.1) with letting kK — +co, and we have

M (Xinikys Xniiy)
~a [ s = Toxmeo[|” +
(||xm(k) - Txm(k)” + || %0 — Tx,,<k)|| + ||xm(k) - Txn(k)” +
( s = Tt [|” +
(leny = T || +
+ ( [Finr = Tt + [ = Tt ]| )+d(
(”Xm(k) - Txn(k)” + || %) — Txm(k)”)p -

—>a( 267 )+b(8)+c( 267 )+d£

Xnk) — Txn(k)”p + ||xm(k) - Txn(k)”p +

Xn(k) — Txm(k)”p)
Xnk) — Txm(k)”)p -
Xn(ky — xm(k>||p ]

Xn(k) — xm(k)”)” -1

Xn(k) — Txn(k)”p +

Xnk) — Txn(k)” +

Xnk) — Xm(k)”)

(e)r-! (2e)r-!
:a(%)+b(8)+c(%)+da‘s (a+b+c+de.

So

V(e <GW(a+b+c+de),p((a+b+c+de))
<y(a+b+c+de)
<e. 2.7
From Definition 1.1, we get € = 0. Hence {x,} is a Cauchy sequence. Since S is a closed subset of

Hilbert C*-module E, the sequence {x,} converges to a point 7 € X.
Now we show that z is a fixed point of 7. We assume on the contrary that 7z # z. It follows

from (2.1) that
y(IITx, = zll = llz = TzllD < (T x, — Tzll)
< G (M(xy,2)), ¢ (M(x,2)))
<YM (x4, 2)),

where with taking the limit as n — +oo,

llxn = Txall” + llz = T2ll” + llxy = T2ll” + llz = Toxall”
M (x,,7) = a —
(b = Txall + llz = Tz2ll + I3, = T2l + llz = Txl)?
( llxn = Txall” + llz = T2l + llx, — 2l )

(lxw = Txall + llz = Tzl + llx, = T2l))»~!
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( llxn = T2ll” + llz = Txall”
+c

+dllz - x,
(||xn—Tz||+||z—Txn||)p-1) Iz = %l

— 4 ”xl’l_-xn+1||p+||z_TZHP+||-xn_TZ||p+”Z_-xn+1”p)

((len = Xprtll + Iz = T2l + llx, = T2l + ||z = X001 ])P!
( 12 = Xitll” + llz = T2ll” + ||z — x,lI” )
(1%, = Xt ll + llz = Tzl + llz = xl[)P!

( %2 = Tzll” + llz = X |I”
(lxy = Tzll + llz = Xpea IDP!
<2a|Tz-zl+bllz=Tzll+clTz—zll.

+b

) +d ||z = xall)

So,

Y(lz=Tzl)) £ GW(2a+b+0o)llz—=Tz), p((2a + b + ¢) |lz — Tz|]))
<Y(Ra+b+o)llz-Tzl)
< y(llz — Tzl)).

From Definition 1.1, we get ||z — Tz|| = 0. Thus z = Tz.
Now we prove that 7" has a unique fixed point. Assume that z and w are two distinct fixed points

of T. From (2.1), we have

YITw = Tzll) < GW (M(w, 2)), ¢ (M(w, 2))) < Y(M(w, 2)),

where

—TwllP +lz—=Tzll” +llw—Tz|” + llz = Twl|l”
M2 =a lw—=Twll” +lz=Tz||” + |lw—Tzl|" + |z WII)

(w=Twll + llz = Tzl + llw = Tzl + |lz = Twl|)>~!
lw—=Twll” +llz—=Tzll” + llz — wll”

b
’ ((IIW = Twll +llz = Tzl + llz — wi)P~! )

b4 =Tl )

(Iw =Tzl + llz = Twl)~!
IIW—WII”+|IZ—ZII”+|IW—ZII”+|IZ—WII”)

(Iw = wil + llz = zll + [lw = zll + [lz = wih?~!

(IIW—WII”+|IZ—ZII”+IIZ—WIIP) ( w —2lI” + llz = wil” )
(Iw = wll + llz = zll + [lz = wihP~! (w =zl + llz = wih7~!

+c
=a

+d |z — wll)
=QRa+b+c+d|z—wl,

which is a contradiction. So z = w.
Taking a = b = ¢ = 0 in Theorem 2.1, we have the following corollary.
Corollary 2.2. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T be a self-

mapping on § satisfying
Y(ITx =Tyl < G @ (lx =yl ¢ llx = yID)
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forall x,ye S,y € ¥Y,p € ®,, and G € C. Then T has a unique fixed point.

Taking G(s,t) = s, Y(t) = t in Theorem 2.1 with tiny modifications, we have the following corollary.
Corollary 2.3. Let S be a nonempty closed subset of a Hilbert C*-module E. Let T be a self-mapping
on § satisfying

Iﬁx—rm<avwx_ﬂw+my‘“w+WW—MV+Mw—ﬂV)

(ITx = x|| + [Ty =yl + [Ty — x|| + |Tx — y|)P~!
( ITx = xlI” + 1Ty = ylII” + lly = xII” )

(T x =l + 11Ty = yll + lly — xl)»~!

( Ty — xII” + ITx - yll”

C(mw—ﬂrwﬁx—ﬂw4)+ﬂu -
for all x,y € S and a,b,c,d > 0, with4a + 3b + 2c +d < 1. Then T has a unique fixed point.
Taking a = b = ¢ = 0 in Corollary 2.3, it reduces to the following corollary.
Corollary 2.4. Let S be a nonempty closed subset of a Hilbert C*-module E. Let T be a self-mapping
on S satisfying
ITx =Tyl <dllx—yll,

forall x,y € § and d > 0, with d < 1. Then T has a unique fixed point.
Here are two examples to support the validity of Corollary 2.3.
Example 2.5. Let S = C([0, 1], R) with

1 1
(f.8)= fo fgx)dx, IIfIP = fo f(x)*dx.

Define the mapping 7 : § — S by T(f(x)) = @ + 2x. Let the function ¢ : [0, +00) — [0, +c0) be
defined by ¥(¢) = t,t > 0. Obviously, ¥ € ¥. Let G(s, 1) = %s. We have

1 3
VAT = Tel) =IITf = Tell = SIS — 8l < 771/ — &l

< a(IITf—fII” +11Tg —gll” +IITg — fI” +ITf — gll”)
— \ITf=fll+1ITg - gll+1ITg = fll+ITf - glh»!
b( ITf = fI"+1Tg - gll” +1lg — f1I” )
Tf = fil+11Tg - gl + llg = fl)r~!
c( ITg - fI" +1ITf - gll’
ITg = fII+IT f - glhr!
where p e N, p > 2,and a,b,c > 0, 13—1 <d < 1with4a+2b+2c+d < 1. So all the assumptions of
Corollary 2.3 are satisfied. Then the mapping T has a fixed point, that is, f(x) = %x.
Example 2.6. Let G(s,1) = 7, and S = My, (R) with (A, B) = AX B*. Define the mappings T : § — §

)+d||f—g||,

by T (A) = 4 +

3 g l Consider the function ¢, ¢ : [0, +c0) — [0, +00) defined as ¥ (¢) = %t, where

and ¢ are continuous, monotone, and nondecreasing. Then for all A, B € M., (R), we have
9 1 9
Y(ITA-TBI) = 33 IA - B| < gM(A,B) =G (M(A, B),p(M(A, B))),

AIMS Mathematics Volume 9, Issue 10, 28850-28869.
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where a, b, ¢ > 0, and % <d < 1withd4a+2b+2c+d < 1. So all the assumptions of Corollary 2.3 are
48
satisfied. Then the mapping T has a fixed point, that is, 43 2

3

Taking a = b = d = 0 in Corollary 2.3, it reduces to the following corollary.
Corollary 2.7. Let S be a nonempty closed subset of a Hilbert C*-module E. Let T be a self-mapping
on S satisfying

— x|I? —_v|IP
||Tx—Ty||sc( 1Ty — x|I” + [IT'x — yll )

(ITy = xll +ITx = ylhr~!
forall x,y € § and ¢ > 0, with ¢ < % Then T has a unique fixed point.
Taking G (s,t) = s — t in Theorem 2.1, we have the following corollary.
Corollary 2.8. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T be a self-
mapping on S satisfying
Y(ITx = Tyl) < p(M(x,y)) — ¢ (M(x,y)),

where

Tx—x|°P+||Ty = ylI° +|ITy — x||P + |Tx —y||”
M(m):a(”x AP+ 1Ty = ylIP + 1Ty = P + [T y||)

(ITx = xll + 1Ty = yll + 1Ty = xll + ITx = yl)»~!
( 17 — x|I” + 1Ty = ylI” +1ly — A" )
(ITx = xll + 1Ty = yll + lly — x>~
c( 1Ty — xII” + ITx — ylI”
(ITy = x| + ITx = ylhr-!

)+d||x—y||

for all x,y € § and a,b,c,d > O,p € N,p > 2withd4a+3b+2c+d =1and ¢y € ¥Y,¢p € O, the
tripled (i, ¢, G (s, 1)) is monotone. Then T has a unique fixed point.
Taking G (s,1) = 13; in Theorem 2.1, we have the following corollary.
Corollary 2.9. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T be a self-
mapping on § satisfying
W x =Tyl < LB
+ @ (M(x,y))

where

N Tx =P+ 1Ty = ylI” + Ty — xl|I” + ITx = y|I”
M(x,y)=a

(ITx = x|| + |Ty =yl + ITy — x|| + [|Tx — y|))»~!
( ITx = xlI” + 1Ty = ylII” + lly = I )
(ITx =Xl + Ty = yll + lly — x>~
C( Ty — xII” + ITx - ylI”
(ITy = x|l + [ITx = ylhp~!

)+d||x—y||,

forall x,y € § anda,b,c,d >0,p e N,p >2withda+3b+2c+d=1and ¢y € ¥,¢ € ®,, and the
tripled (i, ¢, G (s, 1)) is monotone. Then T has a unique fixed point.

Taking G(s,1) = slog,,,g,g > 1 in Theorem 2.1, we have the following corollary.
Corollary 2.10. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T be a
self-mapping on S satisfying

YITx = Tyll) < p(M(x, ) X108, paixyy) 4-
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where

ITx=x|I” + ITy = ylI” + |ITy — x||” + ||ITx - yll")
(ITx = 2l + [Ty = yll + [Ty — xl| + I Tx — yl»-"!
( NTx = x|’ +ITy = ylI” + lly — xII” )
(ITx = x|l + ITy = yll + lly = x{p7!
( Ty — xl|” + ITx - yl|”
(ITy = x|l + [ITx = yl)»-!

M(x,y) =a(

)+d||x—y||,

for all x,y € S and a,b,c,d > 0,p € N,p > 2withd4a+3b+2c+d =1and ¢y € ¥,¢ € O, the

tripled (¢, ¢, G(s, 1)) is monotone. Then T has a unique fixed point.
In the next theorem, we will present a common fixed point result a Hilbert C*-module space E under

a similar contraction condition as the one in Theorem 2.1.
Theorem 2.11. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T and T, be

self-mappings on S satisfying

YTy x = Toyll) < G (M(x,y)), ¢ (M(x,y))), (2.8)
where
(T = XP + T2y = yII” + 1 Toy = xII” + 1T x = ylI”
M(xy)=a :
UT1x = x|l + T2y = yll + T2y — xl| + | T1x — yl)P~

(1T x = xll + T2y = yll + [ly — x>~
C( T2y = xlI” + 1Ty x = yII”
(I T2y = xll + 1Ty x = ylhr!

N ( I71x — xl” + T2y — ylI” + lly — xII” )

)+d||x—y||,

forall x,ye S anda,b,c,d >0,pe N,p >2with4a+3b+2c+d=1andy e ¥,p € ®,,G € C, and
the tripled (¥, ¢, G (s, t)) is monotone. Then 7 and 7, have a unique common fixed point.
Proof. Let x( be any arbitrary point in S. We define a sequence x, in S by x,41 = T1X2, and xz,,47 =

T>x5,41 foralln > 1.
From the contractive condition, we have

Yllx2ne1 = xX2alD) = YT x20 — T2x24-11))
< G (M(x29, X2n-1)), ¢ (M (X2, X24-1)))
< Y(M(x20, X20-1))s (2.9)

where

M (x2,, X0p—1) =
(||X2n — T2, + llx20-1 = Taxon1 P + l1x2n — TaXxon1ll? + X201 — T1X2n||p)
(1x20 = T1 200l + X201 = ToXou1ll + %20 — ToXonoall + X201 — Tix2,]1)P~!

( X2 = T1 X217 + 1X20-1 = TaXon-1 |1 + llx20-1 — X217 )
(1x20 = Ty x20ll + IX20-1 = Toxon—1 |l + l1x20-1 — X24I1)P!
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+ c( 12 = Tox2u-1 P + llx20-1 — T1 241"
(1x2n = Toxon-1ll + lIX2n-1 — T1x2,]1)P~!

) +d|Ix2n-1 = x2all)

_ a(”xzn — Xonetll” + l1x20-1 = X217 + |22 = X217 + |21 — X2n+1||p)
(120 = Xamell + 1x20-1 = Xoall + 1x20 = Xoll + X201 = X2ps1 )P
4 b( 120 = X0n1 I + l1X20-1 = X2al1” + X201 — X217 )
(12 = Xonetll + [1x20-1 = X2all + 1x20-1 = X2,]1)P7!

( 162 = X2ll” + X201 = X241 1I”

+ d||x25-1 — X2nll)
(2 = x20 + llx2-1 — X2n+1||)”_1) " "

< a(|lx2n = Xans1ll + X201 = X2ull + lIX20-1 — X20411)

+ b (|Ix2n = X2p4 1l + X201 = X2all + X201 = X2,

+ ¢ Ixon-1 = Xons1ll + dl1X20-1 — X24ll

< a(|lx2n = Xans1ll + 11x20-1 = X2all + X201 = X2all + |IX20 — X20411)
+ b (|lx2n = X2p4 1l + X201 = X2all + X201 = X241

+ ¢ (1x2p-1 = X2nll + [1x20 = X2p411) + d [1x20-1 = X2l -
Therefore from the monotone property of i, we have

122041 — Xonll < M (X2, X20-1)
< a(|lx2n = Xons1ll + X201 = X2nll + lIX20-1 = X2ull + X2 = X20411])
+ b (|Ix20 = Xopetll + X201 = X2ull + lIX20-1 = X201)

+ ¢ (IIx2n—1 = X2ull + X201 = X2p41l]) + d || X201 = X24ll ,

and
(1 =2a-b-c)llxps1 — xo0ll £ 2a+2b+c+d)||xz,-1 — X2l -

So, we have
1241 = X2ull < 1201 = X2l . (2.10)

The inequality (2.10) implies that {||x,,+1 — x2,/|} 1S @ monotone decreasing sequence. Consequently,
there exists > 0 such that
IX2n41 = X2ull = r as n — +oo. (2.11)

Letting n — +oc0 in (2.8) and using (2.11), we obtain that

() <GW(4a+3b+2c+dy),p(r(da+3b+2c+d)))
=GW(r),e ).

From Definition 1.1, we get r = 0. Hence,

lim ||-x2n+l - x2n|| =0,
n—+oo

and
lim [|x,41 = x,|[ = 0.
n—+oo
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Now, we prove that {x,} is a Cauchy sequence. It is sufficient to show that {x,,} is a Cauchy sequence.
Suppose, to the contrary, that {x;,} is not a Cauchy sequence. Then, using Lemma 1.10, we get that

there exist £ > 0 and two sequences {m;} and {n;} of positive integers such that n;, > m; > k and the
following four sequences tend to € when k — +co :

||X2nk = Xom]| » ||X2nk = Xomy+1

b

Xom—1 — szkH ) |x2nk—1 - x2mk+l||- (2.12)

Now, consider (2.12) and (2.8) with £k — +oco0, and we have

M (szk, ink)
/4

( ||x2mk - Tmek” + ||x2nk - Txan
(||X2mk - Tmek” + ||x2nk - Tx2nk

14
[ [P, = Tovam || +
(||x2mk - Tmek” + ||x2nk - Txan
P

||x2mk - sznk
] + d(||x2mk — Xy )
(||x2mk — Txon || + | Xn(k) — szmk”)”

267 gl 2¢eP
s ((25)1’-1) " b(sp—l) " C((28)p—1) +de=(a+b+c+de.

p
+ ||x2mk — Txan

17+|

=+

Xn(ky — Tmek”p )
Xn(ky — Tszk”)p -
d + ||x2mk — Xon P )
+ ||x2mk — Xony )p—l

Xy = T Xom, ||p

+ ||X2mk — TXan

Xop — Txan

+

So

V(e <G(a+b+c+de),p((a+b+c+de))
<y((a+b+c+de)

<e (2.13)

From Definition 1.1, we get € = 0. Hence {x,} is a Cauchy sequence. Since S is a closed subset of
Hilbert C*-module E, the sequence {x,} converges to a point z € X.

Now we show that z is common fixed point of 7'; and 7,. We assume on the contrary that 7'z # z.
From (2.8),
YIT2x2041 — 2l = llz = T1zlll) < (|| T2x2041 — T1zlD)
< G(‘ﬁ (M(Z’ x2n+l))a @ (M(Za x2n+l)))
S Y(M(2, X2441)),

whereby taking the limit as n — +o0, we have

M (z, x2441)

_ (||Z — T2l + llxans1 = Toxopell” + 11z = Taxonll” + |1X2041 = T1Z||p)

iz = Taall + baner = Taxanell + llz = Taxanall + 21 = Tzl
( lz = Thall” + llx2ne1 = Toxonatll” + llz = x201ll” )

(lz = Thzll + 1241 — Toxoperll + llz = x204111)P!
( lz = Toxonetll” + Ix2041 — Ti2ll?
(llz = Taxonstll + |x2041 — T2]])P!

) + d |z = x20411)
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_ (||Z = T12ll” + X241 — X20i2ll” + |z = Xops2ll” + [lx2041 — T1Z||p)

(lz = Thzll + l1x2n+1 — Xons2ll + |1z = Xonsall + X201 — Ti2l[)P!
N b( llz = Tzl + llxone1 = Xons2ll? + |z = X201 1IP )

(lz = Thzll + lIx2ne1 — Xopa2ll + |z = X241 11)77!

Iz = Xons2ll? + X201 — T12lIP
pargl I d|lz = x2n+1ll)

(lz = x2ns2ll + X201 = T12l])

<2allz=Tzl+bllz— Tzl +cllz— Tzl

So,

Yllz = Thzl) < FQ(2a + b+ o) llz = Thzl), ((2a + b + o) l|lz = Tzll)
<SY(Qa+b+o)llz— Tzl < gz = Thzl).

From Definition 1.1, we get ||z — T1z|| = 0. Thus z = T,z. Similarly, we can show z = T»z.
Now we prove that 7'; and T, have a unique common fixed points. Assume z and w are two distinct

common fixed points of 7'} and 75. From (2.8),

YT w = Tozl) < Gy (M(w, 2)), ¢ (M(w, 2)))
< Yy(M(w, 2)),

where
M(w.2) = a(llw =T wlIP + llz = Tozll? + llw = TozllP + ||z - T1WI|”)
’ (lw = Twll + llz = Tozll + lIw = Tozll + llz = Tywll)»~!
N b( lw—=Twll” + Iz = Tazll” + [lz — wll” )
(Ilw = Tl + llz = Tozll + llz — wl))P~!
lw = Toz|l” + llz = T wll”
+c( )+ diie - wi)
(w = Thzl| + llz = T\wll)?
. ( w = wll” +llz = zlI” + [lw = zI” +llz — WII")
(w = wll + llz = zll + llw = zll + llz = wl[)P~!
N b( w—=wll” +llz = zll” + [lz = wll )
(Iw = wll + llz = zll + [lz = wl))P~!
w =zl + |z = wll
( | T dliz=wlD)
(w =zl + llz = wl)
<QRa+b+2c+d)|z—-w|.
So,

Y(llz = wll) = (T 1w — T2z|])
<G(Ra+b+2c+d)|z—wlD,¥((2a+b+2c+d)|z—wl)))

<Y((2a+b+2c+d) = wl) < y(llz = wiD.

From Definition 1, we get ||z — w|| = 0. So z = w, which shows that T} and T, have a unique common

fixed point.
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Taking a = b = ¢ = 0 in Theorem 2.11, we have the following corollary.
Corollary 2.12. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let 7, and T, be
self-mappings on S satisfying

Y(IT1x = Toyl) < G W llx =yl e (lx = yID) (2.14)

forall x,y € S and ¢y € ¥, ¢ € ®,. Then T and T, have a unique common fixed point.

Taking G (s,t) = s — t in Theorem 2.11, we have the following corollary.
Corollary 2.13. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T, and T, be
two self-mappings on § satisfying

YT x = ToylD) < Y(M(x, ) — @ (M(x,y)),

where

A NTyx = X + T2y = yII” + T2y — 2P + 1 T1x = ylI”
M(x,y)=a

(T x = xll + 1T2y = yll + T2y = x| + [IT1x = ylhP~!
( I71x — xll” + T2y — ylI” + lly — xII” )
(IT1x = x| + 1Ty = yll + lly — xID?~!
( 172y — A" + 1ITx = ylIP
T2y = xll + 1T x = yl))»~!

)+d||x—y||

forall x,y € § and a,b,c,d >0,p e N,p >2withd4a+3b+2c+d=1and ¢y € ¥,p € ®,, and the
tripled (i, ¢, G (s, 1)) is monotone. Then T and T, have a unique common fixed point.

Taking G (s, 1) = 7 in Theorem 2.11, we have the following corollary.
Corollary 2.14. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T, and T, be
two self-mappings on § satisfying

Y(M(x,y))

Y(IT1x = Tyl < T+oM(xy)

where

_ (I Tx = xl” + 1Ty = yII” + 1Ty = xll” + 1IThx = ylI”
M(x,)’) =a

(T x = xll + 1T2y = yll + T2y — x| + [IT1x = ylhP~!
(||T1x—XI|”+||T2y—y||”+||y—XI|")
(IT1x = x| + T2y = yll + [ly — xID?~!
( IToy = xII” + 1IT1x = yII”
(I T2y = xll + IT1x = ylD»~!

)+d||x—y||,

forall x,y € § and a,b,c,d >0,p e N,p >2withda+3b+2c+d=1and ¢y € ¥,¢ € ®,, and the
tripled (¢, ¢, G (s,1) = l%rt) is monotone. Then T and T, have a unique common fixed point.

Taking G(s, 1) = slog,,,q,q > 1 in Theorem 2.11, we have the following corollary.
Corollary 2.15. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let 7, and T, be

two self-mappings on § satisfying
W(IT1x = Toyll) < Y(M(x, 1)) X 1081 sarceny P
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where

_ (N Tix =Xl + 1Ty = ylI” + 1Ty = Al” + 1T x =yl
M(xay) =da

(T = xll + T2y = yll + T2y = xll + [IT1x = yl)P~!
( I71x = X" + T2y — ylI” + lly — xII” )
(IT1x = xl| + [IT2y = yll + lly = xIDP~!
( IToy — xII” + 1ITyx — yII”
T2y = xll + 1Ty x = yl)»~!

)+d||x—y||,

for all x,y € S and a,b,c,d > 0,p € N,p >2withd4a+3b+2c+d=1andy € ¥,p € ®,, and
the tripled (¢, ¢, G(s, 1) = slog,, 99> 1) is monotone. Then 7 and T, have a unique common fixed
point.

Taking G(s,t) = s, Y(t) = t in Theorem 2.11 with tiny modifications, we have the following
corollary.
Corollary 2.16. Let S be a nonempty closed subset of a Hilbert C*-module space E. Let T, and T, be
two self-mappings on § satisfying

ITx — Toyll Sa(
: 2 (IT1x = x| + T2y =yl + T2y — x| + ITx = yll)P~!

( ||T1x—XI|”+IIsz—yII”+||y—XI|”)
(IT1x = x| + [IT2y = yll + [ly = xID?~!
( T2y — xlI” + 1Ty x — yII”
T2y = xll + 1IT1x = ylhP~!

||T1x—XI|”+||sz—yllp+IIsz—XII"+|IT1x—yII")

)+dllx—yll

forall x,y € S anda,b,c,d >0,p € N,p >2 with4a+3b+2c+d < 1. Then T, and T, have a unique
common fixed point.

3. Application

In this section, we will prove some existence results of the integral/differential equation solution via
our main result. First, let us consider the following integral equation:

1
x(@) =g +f K(s,x(s))ds, t€[0,1] 3.1
0

and consider § = C [0, 1] with norm ||.|, .

Theorem 3.1. Consider the integral Eq (3.1) and suppose:

(i) K:[0,1] xS — S is continuous and g € S,

(i) |K (s, x(5)) = K (5, y ()| < [x(s) =y (s)], for all s € [0, 1],
(iii) there exist y € ¥, ¢ € ®,, G € C such that

'J/(maXfo IK (5, x(5)) = K(s,y(s)lds) < G (|x(s) =y (), ¢ (x(s) =y (s)]),

te[0,1]

for all s € [0, 1]. Then integral Eq (3.1) has a unique solution.
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Proof. Let T : S — S be defined by
t
T (x)(1) = f K(s,x(s))ds+g(1), rel0,1].
0
From the definition of integral Eq (3.1),

Y(ITx = Tyll.o) = ¢ (g%gl{i] ITx (1) - Ty (t)l)

t€[0,1]

< max GW(x(s)=yD,e(x(s)=y(s))
<G (l/’ (”x - y||+oo) > P (”X - y||+oo)) .

< tﬁ(max f[ IK (s, x(s)) — K(s,y(s)) ds)
0

Thus, by Corollary 2.2, T has a unique fixed point which implies that integral Eq (3.1) has a unique
solution.

Next, another application to the second-order (p, g)-difference equations with integral boundary
value conditions is provided as follows.

We will prove an existence and uniqueness theorem for a second-order (p, g)-difference equation
with integral boundary value conditions of the form stated as follows:

D2 u(t) + f(t,u(t) = 0, 1€ (0,1),
u(©) = [ u(t)dyqt, (3.2)
u(l) = [ tu(t)d,t,

where p,q are suchthat 0 < g < p < 1,f : [0,1] xR — R is a given a function, and D, , is the
(p, q)-difference operator, defined as follows (see [19]). Assume u : [0,7T] — R,7 > 0 is a given
function and p, g are such that 0 < g < p < 1, p+q # 1.The (p, g)-derivative of u, denoted by D, ,u(t),
is defined by

u(pt) — u(qt)

D) = (p—qt

, if t#0, (3.3)

and
D, ,u(0) = lin(}D,,,qu(t), if t=0. (3.4
11—

One can see that D, ,u(t) is defined on the large interval [0, 7'/ p], which includes the interval [0, T'] on
which u is defined.
We say that the function u is (p, g)-differentiable if D, ,u() exists for all 1 € [0, T/ p].

The (p, g)-integral of u, denoted by fot u(s)d, s, is defined by

*© n n

t
4 q
fo TOLEDY Pl (3.5)

n=0

whenever the series in the right-hand side of (3.5) converges.
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In contrast with the case of the (p, g)-derivative of u, the (p, g)-integral of u is defined on the
interval [0, pT'] which is included in the interval [0, T]. To see the properties of (p, g)-differentiation
and (p, g)-integration, one can refer to Theorems 2.3 and 2.4 and Lemma 2.8 in [20].

First, we state the following lemma for the sake of completeness, which will be used in our next
discussion.

Lemma 3.2. [20] For any h € C([0, 1], R), the boundary value problem

D2 u(t) + h(t) =0, 1€ (0,1),
u(0) = foi u()d, ot, (3.6)
u(l) = [ u(n)d, 4t

is equivalent to the integral equation

1 1 !
u(t) = pf(r—qs)h( Y, gs + — p—qlfu—qsm( )d,

g f (s - q57)
p(p+q—-D(p*+pg+q*)
(P +pa+ )1 =D(p+g-1)+s+p +(p+a)lg—1) h(%)d,,,qs. (3.7)

We can now state our main result in this section. To this end, we denote for brevity

s_ L. p-a | 1 +(p—q)(p2+(p+q)(q—1))
p p(PPHpa+qd) (p+q-D(P*+pg+q?) pp+qg-D(p +pg+q?)

Theorem 3.3. Suppose that:

(i) f:[0,1] xR — R is a continuous function;
(1) |f(t,u) — f(t,v)| < lu—v|forallt € [0,1] and u,v € R;
(iii) there existy € ¥, ¢ € @, and G € C such that

Y ft,u) = f(E,v)) < GW(lu = v]), ¢(Ju = v)). (3.8)

Then the boundary value problem (3.2) has a unique solution u* € C([0, 1], R).
Proof. Define a mapping T by

1
pP+q §

=—— (t—qs)h( ) s+ - — (l—qs)h(—)d,s

f P prq-1J, p)] ™

P —q 2
_ _ (3.9
p3(p+q—1)(p2+pq+q2)fo(s qs) .

(P + pa+ @) A =D(p+q—1+s+p*+(p+q)g- 1>]h(1%)dp,qs.

In view of Lemma 3.2, the boundary value problem (3.2) is equivalent to the fixed point problem
x=Tx, (3.10)
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where 7' : X — X is the integral operator defined by the right-hand side of (3.7) and X = C([0, 1], R).
It is well known that X is a Banach space concerning the sup norm, defined by

||| = sup |u(?)|, forall u € X.
t€[0,1]

It follows from assumptions (i) and (ii) that

Y(ITu = Tvl)) = y(sup [(Tu)(®) — (Tv)(D))

t€[0,1]
1 !
< Y(= sup f [t —gs|-1f(s,u(ps)) — f(s,v(ps)ld, 45
D t€[0,11 Jo
1 + !
T e T f 11— gsl - 1f (s, u(ps)) — f(s, v (ps)ld, s
P P+q—1011Jo

pz_qz
+ 3 2 2)
p’(p+q—1)(p>+ pg+q*)

1
< SUPf[Is—qszl[(p2+pq+q2)(l—t)(p+q—1)
t€[0,1]1 JO

+ 5+ >+ (p+@)g = DI 1f (s, u(p®s) = f(s,v(p*s))ld 5
< Gly(sup (ju—v]), ¢(sup (ju —v])]

1€[0,1] 1€[0,1]

= G[Y(llue = vID), ¢(llu = vID].
Thus all assumptions of Corollary 2.2 are satisfied. Hence, T has a unique fixed point, that is, (3.2) has
a unique solution.
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