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1. Introduction

Quantum calculus or q-calculus, known for limitless computation, has been an exciting field
throughout its development, where important concepts and results have emerged across various
branches of mathematics, including combinatorics, numbers theory, difference equations and
sequence spaces; see [1–7]. Together with the studies on q-calculus, post-quantum calculus, which is
called (p, q)-calculus, was developed. The concept of (p, q)-calculus was first examined in quantum
algebras by Chakrabarti and Jagannathan [8] in 1991. Later, the (p, q)-calculus theory was developed
and many studies were carried out. For instance, Sadjang [9] proved the foundational theorem for
(p, q)-calculus and some (p, q)-Taylor formulas for polynomials. The behavior of solutions of the
(p, q)-sense equations was investigated by Kamsrisuk et al. [10]. Gençtürk [11] also obtained some
new existence results for solutions of a boundary value problem in (p, q)-calculus. For further details
about (p, q)-calculus, we refer readers to [12–18].
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The following two equations were studied in the continuous and discrete cases

x′′(t) + ρ(t).x(t) = 0, t ∈ R (1.1)

and
∆2x(t) + ρ(t).xσ(t) = 0, t ∈ Z, (1.2)

respectively, where
∆x(t) = xσ(t) − x(t)

and
xσ(t) = x(σ(t)) = x(t + 1)

for all t ∈ Z. Especially, the research on comparison-type oscillatory and non-oscillatory cases of
Eq (1.1) has long been conducted for continuous and discrete cases. The fundamentals of this
comparison-type oscillation criteria for Eq (1.1) were first developed by Sturm [19] in 1836,
establishing conditions such that ρ(t) ≥ ρ0 > 0 for oscillation and ρ(t) ≤ 0 for non-oscillation.
However, the value of Sturm’s study was not fully realized until papers by Bôcher [20, 21].

Another well-known comparison-type criterion was proven by Kneser [22]:

t2ρ(t) ≥
1 + ε

4
,

which implies oscillation for some ε > 0, while

t2ρ(t) ≤
1
4

implies non-oscillation. Later, Fite [23] and Hille [24] provided a generalization of Kneser’s result
and oscillation. For further study, see [25–27]. Much of what has been stated so far is based on two
theorems, which we will briefly present below.

Theorem 1. (i) ([28]) The differential equation

x′′(t) +
b

t.σ(t)
xσ(t) = 0

is oscillatory if and only if b > 1
4 .

(ii) ([29]) The difference equation

∆2x(t) +
b

t.σ(t)
xσ(t) = 0

is oscillatory if and only if b > 1
4 .

Bohner and Ünal [30] worked on the solution of the second-order difference equations in q-calculus
and provided some oscillation criteria. They defined this q-difference equation as

D2
qx(t) + ρ(t).xσ(t) = 0,

where
t ∈ T = qN0 = {qk : k ∈ N0}

with q > 1, and they also proved the following theorem.
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Theorem 2. The q-difference equation

D2
qx(t) +

b
t.σ(t)

xσ(t) = 0

is oscillatory if and only if

b >
1

(
√

q + 1)2 .

On the other hand, the Banach fixed-point theorem can be used to demonstrate the existence and
uniqueness of solutions of functional equations, integral equations and difference equations ([31–33]).
For more information about fixed-point theory, we refer the readers to [34–36]. It may be more
beneficial to use non-local boundary conditions instead of classical initial conditions to better describe
physical events. For example, Ahmad and Ntouyas [37] investigated the existence and uniqueness of
solutions to the q-boundary value problem with non-local and integral boundary conditions. For more
information, we refer the readers to [38, 39].

Motivated by the above results, we first study the existence and uniqueness of solutions of the
second-order (p, q)-difference equation by using the Banach fixed-point theorem. We also investigate
the oscillation of the solutions of the Euler-Cauchy-like (p, q)-difference equation. We have organized
this article as follows: In Section 2, we present the basic definitions and theorems that we will need
in this article. In Section 3, we examine the existence and uniqueness of solutions of the second-order
(p, q)-difference equation with non-local and integral boundary conditions. In Section 4, we obtain
the general solution of the Euler-Cauchy-like (p, q)-difference equation. We also prove a theorem
about oscillation and give the (p, q)-Kneser theorem. Our results generalize the corresponding results
of [28–30] to (p, q)-calculus.

2. Preliminaries

Let us remember some essential concepts that are related to (p, q)-calculus (see [9, 16]).
Let x be any function such that x: D ⊆ R→ R. The (p, q)-derivative of the function x is defined as

Dp,qx(t) =
x(pt) − x(qt)

(p − q)t
, t , 0, p , q, (2.1)

and (Dp,qx)(0) = x′(0), provided that x is differentiable at 0. The derivative operator Dp,q is also linear.
The (p, q)-derivatives of the product and quotient of x(t) and y(t) are given by

Dp,q(x(t).y(t)) = x(pt).Dp,qy(t) + y(qt).Dp,qx(t)
= y(pt).Dp,qx(t) + x(qt).Dp,qy(t)

and

Dp,q

(
x(t)
y(t)

)
=

y(qt).Dp,qx(t) − x(qt).Dp,qy(t)
y(pt).y(qt)

=
y(pt).Dp,qx(t) − x(pt).Dp,qy(t)

y(pt).y(qt)
, (2.2)
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respectively.
The (p, q)-derivative is not subject to any general chain rule, unlike the classical derivative.

However, the chain rule can be applied as a special case. Let m and n be constants. Consider the
function x(y(t)) with y(t) = mtn. In this case, the chain rule is obtained as follows:

Dp,q(x(y(t))) = (Dpn,qn x).(y(t)).Dp,qy(t). (2.3)

Example 1. Let y(t) = qt. Then, m = q and n = 1. According to Eq (2.3), the (p, q)-derivative of the
function x(y(t)) = x(qt) becomes as follows:

Dp,q(x(y(t))) = (Dp,qx).(y(t)).Dp,q(y(t))

=
x(pqt) − x(q2t)

(p − q)t
.

Now, we recall the definition of (p, q)-integrals [9].
Let x: [0,T ]→ R be a function. Then the (p, q)-integral of x is defined by∫ t

0
x(s) dp,qs = (p − q).t.

∞∑
n=0

qn

pn+1 .x
(

qn

pn+1 t
)
, if

∣∣∣∣∣ pq
∣∣∣∣∣ > 1

provided that the right-hand side is convergent.
In the following theorem, we give two basic properties of the (p, q)-integral.

Theorem 3. (I) ([9, Theorem 9]) Suppose that x: [0,T ]→ R, (T > 0) is a continuous function. In this
case, the following formula holds: ∫ t

0
Dp,qx(s) dp,qs = x(t) − x(0).

(ii) ([11, Theorem 2.5]) Suppose that a function x: [0,T ] → R, (T > 0). In this case for t ∈ [0, p2t],
we have ∫ t

0

∫ s

0
x(r) dp,qr dp,qs =

1
p

∫ t

0
(t − qs) x

(
s
p

)
dp,qs.

A time scale is defined as an arbitrary non-empty closed subset of real numbers, denoted by T. Real
numbers, integers, natural numbers and non-negative integers, namely R, Z, N and N0 are the main
examples of time scales. Additionally, the forward jump operator σ: T→ T is defined by

σ(t) = inf{s ∈ T : s > t}

for t ∈ T. For more information, we refer the readers to [40, 41]. Throughout this paper, we will
consider the set

T = pN0 = {pk : k ∈ N0}

with p > 1. In this case, the forward difference operator is σ(t) = pt. Hence, the concept Dp,qx(t) is as
follows:

Dp,qx(t) =
xσ(t) − x(qt)

pt − qt
,
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where
xσ(t) = x(σ(t)) = x(pt).

Note that
xσ(qt) = x(σ(qt)) = x(pqt).

Also, the second-order (p, q)-derivative of the function x is as follows:

D2
p,qx(t) =

(Dp,qx)(pt) − (Dp,qx)(qt)
(p − q)t

=
q.x(p2t) − (p + q).x(pqt) + p.x(q2t)

(p − q)2 pqt2 . (2.4)

3. The existence and uniqueness of second-order (p, q)-difference equations

Let
[0,T ]T0 = [0,T ] ∩ T0,

where T0 = T ∪ {0} and T ∈ T is a fixed constant.
In this section, we will consider the following equation with non-local and integral boundary

conditions  D2
p,qx(t) = φ(t, xσ(qt)), t ∈ [0, T

p2.q2 ]T0 ,

x(0) = x0 + k(x), x(T ) = δ
∫ T

0
x(s) dp,qs,

(3.1)

where x0 ∈ R, δ.T , p + q and φ ∈ C([0,T ]T0 × R;R) is (p, q)-differentiable on [0, T
p.q ]T0 . Let

X = C([0,T ]T0;R)

denote the Banach space of all continuous real functions with the norm

∥x(t)∥ = sup{|x(t)| : t ∈ [0,T ]T0}.

Let k: X → R be any bounded function.
We need the following lemma to prove the existence and uniqueness theorem via the Banach fixed-

point theorem.

Lemma 1. Let η ∈ X such that η(t) = −φ(t, xσ(qt)). In this case, the boundary value problem given
by  D2

p,qx(t) + η(t) = 0, t ∈ [0, T
p2.q2 ]T0 ,

x(0) = x0 + k(x), x(T ) = δ
∫ T

0
x(s) dp,qs

(3.2)

is equivalent to the (p, q)-integral equation

x(t) =(x0 + k(x))
[(p + q).(T + t.(δ.T − 1)) − δT 2]

T (p + q − δT )
+

t.(p + q)
T p.(p + q − δT )

∫ T

0
(T − qs).η

(
s
p

)
dp,qs

−
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs −

δ.t.(p2 − q2)
T p3.(p + q − δT )

∫ T

0
(T s − qs2).η

(
s
p2

)
dp,qs.
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Proof. Using Theorem 3 (i) and applying the (p, q)-integral to the first equation of Eq (3.2), we get

Dp,qx(t) = Dp,qx(0) −
∫ t

0
η(s) dp,qs, t ∈

[
0,

T
p.q

]
T0

. (3.3)

Again, by applying the (p, q)-integral to Eq (3.3), we obtain

x(t) = x(0) + t.Dp,qx(0) −
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs, t ∈ [0,T ]T0 . (3.4)

For convenience, we put the constants x(0) = c0 and Dp,qx(0) = c1 in Eq (3.4), and, in this case, we
have

x(t) = c0 + c1.t −
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs. (3.5)

By applying t = 0 in Eq (3.5), we get

x(0) = c0 = x0 + k(x). (3.6)

Substituting Eq (3.6) in Eq (3.5), we obtain

x(t) = x0 + k(x) + c1.t −
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs. (3.7)

With the second boundary condition, we have

c1 =
1
T

(−x0 − k(x)) +
δ

T

∫ T

0
x(s) dp,qs +

1
T.p

∫ T

0
(T − qs).η

(
s
p

)
dp,qs.

By incorporating c1 into Eq (3.7), we obtain

x(t) =(x0 + k(x))
(T − t

T

)
+
δ.t
T

∫ T

0
x(s) dp,qs +

t
T.p

∫ T

0
(T − qs).η

(
s
p

)
dp,qs

−
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs. (3.8)

By integrating both sides of Eq (3.8), we get∫ T

0
x(s) dp,qs =(x0 + k(x))

T.(p + q − 1)
p + q − δ.T

+
T

p(p + q − δ.T )

∫ T

0
(T − qs).η

(
s
p

)
dp,qs

−
p2 − q2

p3(p + q − δ.T )

∫ T

0
(T s − qs2).η

(
s
p2

)
dp,qs. (3.9)

Substituting Eq (3.9) in Eq (3.8), we have

x(t) =(x0 + k(x))
[(p + q).(T + t.(δ.T − 1)) − δT 2]

T (p + q − δT )
+

t.(p + q)
T p.(p + q − δT )

∫ T

0
(T − qs).η

(
s
p

)
dp,qs

−
1
p

∫ t

0
(t − qs).η

(
s
p

)
dp,qs −

δ.t.(p2 − q2)
T p3.(p + q − δT )

∫ T

0
(T s − qs2).η

(
s
p2

)
dp,qs.

Thus, the desired result is achieved. □
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We now introduce an operator F : X →X as follows:

(F x)(t) =(x0 + k(x))
[(p + q).(T + t.(δ.T − 1)) − δT 2]

T (p + q − δT )

+
t.(p + q)

T p.(p + q − δT )

∫ T

0
(T − qs).φ(s, x(qs)) dp,qs −

1
p

∫ t

0
(t − qs).φ(s, x(qs)) dp,qs

−
δ.t.(p2 − q2)

T p3.(p + q − δT )

∫ T

0
(T s − qs2).φ

(
s, x

(
qs
p

))
dp,qs. (3.10)

By Lemma 1, the necessary and sufficient condition to have a solution to Eq (3.1) is that the operator
F has a fixed point. For simplicity, we take a constant Ψ as follows:

Ψ =

{
T.[(p + q + 1).|δ| + T ]
|p + q − δ.T |

+
T 2

p + q
+

T 3.|δ|.(p − q)
p.|p + q − δ.T |.(p2 + pq + q2)

}
. (3.11)

The following theorem is based on the Banach fixed-point theorem, which asserts that in a Banach
space X , any contraction mapping F : X →X , that is, any mapping with c ∈ [0, 1) such that

∥F x −F y∥ ≤ c∥x − y∥, ∀x, y ∈X

has a unique fixed point.

Theorem 4. Let φ: [0, T
p2.q2 ]T0 × R→ R be a continuous function. Suppose that

(A1) |φ(t, x(t)) − φ(t, y(t))| ≤ L1.|x(t) − y(t)|, ∀t ∈ [0, T
p2.q2 ]T0 and x(t), y(t) ∈ R.

(A2) k: X → R exists such that |k(x) − k(y)| ≤ L2.∥x − y∥, ∀x, y ∈X .

(A3) L.Ψ < 1, where L = max{L1, L2} and Ψ is as in Eq (3.11).

In this case, the problem given by Eq (3.1) has a unique solution.

Proof. We transform the problem given by Eq (3.1) into a fixed-point problem, i.e., x = F x, where
the operator F is defined by Eq (3.10). Assume that

sup{|φ(t, 0)| : t ∈ [0,
T

p2.q2 ]T0} = M1,

sup{|x0 + k(x)| : k ∈X } = M2

and
max{M1,M2} = M.

Also, choose a constant R satisfying

R ≥
M.Ψ

1 − L.Ψ
.

First, we will show that F (ΩR) ⊂ ΩR, where

ΩR = {x ∈X : ∥x∥ ≤ R}.
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For any x ∈ ΩR, we get

∥F x∥ ≤M2. sup
t∈[0,T ]T0

∣∣∣∣∣∣ [(p + q).(T + t(δ.T − 1)) − δ.T 2]
T.(p + q − δ.T )

∣∣∣∣∣∣
+

T.(p + q)
T.p.|p + q − δ.T |

. sup
t∈[0,T ]T0

∣∣∣∣∣∣
∫ T

0
(T − qs).(L1.∥x∥ + M1) dp,qs

∣∣∣∣∣∣
+

1
p

sup
t∈[0,T ]T0

∣∣∣∣∣∣
∫ t

0
(t − qs).(L1.∥x∥ + M1) dp,qs

∣∣∣∣∣∣
+
|δ|.T.(p2 − q2)

T.p3.|p + q − δ.T |
. sup

t∈[0,T ]T0

∣∣∣∣∣∣
∫ T

0
(T s − qs2).(L1.∥x∥ + M1) dp,qs

∣∣∣∣∣∣
≤(L.R + M)

{
T.[(p + q + 1).|δ| + T ]
|p + q − δ.T |

+
T 2

p + q
+

T 3.|δ|.(p − q)
p.|p + q − δ.T |.(p2 + pq + q2)

}
≤(L.R + M).Ψ
≤R.

Hence F (ΩR) ⊂ ΩR. Now, we should demonstrate that F is a contraction. For any x, y ∈ X and
∀t ∈ [0,T ]T0 , we get

∥F x −F y∥ ≤ sup
t∈[0,T ]T0

∣∣∣∣∣(k(x) − k(y))
[(p + q).(T + t.(δ.T − 1)) − δ.T 2]

T.(p + q − δ.T )

+
t.(p + q)

T.p.(p + q − δ.T )
.

∫ T

0
(T − qs).[φ(s, x(qs)) − φ(s, y(qs))] dp,qs

−
1
p

∫ t

0
(t − qs).[φ(s, x(qs)) − φ(s, y(qs))] dp,qs

−
δ.t.(p2 − q2)

T.p3.(p + q − δ.T )

∫ T

0
(T s − qs2).

[
φ

(
s, x

(
qs
p

))
− φ

(
s, y

(
qs
p

))]
dp,qs

∣∣∣∣∣
≤L2.∥x − y∥

(p + q + 1).|δ|.T
|p + q − δ.T |

+ L1.∥x − y∥
{

T 2

|p + q − δ.T |
+

T 2

p + q
+

T 3.|δ|.(p − q)
p.|p + q − δ.T |.(p2 + pq + q2)

}
≤L.Ψ.∥x − y∥.

Since L.Ψ < 1, F is a contraction. Thus, the proof is completed by using the Banach fixed-point
theorem. □

Example 2. Consider the following (p, q)-boundary-value problem: D2
p,qx(t) = 4t

27×105 tan−1 xσ(qt) + t.et, t ∈ [0, T
p2.q2 ]T0

x(0) = 2 + 1
105 x(t), x(T ) = δ

∫ T

0
x(s) dp,qs,

(3.12)

where T = 243, δ = 1, p = 3, q = 2, L = L1 = L2 =
1

105 , and

φ(t, xσ(qt)) =
4t

27 × 105 tan−1 x(6t) + t.et.
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Since
|φ(t, x(t)) − φ(t, y(t))| ≤

1
105 | tan−1 x(t) − tan−1 y(t)| ≤

1
105 |x(t) − y(t)|,

condition (A1) is ensured with L1 =
1

105 . For condition (A2), it is clear that

|k(x) − k(y)| ≤
1

105 .∥x − y∥ with L2 =
1

105 .

From Eq (3.11), we deduce that

Ψ =
60507

238
+

59049
5
+

14348907
13566

≈ 13121.742.

Here, we obtain
L.Ψ ≈ 0.131 < 1.

Thus, condition (A3) is satisfied. From Theorem 4, the problem given by Eq (3.12) has a unique
solution.

4. The oscillation of solutions of second-order (p, q)-difference equations

If we take
φ(t, xσ(qt)) = −ρ(t).xσ(qt)

in the first equation of Eq (3.1), then we get the following equation:

D2
p,qx(t) + ρ(t).xσ(qt) = 0 (4.1)

for t ∈ T with p > q > 1. In this equation, the concept ρ(t) is as follows:

ρ(t) =
b

q.t.σ(t)
.

Also, it follows from Eq (2.3) that the (p, q)-derivative of x(qt) yields

xσ(qt) = x(σ(qt)) = x(pqt) = x(q2t) + (p − q)t.Dp,qx(qt) for t ∈ T. (4.2)

We will use Eq (4.2) to rewrite Eq (4.1). In this case, we have

qt.σ(t).D2
p,qx(t) + at.Dp,qx(qt) + b.x(q2t) = 0, where a = b(p − q), b ∈ R, (4.3)

with the following condition:
p
q
− a

(
p
q
− 1

)
+ bq

(
p
q
− 1

)2

, 0. (4.4)

We note that Eq (4.3) is similar to the Euler-Cauchy q-difference equation given in [30]. Hence, we
call this equation the Euler-Cauchy-like (p, q)-difference equation. By using Eqs (2.3) and (2.4), we
can rewrite Eq (4.3) as follows:

x(p2t) − 2ρ
1
γ
.x(pqt) + (ρ2 − ℓ)

1
γ2 .x(q2t) = 0, (4.5)
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where

ρ = γ
[( p

q + 1) − a( p
q − 1)]

2
and ℓ = γ2

(a − 1
2

)2

− bq
 ( p

q
− 1

)2

. (4.6)

Also, the following connections are useful and can be easily controlled:

ρ = γ

1 − (a − 1)( p
q − 1)

2

 and ρ2 − ℓ = γ2

 p
q
− a

(
p
q
− 1

)
+ bq

(
p
q
− 1

)2 . (4.7)

Now, we can give the following lemma.

Lemma 2. Let ρ and ℓ be as in Eq (4.6). Let γ = λlogp q. Also, let us assume that ρ2 − ℓ is defined by
Eq (4.7). If

λ2 − 2ρλ + ρ2 − ℓ = 0, (4.8)

then the solution of Eq (4.3) is as below

xλ(t) = λlogp qt, t ∈ T.

Proof. Since
x(pt) = λlogp q(pt) = λlogp p+logp qt = λ1+logp qt = λλlogp qt = λx(t)

and
x(qt) = λlogp q(qt) = λlogp q+logp qt = λlogp qλlogp qt = γx(t),

we have

x(p2t) = λlogp q(ppt) = λlogp p2+logp qt = λ2λlogp qt = λ2x(t),
x(pqt) = λx(qt) = λλlogp qx(t) = γλx(t),
x(q2t) = γx(qt) = γ2x(t).

Here, we get

x(p2t) − 2ρ
1
γ
.x(pqt) + (ρ2 − ℓ)

1
γ2 .x(q2t) = (λ2 − 2ρλ + (ρ2 − ℓ)).x(t) = 0,

where x = xλ. Thus, the desired result is achieved. □

Note that, since λ , 0, we can rewrite xλ as follows:

xλ(t) = λlogp qt = [(sgn λ)|λ|]logp qt = (sgn λ)logp qt|λ|logp qt = (sgn λ)logp qt(qt)logp |λ|.

We can give the general solution of Eq (4.3) according to the value of ℓ.

Theorem 5. Let ρ and ℓ be as in Eq (4.6). Let us assume that Eq (4.4) exists. In this case, the general
solution of Eq (4.3) is obtained as follows, where c1, c2 ∈ R:

(i) If ℓ > 0, substituting for λ1 = ρ +
√
ℓ and λ2 = ρ −

√
ℓ, then

x(t) = c1λ
logp qt
1 + c2λ

logp qt
2 .
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(ii) If ℓ = 0, substituting for λ = ρ, then

x(t) = (c1 ln t + c2)λlogp qt.

(iii) If ℓ < 0, substituting for λ = ρ + i
√
−ℓ, then

x(t) = |λ|logp qt(c1 cos(θ. logp qt) + c2 sin(θ. logp qt)),

where
cos(θ − θ. logp q) =

Reλ
|λ|
.

Proof. Since λ1 and λ2 are the solutions of Eq (4.8) when ℓ > 0, it can be ascertained from Lemma 2
that xλ1 and xλ2 are solutions of Eq (4.3). Second, if ℓ = 0, due to Lemma 2, the solution of Eq (4.3) is
xλ. Now, we define x(t) = xλ(t) ln t. In this case,

x(pt) = λ.[λlogp qt ln p + λlogp qt ln t] = λ.[x(t) + xλ(t) ln p],
x(qt) = λlogp qqt[ln t + ln q] = γ.xλ(t)[ln t + ln q] = γ.[x(t) + xλ(t) ln q],

x(pqt) = x(p(qt)) = λ.[x(qt) + xλ(qt) ln p] = λ.γ[x(t) + xλ(t) ln pq],

and

x(p2t) − 2ρ
1
γ
.x(pqt) + (ρ2 − ℓ)

1
γ2 .x(q2t) = x(p2t) − 2ρ

1
γ
.x(pqt) + ρ2 1

γ2 .x(q2t)

= λ2[x(t) + 2xλ(t). ln p] − 2ρ.
1
γ
.λγ[x(t) + xλ(t). ln pq] + ρ2.

1
γ2 .γ

2[(x(t) + 2xλ(t). ln q)]

= (λ2 − 2ρλ + ρ2).x(t) + [2λ2 − 2ρλ].xλ(t). ln p − 2ρλ.xλ(t). ln q + 2ρ2.xλ(t). ln q

= (λ2 − 2ρλ + ρ2).x(t) + 2(λ − ρ).xλ(t).[λ ln p − ρ ln q]
= 0

yield that x also leads to Eq (4.3).
Last, suppose that ℓ < 0.We note that

Reλ
|λ|
∈ (−1, 1),

so that there exists θ ∈ (0, π) with

cos(θ − θ. logp q) =
Reλ
|λ|
.

We set

u(t) = cos(θ. logp qt), v(t) = sin(θ. logp qt), x(t) = x|λ|(t).u(t), y(t) = x|λ|(t).v(t).

In addition, for convenience, it is important to obtain the following expressions and calculations. Now,

u(t) =u(pt). cos θ + v(pt). sin θ, v(t) = v(pt). cos θ − u(pt). sin θ,
u(p2t) =u(pqt)[cos θ. cos(θ. logp q) + sin θ. sin(θ. logp q)]
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+ v(pqt)[cos θ. sin(θ. logp q) − sin θ. cos(θ. logp q)],

u(q2t) =u(pqt)[cos θ. cos(θ. logp q) + sin θ. sin(θ. logp q)]

− v(pqt)[cos θ. sin(θ. logp q) − sin θ. cos(θ. logp q)],

and

v(p2t) =v(pqt)[sin θ. sin(θ. logp q) + cos θ. cos(θ. logp q)]

+ u(pqt)[sin θ. cos(θ. logp q) − cos θ. sin(θ. logp q)],

v(q2t) =v(pqt)[sin θ. sin(θ. logp q) + cos θ. cos(θ. logp q)]

− u(pqt)[sin θ. cos(θ. logp q) − cos θ. sin(θ. logp q)],

so that

x(p2t) − 2ρ
1
γ
.x(pqt) + (ρ2 − ℓ).

1
γ2 .x(q2t) = x(p2t) − 2ρ.

1
γ
.x(pqt) + |λ|2

1
γ2 .x(q2t)

= |λ|2.x|λ|(t).u(p2t) − 2ρ.|λ|.x|λ|(t) + |λ|2.x|λ|(t).u(q2t)

= 2|λ.|x|λ|(t).u(pqt)
[
|λ|

(
cos θ. cos(θ. logp q) + sin θ. sin(θ. logp q)

)
− ρ

]
= 2|λ|.x|λ|(t).u(pqt)

[
|λ| cos(θ − θ. logp q) − ρ

]
= 0,

and, similarly,

y(p2t) − 2ρ.
1
γ
.y(pqt) + (ρ2 − ℓ).

1
γ2 .y(q2t) = 2|λ|.x|λ|(t).v(pqt)

[
|λ| cos(θ − θ. logp q) − ρ

]
= 0.

Therefore, x(t) and y(t) lead to Eq (4.3). Now, we must demonstrate the linear independence of
solutions x and y to complete the proof. Here, the Wronskian (see [40, Definition 3.5]) for the (p, q)-
calculus can be easily defined as follows:

W(x, y) = x(Dp,qy) − y(Dp,qx).

In this case, for both solutions, we get (p − q).t.W(x, y) as follows:

[2
√
ℓ − (ρ +

√
ℓ)logp q + (ρ −

√
ℓ)logp q](ρ2 − ℓ)logp qt for ℓ > 0,

ρ2 logp qt[ρ ln p − ln qρlogp q] for ℓ = 0,

and
(ρ2 − ℓ)2 logp qt [(ρ2 − ℓ) sin θ − (ρ2 − ℓ)logp q sin(θ. logp q)] for ℓ < 0,

respectively. Considering all situations, none of these Wronskians are zero. Thus, each of the three
cases mentioned above forms a foundational set of solutions for their situations. Finally, the solution
s(t) of the initial value problem given by D2

p,qs(t) + ρ(t).sσ(qt) = 0,

s(t0) = s0,Dp,qs(t0) = s̃0, t0 ∈ T
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can be easily expressed as follows:

s(t) =
s0.Dp,qy(t0) − y(t0).s̃0

W(x, y)(t0)
x(t) +

x(t0).s̃0 − s0.Dp,qx(t0)
W(x, y)(t0)

y(t).

This ends the theorem. □

Remark 1. In this theorem, we observe that Reλ
|λ|

is different from Theorem 4 in [30]. We also generalize

the general solutions in Theorem 4 to (p, q)-calculus. That is, Theorem 5 is reduced to the q-version
for p→ 1.

We give some basic definitions and concepts about oscillation.

Definition 1. (i) We recall that the solution x(t) of Eq (4.1) has a generalized zero at t if x(t) = 0.
Now, we say that x(t) has a generalized zero in the interval (qt, σ(t)) if x(qt).xσ(t)) < 0.

(ii) We also say that Eq (4.1) is non-conjugate on the interval [a, b] if there is no non-trivial solution
of Eq (4.1) with two (or more) generalized zeros in [a, b].

(iii) We say that Eq (4.1) is non-oscillatory on [ζ,∞) if there exists a ∈ [ζ,∞) such that this equation
is non-conjugate on [a, b] for every a < b. In other cases, we will mean that Eq (4.1) is oscillatory
on [ζ,∞).

(iv) We can also define that an x(t) solution of Eq (4.1) is non-oscillatory if x(qt).xσ(t) > 0 on [T,∞)
for some T > 0. On the contrary, we will mean that the solution x(t) is oscillatory on [T,∞).

Remark 2. In this definition, we state that (ii) and (iii) are as in [30]. However, (i) and (iv) are
generalizations of the situation in q-calculus. We observe that (i) and (iv) are reduced to the q-case
in [30] for p→ 1.

Now, we can give the (p, q)-calculus version of the Sturm-type separation theorem.
Applying linear independence of the solutions, it is easy to see that one solution of Eq (4.1) is

(non)oscillatory if and only if every solution of (4.1) is (non)oscillatory. To prove this, let us assume
that x(t) is a non-oscillatory solution of Eq (4.1). In this case, it is x(qt).xσ(t) > 0 on [T,∞) for some
T > 0 from the definition of oscillatory. Let y(t) be any solution of Eq (4.1). Also, let x(t) and y(t) be
linearly independent. Thus, Dp,q

(
y(t)
x(t)

)
, 0. Then, y(t)/x(t) is exactly monotone and hence has a single

signum. Thus,
(y(qt).yσ(t))/(x(qt).xσ(t)) = (y(qt)/x(qt)).(yσ(t)/xσ(t))

is ultimately positive and y(qt).yσ(t) > 0. This means that y(t) is also non-oscillatory.
Next, we can give the theorem about oscillation.

Theorem 6. The (p, q)-difference equation

D2
p,qx(t) +

b
q.t.σ(t)

xσ(qt) = 0

is oscillatory if and only if

b >
1

(
√

p +
√

q)2 .
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Proof. To prove the theorem, we first start by rewriting the equation as follows:

D2
p,qx(t) +

b
pqt2 x(pqt) = 0. (4.9)

If we use Eq (4.2), the equation is obtained as an Euler-Cauchy-like (p, q)-difference equation such
that

pqt2.D2
p,qx(t) + b(p − q)t.Dp,qx(qt) + b.x(q2t) = 0. (4.10)

Note that Eq (4.10) is the form of Eq (4.3) with a = (p − q)b and b ∈ R. From Eq (4.6), we get

ρ = γ
[( p

q + 1) − a( p
q − 1)]

2
= γ

[ p
q + 1 − bq( p

q − 1)2]

2

= γ

√ p
q
−

( p
q − 1)2

2
q
(
b −

1
(
√

p +
√

q)2

)
= γ

−√
p
q
−

( p
q − 1)2

2
q
(
b −

1
(
√

p −
√

q)2

) . (4.11)

Also, we calculate the crucial quantity ℓ as follows:

ℓ = γ2
(

p
q
− 1

)2 (a − 1
2

)2

− bq


= γ2
( p

q − 1)2

4
[b2(p − q)2 − 2b(p − q) + 1 − 4bq]

= γ2
( p

q − 1)2

4
[b2(p − q)2 − 2b(p + q) + 1]

= γ2q2
( p

q − 1)4

4

[
b2 − b

2(p + q)
(p − q)2 +

1
(p − q)2

]
= γ2q2

( p
q − 1)4

4

[
b −

1
(
√

p +
√

q)2

] [
b −

1
(
√

p −
√

q)2

]
.

Now we can prove the oscillation of Eq (4.9) by using Theorem 5 and the quantity ℓ. If ℓ = 0, then
b becomes either

b =
1

(
√

p +
√

q)2 or b =
1

(
√

p −
√

q)2 .

If
b = 1/(

√
p +
√

q)2,

then

ρ = γ

√
p
q

by Eq (4.11). From Theorem 5 (ii), the two solutions(
γ

√
p
q

)logp qt

=
√

qt
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and (
γ

√
p
q

)logp qt

. ln t =
√

qt. ln t

are non-oscillatory; hence, Eq (4.10) is non-oscillatory. If

b = 1/(
√

p −
√

q)2,

then

ρ = −γ

√
p
q

by Eq (4.11). From Theorem 5 (ii), the two solutions(
−γ

√
p
q

)logp qt

= (−1)logp qt √qt

and (
−γ

√
p
q

)logp qt

. ln t = (−1)logp qt √qt. ln t

are oscillatory; hence, Eq (4.10) is oscillatory. If ℓ > 0, then it becomes either

b <
1

(
√

p +
√

q)2 or b >
1

(
√

p −
√

q)2 .

If
b < 1/(

√
p +
√

q)2,

then
ρ > γ

√
p/q

by Eq (4.11), and, considering part (i) of Theorem 5, the solution

(ρ +
√
ℓ)logp qt = (qt)logp(ρ+

√
ℓ)

is non-oscillatory; therefore, Eq (4.10) is non-oscillatory. If

b > 1/(
√

p −
√

q)2,

then
ρ < −γ

√
p/q

by Eq (4.11), and, from Theorem 5 (i), the solution

(ρ −
√
ℓ)logp qt = (−1)logp qt(qt)logp(

√
ℓ−ρ)

is oscillatory; for this reason, Eq (4.10) is oscillatory. Last, if ℓ < 0, then it becomes

1
(
√

p +
√

q)2 < b <
1

(
√

p −
√

q)2 .
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From Theorem 5 (iii), we get that the two solutions

(
√

qt)logp |λ| cos(θ. logp qt) and (
√

qt)logp |λ| sin(θ. logp qt)

are oscillatory; hence, Eq (4.10) is oscillatory, where ρ ∈ (−γ
√

p/q, γ
√

p/q),

|λ| = γ

√
p
q
, cos(θ.(1 − logp q)) =

ρ

γ
√

p/q
=

[( p
q + 1) − bq( p

q − 1)2]

2
√

p/q
.

Considering this all together, Eq (4.10) and, thus, Eq (4.9), is oscillatory if and only if

b >
1

(
√

p +
√

q)2 .

Hence, the proof is completed. □

Remark 3. Theorem 6 is reduced to Theorem 2 for p → 1. In addition, we observe that Theorem 6 is
reduced to the continuous case in Theorem 1 when we take the limit as q → 1 = p and note that the
constant 1

(
√

p+
√

q)2 becomes 1
4 .

Now, we can give the proof of the (p, q)-version of Kneser’s theorem.

Theorem 7. ((p, q)-Kneser theorem).

(1) If

lim sup
t→∞

{q.t.σ(t).ρ(t)} <
1

(
√

p +
√

q)2 ,

then Eq (4.1) is non-oscillatory on pN0 .
(2) If

lim inf
t→∞

{q.t.σ(t).ρ(t)} >
1

(
√

p +
√

q)2 ,

then Eq (4.1) is oscillatory on pN0 .

Proof. To prove the first option, it is enough to show that Eq (4.9) for

b < 1/(
√

p +
√

q)2

is non-oscillatory. To prove the second part of the theorem, it is enough to show that

b > 1/(
√

p +
√

q)2,

then, Eq (4.1) is oscillatory. These cases can be deduced again from the proof of Theorem 6. □

Remark 4. Theorem 7 is reduced to Theorem 6 in [30] for p → 1. We also note that the constant,
which is 1

(1+
√

q)2 in q-calculus, is 1
(
√

p+
√

q)2 in (p, q)-calculus.

Remark 5. If we take

φ(t, xσ(qt)) =
−b

q.t.σ(t)
xσ(qt)

in Eq (3.1), we can establish the existence and uniqueness of solutions for Eq (4.9).
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5. Conclusions

First, we studied the second-order (p, q)-difference equation with integral and local boundary
conditions and investigated the existence and uniqueness of solutions with the help of the Banach
fixed-point theorem. Moreover, we have obtained the general solution of the Euler-Cauchy-like
(p, q)-difference equation, which is a special case of Eq (3.1). Also, we have proven the Sturm-type
separation theorem to examine the oscillation of the (p, q)-difference equation and given the
(p, q)-Kneser theorem. We can see that the constant in Theorem 1, which is 1/4 in the continuous and
discrete cases, is to be 1/(

√
p +
√

q)2. Consequently, when p → 1 = q, Theorem 6 is reduced to the
continuous case in Theorem 1.

Second, it may be considered as an open problem to study the oscillation of the equation

D2
p,qx(t) = φ(t, xσ(qt))

in Eq (3.1) by taking φ(t, xσ(qt)), unlike in Eq (4.1).
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36. A. Şahin, E. Öztürk, G. Aggarwal, Some fixed-point results for the KF-iteration process in
hyperbolic metric spaces, Symmetry, 15 (2023), 1360. https://doi.org/10.3390/sym15071360

37. B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference equations and inclusions
with non-local and integral boundary conditions, Math. Modell. Anal., 19 (2014), 647–663.
https://doi.org/10.3846/13926292.2014.980345

38. L. Byszewski, Theorems about existence and uniqueness of solutions of a semi-linear
evolution non-local Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505.
https://doi.org/10.1016/0022-247X(91)90164-U

39. L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution
of a nonlocal abstract Cauchy problem in a Banach space, Int. J., 40 (1991), 11–19.
https://doi.org/10.1080/00036819008839989

40. M. Bohner, A. Peterson, Dynamic equations on time scales, Boston: Birkhäuser, 2001.
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