Research article Special Issues

Oscillation behavior of second-order self-adjoint $ q $-difference equations

  • Received: 28 March 2024 Revised: 29 April 2024 Accepted: 06 May 2024 Published: 15 May 2024
  • MSC : 39A13, 39A21, 34C10

  • In this study, we investigate the oscillation behavior of second-order self-adjoint $ q $-difference equations, focusing on the renowned Leighton oscillation theorem. Through an example, we demonstrate that the $ q $-version of Leighton's classical oscillation theorem does not hold and requires refinement. To address this, we introduce an oscillation-preserving transformation and establish alternative theorems to the ones existing in the literature. The strength of our work lies in the absence of any sign condition on the potential function. We also provide illustrative examples to support our findings and mention directions for future research.

    Citation: Aǧacık Zafer, Zeynep Nilhan Gürkan. Oscillation behavior of second-order self-adjoint $ q $-difference equations[J]. AIMS Mathematics, 2024, 9(7): 16876-16884. doi: 10.3934/math.2024819

    Related Papers:

  • In this study, we investigate the oscillation behavior of second-order self-adjoint $ q $-difference equations, focusing on the renowned Leighton oscillation theorem. Through an example, we demonstrate that the $ q $-version of Leighton's classical oscillation theorem does not hold and requires refinement. To address this, we introduce an oscillation-preserving transformation and establish alternative theorems to the ones existing in the literature. The strength of our work lies in the absence of any sign condition on the potential function. We also provide illustrative examples to support our findings and mention directions for future research.



    加载中


    [1] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [2] R. Floreanini, L. Vinet, Quantum symmetries of $q$-difference equations, J. Math. Phys., 36 (1995), 3134–3156. https://doi.org/10.1063/1.531017 doi: 10.1063/1.531017
    [3] M. Bohner, R. Chieochan, The Beverton-Holt $q$-difference equation, J. Biol. Dyn., 7 (2013), 86–95. https://doi.org/10.1080/17513758.2013.804599 doi: 10.1080/17513758.2013.804599
    [4] Q. A. Hamed, R. Al-Salih, W. Laith, The analogue of regional economic models in quantum calculus, J. Phys.: Conf. Ser., 1530 (2020), 012075. https://doi.org/10.1088/1742-6596/1530/1/012075 doi: 10.1088/1742-6596/1530/1/012075
    [5] G. Bangerezako, An introduction to $q$-difference equations, San Diego: Harcourt/Academic Press, 2008.
    [6] V. Kac, P. Cheung, Quantum calculus, Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [7] M. Bohner, M. Ünal, Kneser's theorem in $q$-calculus, J. Phys. A: Math. Gen., 38 (2005), 6729. https://doi.org/10.1088/0305-4470/38/30/008 doi: 10.1088/0305-4470/38/30/008
    [8] S. Garoufalidis, J. S. Geronimo, Asymptotics of $q$-difference equations, In: T. Kohno, M. Morishita, Primes and knots, Contemporary Mathematics, 416 (2006), 83–114.
    [9] J. Baoguo, L. Erbe, A. Peterson, Oscillation of a family of $q$-difference equations, Appl. Math. Lett., 22 (2009), 871–875. https://doi.org/10.1016/j.aml.2008.07.014
    [10] P. Rehak, On a certain asymptotic class of solutions to second-order linear $q$-difference equations, J. Phys. A: Math. Theor., 45 (2012), 055202. https://doi.org/10.1088/1751-8113/45/5/055202 doi: 10.1088/1751-8113/45/5/055202
    [11] T. G. G. Soundarya, V. R. Sherine, Oscillation theory of $q$-difference equation, J. Comput. Math., 5 (2021), 083–091. https://doi.org/10.26524/cm111 doi: 10.26524/cm111
    [12] A. M. Hassan, H. Ramos, O. Moaaz, Second-order dynamic equations with noncanonical operator: oscillatory behavior, Fractal Fract., 7 (2023), 134. https://doi.org/10.3390/fractalfract7020134 doi: 10.3390/fractalfract7020134
    [13] T. S. Hassan, R. A. El-Nabulsi, N. Iqbal, A. A. Menaem, New criteria for oscillation of advanced noncanonical nonlinear dynamic equations, Mathematics, 12 (2024), 824. https://doi.org/10.3390/math12060824 doi: 10.3390/math12060824
    [14] W. Leighton, On self-adjoint differential equations of second order, J. Lond. Math. Soc., s1-27 (1952), 37–47. https://doi.org/10.1112/jlms/s1-27.1.37
    [15] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [16] R. A. Moore, The behavior of solutions of a linear differential eqution of second order, Pac. J. Math., 5 (1955), 125–145. https://doi.org/10.2140/PJM.1955.5.125 doi: 10.2140/PJM.1955.5.125
    [17] E. C. Tomastik, Oscillation of nonlinear second order differential equations, SIAM J. Appl. Math., 5 (1967), 1275–1277.
    [18] N. P. Bhatia, An oscillation theorem, Notices Amer. Math. Soc., 13 (1966), 243.
    [19] P. Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math., 74 (1952), 389–400. https://doi.org/10.2307/2372004 doi: 10.2307/2372004
    [20] I. V. Kamenev, An integral criterion for oscillation of linear differential equations of second order, Math. Notes Acad. Sci. USSR, 23 (1978), 136–138. https://doi.org/10.1007/BF01153154 doi: 10.1007/BF01153154
    [21] W. J. Coles, Oscilllation criteria for nonlinear second order equations, Ann. Mat. Pura Appl., 82 (1969), 123–133. https://doi.org/10.1007/BF02410793 doi: 10.1007/BF02410793
    [22] E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 234–252. https://doi.org/10.1090/S0002-9947-1948-0027925-7 doi: 10.1090/S0002-9947-1948-0027925-7
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(690) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog