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Abstract: In this study, we investigate the oscillation behavior of second-order self-adjoint q-
difference equations, focusing on the renowned Leighton oscillation theorem. Through an example, we
demonstrate that the q-version of Leighton’s classical oscillation theorem does not hold and requires
refinement. To address this, we introduce an oscillation-preserving transformation and establish
alternative theorems to the ones existing in the literature. The strength of our work lies in the absence
of any sign condition on the potential function. We also provide illustrative examples to support our
findings and mention directions for future research.

Keywords: second-order equation; q-difference; quantum calculus; oscillation
Mathematics Subject Classification: 39A13, 39A21, 34C10

1. Introduction

The theory of q-difference equations and related q-calculus has a long history, dating back to the
work of Jackson in 1910 [1]. Recently, studies have gained renewed interest due to their connections
with applications in several research areas such as quantum mechanics [2], computational biology [3],
and financial mathematics [4]. A comprehensive exploration of fundamental aspects of q-calculus can
be found in [5,6]. Concerning the asymptotic properties and the oscillation of solutions of q-difference
equations, we may refer to [7–11] and the references cited therein. On the other hand, q-difference
equations may be viewed as a special case of dynamic equations on time scales. Recent studies on the
oscillation problem of such equations and their connections to the q-difference equations can be found
in [12, 13]. To this end, we should note that the strength of the present work lies in the absence of any
sign condition on the function p(t) in Eq (1.1), and its applicability to the canonical and noncanonical
cases.

We study the oscillation of a second-order linear q-difference equation

Dq(a(t)Dqx(t)) + p(t)x(qt) = 0, t ≥ t0 (1.1)

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2024819


16877

by exploring a connection with the pioneering work of Leighton [14]. Here, q > 1 is a real number, t
and t0 belong to the set qN = {qk : k ∈ N} of discrete points, and the q-derivative, also known as the
Jackson derivative [5], of a function x at a point t ∈ qN is defined by

Dqx(t) =
x(qt) − x(t)

(q − 1)t
. (1.2)

Obviously, if x is differentiable at t, then Dqx(t) = x′(t) as q → 1+. Therefore, Eq (1.1) can be
considered the q analog of the second-order ordinary differential equation

(a(t)x′(t))′ + p(t)x(t) = 0, t ≥ t0. (1.3)

As usual, a nontrivial solution of (1.1) or (1.3) is called oscillatory if it is neither eventually positive
nor eventually negative in the neighborhood of infinity, and the equation is said to be oscillatory if all
its solutions are oscillatory.

Leighton’s famous oscillation theorem is the following:

Theorem 1.1 ( [14]). Let a and p be continuous functions on [t0,∞) with a(t) > 0. If

∞∫
t0

dt
a(t)

=

∞∫
t0

p(t) dt = ∞, (1.4)

then Eq (1.3) is oscillatory.

Before we state the q-version of Theorem 1.1, we need to recall some background material from
q-calculus. The q analog of a number α, denoted by [α]q, is defined as

[α]q =
qα − 1
q − 1

, α , 0.

Using this and the definition of the q-derivative formula (1.1), the so-called power rule becomes:

Dqtr = [r]q tr−1, r , 0.

On the other hand, the q-definite integral of a function f : qN → R is defined by

b∫
a

f (t) dqt = (q − 1)
b/q∑
t=a

t f (t), a, b ∈ qN (a < b). (1.5)

Improper integrals are defined as usual by the limits of corresponding proper integrals.
It follows that ∫ b

a
tr−1 dqt =

tr

[r]q

∣∣∣∣∣b
t=a
, r , 0, (1.6)

and that the improper integral ∫ ∞

a

1
tα

dqt (1.7)
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is convergent if and only if α > 1.
The quotient and product rules of q-derivatives read as

Dq

( f
g

)
=

gDq f − f Dqg
gσg

(1.8)

and
Dq

(
f g

)
= gDq f + f σDqg, (1.9)

where f σ = f ◦ σ, σ = q t.
In view of the above notations, we now state the q version of the famous Leighton oscillation

theorem.

Theorem 1.2 ( [15]). Let a, p : qN → R with a(t) > 0. If
∞∫

t0

dqt
a(t)

=

∞∫
t0

p(t) dqt = ∞, (1.10)

then the q-difference equation (1.1) is oscillatory.

Our focus in this work will be on condition (1.10), which cannot be satisfied for most equations. As
an example, let us consider the simple second-order q-Euler equation

D2
qx(t) +

c
q(q − 1)t2 x(qt) = 0, t ≥ t0. (1.11)

Using (1.6), one can easily see that∫ ∞

t0
p(t)dqt =

c
q(q − 1)

∫ ∞

t0

1
t2 dqt =

c
(q − 1)t0

< ∞, (1.12)

which means Theorem 1.2 fails to apply. On the other hand, it is known (see [15]) that the q-difference
equation (1.11) is oscillatory if c > 1. Motivated by the above example, our aim in this work is to find
an alternative theorem or an improvement that can be applied when condition (1.10) fails. Indeed, we
will allow

∞∫
t0

dqt
a(t)

< ∞ (1.13)

and
∞∫

t0

p(t) dqt < ∞. (1.14)

We should note that there is already a large body of research papers in the literature in which the
authors extend, generalize, and improve Theorem 1.1, as well as provide alternative theorems when
condition (1.4) does not hold; see [16–22] and the references therein. Our methodology in this study
is fundamentally inspired by the approach utilized in [16] to explore the oscillation and boundedness
of solutions of (1.3), where the author used an equivalence transformation x = uz. Note that if the
arbitrary function u is positive within a designated interval of interest, then the zeros of the functions x
and z coincide under this transformation.
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2. Main results

Our main theorem is as follows:

Theorem 2.1. Let a, p : qN → R with a(t) > 0. If there exists a function u : qN → (0,∞) such that

∞∫
t0

dqt
a(t)u(t)u(qt)

= ∞ (2.1)

and
∞∫

t0

[
p(t)u2(qt) + Dq(a(t)Dqu(t))u(qt)

]
dqt = ∞, (2.2)

then the q-difference equation (1.1) is oscillatory.

Proof. Let x be a solution of (1.1). Define z = x/u. Clearly, x is oscillatory if and only if z is oscillatory.
Applying the quotient rule (1.8), we write

Dqz(t) =
u(t)Dqx(t) − x(t) Dqu(t)

u(t)u(qt)
,

and so,

a(t)u(t)u(qt)Dqz(t) = u(t)a(t)Dqx(t) − x(t) a(t)Dqu(t). (2.3)

Using the product rule (1.9), we see that

Dq
[
a(t)u(t)u(qt)Dqz(t)

]
= u(qt)Dq

[
a(t)Dqx(t)

]
− x(qt)

[
Dq(a(t)Dqu(t))

]
= −

[
u(qt)p(t) + Dq(a(t)Dqu(t))

]
x(qt)

= −
[
u2(qt)p(t) + u(qt)Dq(a(t)Dqu(t))

]
z(qt).

This leads to the second-order q-difference equation

Dq(a1(t)Dqz(t)) + p1(t)z(qt) = 0, t ≥ t0, (2.4)

where

a1(t) = a(t) u(t)u(qt); (2.5)
p1(t) = p(t) u2(qt) + Dq(a(t)Dqu(t))u(qt). (2.6)

Using the conditions (2.1) and (2.2), it follows from Theorem 1.2 that Eq (2.4) is oscillatory. Thus the
q-difference equation (1.1) is also oscillatory. �

Remark 2.1. If u ≡ 1, then Theorem 2.1 reduces to Theorem 1.2.
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Let us re-consider (1.11). Put u(t) = t1/2. Then, from (2.5) and (2.6),

a1(t) = q1/2t;

p1(t) =

[
c

q − 1
+

2q1/2 − (q + 1)
(q − 1)2

]
1
t
.

Moreover, if c > 1, then p1(t) becomes positive for all q > 1. In view of (1.7), we compute∫ ∞

t0

dqt
a1(t)

=
1

q1/2

∫ ∞

t0

dqt
t

= ∞

and ∫ ∞

t0
p1(t) dqt = (

c
q − 1

−
q + 1 − 2q1/2

(q − 1)2 )
∫ ∞

t0

dqt
t

= ∞. (2.7)

Thus, the conditions (2.1) and (2.2) of Theorem 2.1 are satisfied. Therefore, we may also conclude
that (1.11) is oscillatory if c > 1. Indeed, we only need in (2.7) that

c >
q + 1 − 2q1/2

q − 1

for each fixed q > 1. This is an improvement over condition c > 1. For example, if q = 4, then c > 1/3
is sufficient for the oscillation. In Figure 1, we display the graph of an exemplary solution x(t) of (1.11)
with initial conditions x(0) = 1 and x(1) = 2 to illustrate its oscillation behavior on different intervals,
where q = 4 and c = 2/3 < 1.
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Figure 1. The graph of a solution x(t) for q = 4 and c = 2/3.

The next result is a Leighton-type theorem under condition (1.13). In this case, we may define

φ(t) =

∞∫
t

dqs
a(s)

, t ≥ t0. (2.8)

Theorem 2.2. Let (1.13) hold. If
∞∫

t0

p(t)φ2(qt) dqt = ∞, (2.9)

then the q-difference equation (1.1) is oscillatory.
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Proof. It suffices to show that the conditions of Theorem 2.1 are satisfied for u = φ. First, we calculate
that

Dqφ(t) = −
1

(q − 1)t

qt∫
t

dqs
a(s)

,

and so, using the definition (1.5), we have Dqφ(t) = −1/a(t). Then, Dq
[
a(t)Dqφ(t)

]
= 0, and hence,

p1(t) = p(t) φ2(qt).

Using (2.9), we see that (2.2) is valid. We only need to show that (2.1) is satisfied as well. Indeed,

∞∫
t0

dqt
a(t)u(t)u(qt)

= −

∞∫
t0

Dq φ(t)
φ(t)φ(qt)

dqt =

∞∫
t0

Dq

(
1
φ(t)

)
dqt =

1
φ(t)

∣∣∣∣∣∣∞
t0

= ∞.

�

Example 2.1. Consider the equation

Dq(trDqx(t)) +
1
tk x(qt) = 0, t ≥ t0, (2.10)

where r and k are real numbers such that r > 1 and 2r + k ≤ 3.
Note that a(t) = tr and p(t) = 1/tk. Thus, by (1.7), we see that

∞∫
t0

1
a(t)

dqt =

∞∫
t0

1
tr dqt < ∞.

Also, we calculate from (2.8) that φ(t) = c1tr−1, where c1 = 1/[1 − r]q. So, we also have

∞∫
t0

p(t)φ2(qt) dqt = c2
1

∞∫
t0

1
t2r+k−2 dqt = ∞.

Since the conditions of Theorem 2.2 are all satisfied, we may deduce that the q-difference
equation (2.10) is oscillatory. Note that Theorem 1.2 does not apply to (2.10).

Example 2.2. Consider the equation

Dq(trDqx(t)) +
λ

tk x(qt) = 0, t ≥ t0, (2.11)

where r < 1, k > 1, and λ > 0 are real numbers.
In view of (1.7), we see that

∞∫
t0

1
a(t)

dqt =

∞∫
t0

1
tr dqt = ∞

AIMS Mathematics Volume 9, Issue 7, 16876–16884.



16882

and

∞∫
t0

p(t) dqt =

∞∫
t0

λ

tk dqt < ∞.

This means that Theorem 1.2 fails for (2.11). Setting u(t) = tm with m ≥ k − 1, we obtain from (2.5)
and (2.6) that

a1(t) = qmtr+2m;

p1(t) = λq2mt2m−k −
qr+2m−1 − qr+3m−1 + q2m − qm

(q − 1)2 tr+2m−2.

It follows that the conditions of Theorem 2.1 are all satisfied if

r + 2m < 1, 2m ≥ k − 1 (2.12)

or
r + k = 2, 2m = k − 1, λ > q−2m [m]2

q. (2.13)

Let ε, δ > 0 with δ > ε, and put k = 1 + ε and r = 1 − δ. It is easily seen that (2.12) is satisfied
with m = (ε + δ)/4. Therefore, we deduce from Theorem 2.1 that the q-difference equation (2.11) is
oscillatory. It should be noted that neither (2.12) nor (2.13) holds when r > 1 and k > 1.

3. Conclusions

In this study, we have explored Leighton’s well-known oscillation theorem under the condition (1.4)
of being unsatisfied. Through the application of an equivalence transformation, we have demonstrated
the possibility of an alternative theorem. Furthermore, we have provided examples to illustrate the
results under critical conditions (1.13) and (1.14). Example 2.2 also highlights the unresolved nature
of the problem when both (1.13) and (1.14) are simultaneously satisfied. As a direction for future
research, we encourage the reader to investigate the feasibility of obtaining an oscillation theorem
similar to Theorem 2.2 under the condition (1.14). It appears that such research and related ones would
further contribute to the advancement of the oscillation theory of q-difference equations.
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