Yamamoto's integral was the integral associated with 2-posets, which was first introduced by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and reciprocal of binomial coefficients by using some techniques of Yamamoto's integral. We determine the value of infinite series of the form:
$ \sum\limits_{m_1,\ldots,m_n,\ell_1,\ldots,\ell_k\geq 1}\frac{H_{m_1}^{(a_1)}\cdots H_{m_n}^{(a_n)}} {m_1^{b_1}\cdots m_n^{b_n}\ell_1^{c_1}\cdots\ell_k^{c_k} \binom{m_1+\cdots+m_n+\ell_1+\cdots+\ell_k}{\ell_k}}, $
in terms of a finite sum of multiple zeta values, for positive integers $ a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_k $.
Citation: Kwang-Wu Chen, Fu-Yao Yang. Infinite series involving harmonic numbers and reciprocal of binomial coefficients[J]. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820
Yamamoto's integral was the integral associated with 2-posets, which was first introduced by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and reciprocal of binomial coefficients by using some techniques of Yamamoto's integral. We determine the value of infinite series of the form:
$ \sum\limits_{m_1,\ldots,m_n,\ell_1,\ldots,\ell_k\geq 1}\frac{H_{m_1}^{(a_1)}\cdots H_{m_n}^{(a_n)}} {m_1^{b_1}\cdots m_n^{b_n}\ell_1^{c_1}\cdots\ell_k^{c_k} \binom{m_1+\cdots+m_n+\ell_1+\cdots+\ell_k}{\ell_k}}, $
in terms of a finite sum of multiple zeta values, for positive integers $ a_1, \ldots, a_n, b_1, \ldots, b_n, c_1, \ldots, c_k $.
[1] | J. M. Campbell, K. W. Chen, Explicit identities for infinite families of series involving squared binomial coefficients, J. Math. Anal. Appl., 513 (2022), 126219. https://doi.org/10.1016/j.jmaa.2022.126219 doi: 10.1016/j.jmaa.2022.126219 |
[2] | K. W. Chen, Generalized harmonic numbers and Euler sums, Int. J. Number Theory, 13 (2017), 513–528. https://doi.org/10.1142/S1793042116500883 doi: 10.1142/S1793042116500883 |
[3] | K. W. Chen, Sum relations from shuffle products of alternating multiple zeta values, Mediterr. J. Math., 19 (2022), 206. https://doi.org/10.1007/s00009-022-02143-x doi: 10.1007/s00009-022-02143-x |
[4] | K. W. Chen, Some double $q$-series by telescoping, Mathematics, 11 (2023), 2949. https://doi.org/10.3390/math11132949 doi: 10.3390/math11132949 |
[5] | K. W. Chen, Y. H. Chen, Infinite series containing generalized harmonic functions, Notes Number Theory Discrete Math., 26 (2020), 85–104. https://doi.org/10.7546/nntdm.2020.26.2.85-104 doi: 10.7546/nntdm.2020.26.2.85-104 |
[6] | K. W. Chen, C. L. Chung, M. Eie, Sum formulas and duality theorems of multiple zeta values, J. Number Theory, 158 (2016), 33–53. https://doi.org/10.1016/j.jnt.2015.06.014 doi: 10.1016/j.jnt.2015.06.014 |
[7] | W. Chu, Three symmetric double series by telescoping, Am. Math. Mon., 130 (2023), 468–477. https://doi.org/10.1080/00029890.2023.2176669 doi: 10.1080/00029890.2023.2176669 |
[8] | M. Eie, The Theory of Multiple Zeta Values with Applications in Combinatorics, Singapore: World Scientific, 2013. |
[9] | M. E. Hoffman, Multiple harmonic series, Pac. J. Math., 152 (1992), 275–290. http://dx.doi.org/10.2140/pjm.1992.152.275 doi: 10.2140/pjm.1992.152.275 |
[10] | M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra, 194 (1997), 477–495. https://doi.org/10.1006/jabr.1997.7127 doi: 10.1006/jabr.1997.7127 |
[11] | K. Ihara, M. Kaneko, D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math., 142 (2006), 307–338. https://doi.org/10.1112/S0010437X0500182X doi: 10.1112/S0010437X0500182X |
[12] | M. Kaneko, S. Yamamoto, A new integral-series identity of multiple zeta values and regularizations, Sel. Math. New Ser., 24 (2018), 2499–2521. https://doi.org/10.1007/s00029-018-0400-8 doi: 10.1007/s00029-018-0400-8 |
[13] | R. Li, Generalized alternating hyperharmonic numbers sums with reciprocal binomial coefficients, J. Math. Anal. Appl., 504 (2021), 125397. https://doi.org/10.1016/j.jmaa.2021.125397 doi: 10.1016/j.jmaa.2021.125397 |
[14] | Z. Li, C. Qin, Shuffle product formulas of multiple zeta values, J. Number Theory, 171 (2017), 79–111. https://doi.org/10.1016/j.jnt.2016.07.013 doi: 10.1016/j.jnt.2016.07.013 |
[15] | S. M. Ripon, Generalization of harmonic sums involving inverse binomial coefficients, Integral Transforms Spec. Funct., 25 (2014), 821–835. https://doi.org/10.1080/10652469.2014.928705 doi: 10.1080/10652469.2014.928705 |
[16] | A. Sofo, Harmonic sums and integral representations, J. Appl. Anal., 16 (2010), 265–277. https://doi.org/10.1515/JAA.2010.018 doi: 10.1515/JAA.2010.018 |
[17] | A. Sofo, Harmonic number sums in higher powers, J. Math. Anal., 2 (2011), 15–22. |
[18] | A. Sofo, Quadratic alternating harmonic numbers sums, J. Number Theory, 154 (2015), 144–159. https://doi.org/10.1016/j.jnt.2015.02.013 doi: 10.1016/j.jnt.2015.02.013 |
[19] | S. Yamamoto, Multiple zeta-star values and multiple integrals, RIMS Kôkyûroku Bessatsu, B68 (2017), 3–14. |
[20] | S. Yamamoto, Integrals associated with $2$-posets and applications to multiple zeta values, RIMS Kôkyûroku Bessatsu, B83 (2020), 27–46. |