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Abstract: Yamamoto’s integral was the integral associated with 2-posets, which was first introduced
by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and
reciprocal of binomial coefficients by using some techniques of Yamamoto’s integral. We determine
the value of infinite series of the form:∑

m1,...,mn,ℓ1,...,ℓk≥1

H(a1)
m1 · · ·H

(an)
mn

mb1
1 · · ·m

bn
n ℓ

c1
1 · · · ℓ

ck
k

(
m1+···+mn+ℓ1+···+ℓk

ℓk

) ,
in terms of a finite sum of multiple zeta values, for positive integers a1, . . . , an, b1, . . . , bn, c1, . . . , ck.

Keywords: multiple zeta values; harmonic numbers; binomial coefficients; Yamamoto’s
integral; 2-poset
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1. Introduction

Given a r-tuple α = (α1, α2, . . . , αr) of positive integers with αr ≥ 2, a multiple zeta value ζ(α)
(MZV) is defined to be [6, 8, 9]

ζ(α) =
∑

1≤k1<k2<···<kr

1
kα1

1 kα2
2 · · · k

αr
r
.

We let {a}k be k repetitions of a such that ζ({1}3, 3) = ζ(1, 1, 1, 3) and ζ(2, {3}2, 5) = ζ(2, 3, 3, 5).
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The generalized harmonic numbers are defined by

H(s)
0 = 0 and H(s)

n =

n∑
j=1

1
js ,

where s and n are positive integers. In particular, H(1)
n = Hn is the classical harmonic number. The

famous formula
∞∑

n=1

Hn

n2 = 2ζ(3)

was discovered by Euler. Series incorporating harmonic numbers find application in various
mathematical disciplines and related fields [1, 2, 5]. It is well-known that binomial coefficients play a
crucial role in various subjects, such as combinatorics, graph theory, number theory, and probability.

Sofo [16, 17] discovered closed-form representations for sums involving harmonic numbers with
reciprocal binomial coefficients of various forms:

∞∑
n=1

H(p)
n(

n+k
k

) , ∞∑
n=1

H(p)
n

n
(

n+k
k

) , and
∞∑

n=1

H2
n(

n+k
k

) .
In the literature, numerous papers explore infinite sums involving reciprocals of binomial and

harmonic numbers [1, 13, 15, 18]. Recently, Chu [7] investigated double series of the following forms:∑
n,m≥1

Hn

nm
(

m+n
m

) = 2ζ(3), and
∑

n,m≥1

Hn+m

nm
(

m+n
m

) = 3ζ(3).

Additionally, the first author [4] developed q-analogues of such series. It prompts us to explore this
general type of series further. This paper focuses on determining the value of an infinite series given
by the expression: ∑

m1,...,mn,ℓ1,...,ℓk≥1

H(a1)
m1 · · ·H

(an)
mn

mb1
1 · · ·m

bn
n ℓ

c1
1 · · · ℓ

ck
k

(
m1+···+mn+ℓ1+···+ℓk

ℓk

) . (1.1)

This series is evaluated as a finite sum of MZVs, with the parameters being positive integers
a1, . . . , an, b1, . . . , bn, c1, . . . , ck. For example,∑

m,n≥1

HmHn

manb
(

m+n
m

) = ζ(1, a, {1}b−2, 3) + ζ(b + 1, {1}a−2, 3)

+ζ(a + 1, {1}b−2, 3) + ζ(a + 1, {1}b−1, 2),

where a, b are positive integers. It is noted that for our convenience, we denote ζ(a1, . . . , an, {1}−1, c) as
ζ(a1, . . . , an + c − 1). Therefore, we have∑

m,n≥1

HmHn

mn
(

m+n
m

) = 3ζ(4) =
π4

30
.

In the next section, we introduce the algebraic structure for MZVs, as originally proposed by
Hoffman [10]. Furthermore, we present a combinatorial generalization of the iterated integral
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associated with a 2-poset, represented by a Hasse diagram. These integrals are referred to as
Yamamoto’s integrals [19, 20]. In Section 3, for given positive integers n and a1, a2, . . . , an, we
determine the value of ∑

m1,...,mn≥1

1

ma1
1 ma2

2 · · ·m
an
n

(
m1+···+mn

mn

)
in terms of MZVs. Then, in Section 4, we express the value of

∑
m1,...,mn≥1

H(a1)
m1−1H(a2)

m2−1 · · ·H
(an)
mn−1

mb1
1 mb2

2 · · ·m
bn
n

(
m1+···+mn

mn

)
using MZVs, where n and a1, . . . , an, b1, . . . , bn are positive integers. Finally, we present the conclusion
of our main results in Section 5, along with additional concrete examples. For example,∑

m,n≥1

H(2)
n

mn
(

m+n
m

) = ζ(2, 2) + ζ(4),
∑

m,n≥1

H(2)
n

m2n2
(

m+n
m

) = ζ(2, 2, 2) + ζ(4, 2),

∑
m,n≥1

H(3)
n

m3n3
(

m+n
m

) = ζ(3, 3, 1, 2) + ζ(6, 1, 2),
∑

m,n,k≥1

Hk

mnk
(

m+n+k
k

) = 2ζ(4) + 2ζ(1, 3).

2. Algebraic settings and integrals associated with 2-posets

We review the algebraic setup of MZVs introduced by Hoffman [10]. Let Q⟨x, y⟩ be the Q-algebra
of polynomials in two noncommutative variables which is graded by the degree (where each of the
variables x and y is assumed to be of degree 1); we identify the algebra Q⟨x, y⟩ with the graded Q-
vector space H spanned by the monomials in the variables x and y.

We also introduce the graded Q-vector spaces H0 ⊂ H1 ⊂ H by H1 = Q1
⊕

xH, H0 = Q1
⊕

xHy,
where 1 denotes the unit (the empty word of weight 0 and length 0) of the algebra H. A word starts
with x and ends with y, and we refer to such words as “admissible.” In other words, the subalgebra
H0 is generated by admissibile words. Let Z : H0 → R be the Q-linear map that assigns to each word
u1u2 · · · uk in H0, where ui ∈ {x, y}, the multiple integral∫

0<t1<···<tk<1
wu1(t1)wu2(t2) · · ·wuk(tk). (2.1)

Here, wx(t) = dt/(1−t), wy(t) = dt/t. As the word u1u2 · · · uk is in H0, we always have wu1(t) = dt/(1−t)
and wuk(t) = dt/t, so the integral converges. The space H1 can be regarded as the subalgebra of Q⟨x, y⟩
generated by the words zs = xys−1 (s = 1, 2, 3, . . .).

Let us define the bilinear product� (the shuffle product) on H by the rules

1� w = w� 1 = w, (2.2)

for any word w, and
w1x1� w2x2 = (w1� w2x2)x1 + (w1x1 � w2)x2, (2.3)

for any words w1, w2, any letters xi = x or y (i = 1, 2), and then extend the above rules to the whole
algebra H and the whole subalgebra H1 by linearity. It is known that each of the above products

AIMS Mathematics Volume 9, Issue 7, 16885–16900.



16888

is commutative and associative. We denote the algebras (H1,+,�) by H1
�

. By the standard shuffle
product identity of iterated integrals, the evaluation map Z is again an algebra homomorphism for the
multiplication� [11]:

Z(w1 � w2) = Z(w1)Z(w2). (2.4)

Yamamoto [19] introduced a combinatorial generalization of the iterated integral, the integral
associated with a 2-poset. We review the definitions and basic properties of 2-labeled posets (we will
call them 2-posets for short in this paper) and the associated integrals first introduced by
Yamamoto [19].

Definition 2.1. [12, Definition 3.1] A 2-poset is a pair (X, δX), where X = (X,≤) is a finite partially
ordered set (poset for short) and δX is a map from X to {0, 1}. We often omit δX and simply say
“a 2-poset X.” The δX is called the label map of X.

A 2-poset (X, δX) is called admissible if δX(x) = 0 for all maximal elements x ∈ X and δX(x) = 1 for
all minimal elements x ∈ X.

A 2-poset is depicted as a Hasse diagram in which an element x with δ(x) = 0 (resp. δ(x) = 1) is
represented by ◦ (resp. •). For example, the diagram

•

◦

◦

•

◦

represents the 2-poset X = {x1, x2, x3, x4, x5} with order x1 < x2 < x3 > x4 < x5 and label
(δX(x1), . . . , δX(x5)) = (1, 0, 0, 1, 0).

Definition 2.2. [12, Definition 3.2] For an admissible 2-poset X, we define the associated integral

I(X) =
∫
∆X

∏
x∈X

ωδX(x)(tx), (2.5)

where
∆X =

{
(tx)x ∈ [0, 1]X

∣∣∣ tx < ty if x < y
}

and ω0(t) =
dt
t
, ω1(t) =

dt
1 − t
.

Note that the admissibility of a 2-poset corresponds to the convergence of the associated integral.
We also recall an algebraic setup for 2-posets (cf. Remark at the end of §2 of [19]). Let P be the Q-
algebra generated by the isomorphism classes of 2-posets, whose multiplication is given by the disjoint
union of 2-posets. Then, the integral (2.5) defines a Q-algebra homomorphism I : P0 → R from the
subalgebra P0 of P generated by the classes of admissible 2-posets. We refer to this type of integral as
Yamamoto’s integral.

It is known that [20] there is a Q-linear map

W : P→ H, (2.6)

which transforms a 2-poset into a finite sum of words in x and y. This transformation is characterized by
the following two conditions: The first condition states that for a totally ordered X = x1 < x2 < · · · < xk,
W(X) = zδ(x1)zδ(x2) · · · zδ(xk), and the second condition asserts that if a and b are noncomparable in X,
then W(X) can be expressed as W(Xb

a) +W(Xa
b), where Xb

a represents the 2-poset obtained from X by
adjoining a new relation a < b. This W sends P0 onto H0 and satisfies I = Z ◦W : P0 → R.
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Here, we present three known examples in [19, 20]: For an index α = (α1, . . . , αr) (admissible or
not), we write the ‘totally ordered’ diagram:

•

◦

◦

•

◦

•

◦

◦

α1

αr

as
•

α

◦

.

For an index β = (β1, β2, . . . , βm), we write the following diagram:

•

◦

◦

• •

◦

◦

•

◦

◦βm β2 β1

as
•

β
◦
.

Then, if α and β are admissible, we have [20, Propositions 2.4 and 2.7]

ζ(α) = I
(
•

α

◦)
, and ζ⋆(β) = I

(
•

β
◦)
. (2.7)

For example,

ζ(1, 2) = I
(
•

(1,2)
◦)
= I

(
•

1 •
◦

2

)
, ζ⋆(2, 3) = I

(
•

(2,3)
◦ )
= I


•

◦

◦

•

◦3
2

 .
The last example is the MZV of Mordell-Tornheim type which is defined by the series

ζMT (s1, . . . , sr−1; sr) =
∑

m1,...,mr≥1

1
ms1

1 · · ·m
sr−1
r−1 (m1 + · · · + mr−1)sr

.

They have the following integral form [20, Proposition 2.8]

ζMT (s1, . . . , sr−1; sr) = I


◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

s1 s2 sr−1

sr


.

3. Series with reciprocal of binomial coefficients

We first address the basic form of double series, employing primarily the approach of evaluating
Yamamoto’s integral using both integral and series modes separately.

Theorem 3.1. For integers a ≥ 0 and b ≥ 0, we have∑
m,n≥1

1

ma+1nb+1
(

m+n
m

) = ζ(a + 1, {1}b−1, 2). (3.1)
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Proof. Using Eq (2.7), we know that

I

• ◦
◦

•

•

◦

a

b

= ζ(a + 1, {1}b−1, 2). (3.2)

On the other hand, we evaluate this Yamamoto’s integral as follows.

I

• ◦
◦

•

•

◦

a

b

=

∫
0<t1<t2<···<ta+1<s1<···<sb+1<1

dt1

1 − t1

dt2

t2
· · ·

dta+1

ta+1

ds1

1 − s1
· · ·

dsb

1 − sb

dsb+1

sb+1
.

We treat this integral as ∫ 1

0
A(s1)B(s1)

ds1

1 − s1
,

where

A(s1) =
∫

0<t1<t2<···<ta+1<s1

dt1

1 − t1

dt2

t2
· · ·

dta+1

ta+1
and B(s1) =

∫
s1<s2<···<sb+1<1

ds2

1 − s2
· · ·

dsb

1 − sb

dsb+1

sb+1
.

We represent A(s1) and B(s1) as a power series:

A(s1) =
∑
m≥1

sm
1

ma+1 and B(s1) =
∑
n≥1

(1 − s1)n

nb .

Therefore, ∫ 1

0
A(s1)B(s1)

ds1

1 − s1
=

∑
n,m≥1

1
ma+1nb

∫ 1

0
sm

1 (1 − s1)n−1 ds1.

Since the integral in the righthand side is the beta function, we obtain∑
m,n≥1

Γ(m + 1)Γ(n)
ma+1nbΓ(m + n + 1)

=
∑

m,n≥1

1

ma+1nb+1
(

m+n
m

) .
Combing Eq (3.2), we conclude our result. □

Next, we generalize the result stated in the theorem above to a more general form.

Theorem 3.2. Given n + 1 nonnegative integers a1, a2, . . . , an and s with
∑n

i=1 ai = w, we have∑
m1,...,mn+1≥1

1

ma1+1
1 ma2+1

2 · · ·man+1
n ms+1

n+1

(
m1+···+mn+1

mn+1

) (3.3)

=
∑

d1+···+dn=w
di>=0,∀i

ζ(d1 + 1, . . . , dn + 1, {1}s−1, 2)
∑
σ∈S n

σa

 n∏
j=2

( ∑n
k= j dk −

∑n
k= j+1 ak

a j

) ,
where S n is the symmetric group of n objects and σa is induced permutations of σ ∈ S n on the set
{a1, a2, . . . , an}.
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Proof. Consider the following Yamamoto’s integral

A = I


•

•

•

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

a1 a2 an

s


.

We use the map W which is defined in Eq (2.6) to transform the n legs in the 2-poset as
(xya1 , xya2 , . . . , xyan). Since (see [3, Eq (4.6)])

xya1
� xya2

� · · ·� xyan =
∑

d1+···+dn=w
di>=0,∀i

n∏
ℓ=1

xydℓ
∑
σ∈S n

σa

 n∏
j=2

(∑n
k= j dk −

∑n
k= j+1 ak

a j

) ,
where S n is the symmetric group of n objects and σa is induced permutations of σ ∈ S n on the set
{a1, a2, . . . , an}. Then, we shuffle them together as a totally ordered diagram, and by Eq (2.7) we have

A =
∑

d1+···+dn=w
di>=0,∀i

ζ(d1 + 1, . . . , dn + 1, {1}s−1, 2)
∑
σ∈S n

σa

 n∏
j=2

( ∑n
k= j dk −

∑n
k= j+1 ak

a j

) . (3.4)

On the other hand, we write the Yamamoto’s integral as follows.

A =
∫ 1

0
B1(t)B2(t) · · · Bn(t) ·C(t)

dt
1 − t
,

where

Bi(t) =
∫

0<t(i)1 <t(i)2 <···<t(i)ai+1<t

dt(i)
1

1 − t(i)
1

dt(i)
2

t(i)
2

· · ·
dt(i)

ai+1

t(i)
ai+1

and C(t) =
∫

t<u1<···<us<1

du1

1 − u1
· · ·

dus−1

1 − us−1

dus

us
.

We expand them into a power series:

Bi(t) =
∑
mi≥1

tmi

mai+1
i

and C(t) =
∑

mn+1≥1

(1 − t)mn+1

ms
n+1

.

Therefore,

A =
∑

m1,...,mn+1≥1

1

ma1+1
1 · · ·man+1

n ms
n+1

∫ 1

0
tm1+···+mn(1 − t)mn+1−1 dt.

Given that the integral on the righthand side is the beta function, we deduce that

A =
∑

m1,...,mn+1≥1

1

ma1+1
1 ma2+1

2 · · ·man+1
n ms+1

n+1

(
m1+···+mn+1

mn+1

) . (3.5)

Combining the two expressions for A given by Eqs (3.4) and (3.5), we obtain the desired formula. □
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4. Series involving harmonic numbers

In this section, we begin by computing the double series form where the numerator involves
harmonic numbers.

Theorem 4.1. Given three nonnegative integers a, b, c, we have∑
m,n≥1

H(a+1)
n−1

nb+1mc+1
(

m+n
m

) = ζ(a + 1, b + 1, {1}c−1, 2). (4.1)

Proof. Consider the following Yamamoto’s integral:

A = I


•

◦

◦

•

◦

◦

•

•

◦

a

b

c

.

Using Eq (2.7), we know that

A = ζ(a + 1, b + 1, {1}c−1, 2). (4.2)

On the other hand, we evaluate this Yamamoto’s integral as follows.

A =
∫
∆

dt1

1 − t1

dt2

t2
· · ·

dta+1

ta+1

ds1

1 − s1

ds2

s2
· · ·

dsb+1

sb+1

dw1

1 − w1
· · ·

dwc

1 − wc

dwc+1

wc+1
,

where ∆ is a simplex in [0, 1]a+b+c+3 with

t1 < · · · < ta+1 < s1 < · · · < sb+1 < w1 < · · · < wc+1.

We treat this integral as ∫ 1

0
B(w1)C(w1)

dw1

1 − w1
,

where

B(w1) =
∫

0<t1<···<ta+1<s1<···<sb+1<w1

dt1

1 − t1

dt2

t2
· · ·

dta+1

ta+1

ds1

1 − s1

ds2

s2
· · ·

dsb+1

sb+1
,

C(w1) =
∫

w1<w2<···<wc+1<1

dw2

1 − w2
· · ·

dwc

1 − wc

dwc+1

wc+1
.

We represent B(w1) and C(w1) as a power series:

B(w1) =
∑

1≤k<n

wn
1

ka+1nb+1 and C(w1) =
∑
m≥1

(1 − w1)m

mc .

Therefore, ∫ 1

0
B(w1)C(w1)

dw1

1 − w1
=

∑
n,m≥1

H(a+1)
n−1

nb+1mc

∫ 1

0
wn

1(1 − w1)m−1 dw1.

Since the integral on the righthand side is the beta function, and by combining it with Eq (4.2), we
arrive at our result. □
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Next, we extend this to multiple series and sums where the numerator involves additional harmonic
numbers. However, before proceeding further, we will introduce some basic concepts regarding the
shuffle product identities that we will utilize.

The shuffle product can be described combinatorially. Utilizing the definition of the shuffle product
� in H, we readily obtain

u1u2 · · · un � un+1un+2 · · · un+m =
∑
σ∈S n,m

uσ(1)uσ(2) · · · uσ(n+m),

where ui ∈ {x, y} are letters, and

S n,m =

{
σ ∈ S n+m

∣∣∣∣∣∣ σ−1(1) < σ−1(2) < · · · < σ−1(n),
σ−1(n + 1) < σ−1(n + 2) < · · · < σ−1(n + m)

}
.

Therefore,

xya1 xyb1
� xya2 xyb2

� · · ·� xyan xybn =
∑

∑2n
i=1 di=

∑n
i=1(ai+bi)

di>=0,∀i

C(d1, . . . , d2n)
2n∏
j=1

xyd j , (4.3)

where C(d1, . . . , d2n) is a suitable constant depending on the variables d1, . . . , d2n.
Some explicit formulas can be found in [14].
Here, we express a formula of xyaxyb

� xycxyd as follows (ref. [14, Eq (2.11)]).

xyaxyb
� xycxyd (4.4)

=
∑

b1+b2+b3=b

(
b2 + c

b2

)(
b3 + d

b3

)
xyaxyb1 xyb2+cxyb3+d

+
∑

d1+d2+d3=d

(
d2 + a

d2

)(
d3 + b

d3

)
xycxyd1 xyd2+axyd3+b

+
∑

a1+a2=a
b1+b2=b
c1+c2=c

(
a2 + c1

a2

)(
c2 + b1

c2

)(
b2 + d

b2

)
xya1 xya2+c1 xyc2+b1 xyb2+d

+
∑

d1+d2=d
c1+c2=c
a1+a2=a

(
c2 + a1

c2

)(
a2 + d1

a2

)(
d2 + b

d2

)
xyc1 xyc2+a1 xya2+d1 xyd2+b

+
∑

a1+a2+a3=a
d1+d2=d

(
a2 + c

a2

)(
a3 + d1

a3

)(
d2 + b

d2

)
xya1 xya2+cxya3+d1 xyd2+b

+
∑

c1+c2+c3=c
b1+b2=b

(
c2 + a

c2

)(
c3 + b1

c3

)(
b2 + d

b2

)
xyc1 xyc2+axyc3+b1 xyb2+d.

Theorem 4.2. Given 2n + 2 nonnegative integers a1, . . . , an, b1, . . . , bn, and s, t with
∑n

i=1 ai + bi = w,
we have ∑

m1,...,mn+1≥1

H(a1+1)
m1−1 H(a2+1)

m2−1 · · ·H
(an+1)
mn−1 H(t+1)

mn+1−1

mb1+1
1 mb2+1

2 · · ·mbn+1
n ms+1

n+1

(
m1+···+mn+1

mn+1

) (4.5)
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=
∑

d1+···+d2n=w
di>=0,∀i

C(d1, . . . , d2n)ζ(d1 + 1, . . . , d2n + 1, {1}s−1, 2, {1}t−1, 2),

where C(d1, . . . , d2n) is defined in Eq (4.3).

Proof. Consider the following Yamamoto’s integral:

A = I


•

•

◦

•

•

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦
b1

a1

b2

a2

bn

an

s

t


.

We use the map W which is defined in Eq (2.6) to transform the n legs in the 2-poset as
(xya1 xyb1 , xya2 xyb2 , . . . , xyan xybn). Then, we shuffle them together (by Eq (4.3)) as a totally ordered
diagram, and by Eq (2.7) we have

A =
∑

d1+···+d2n=w
di>=0,∀i

C(d1, . . . , d2n)ζ(d1 + 1, . . . , d2n + 1, {1}s−1, 2, {1}t−1, 2). (4.6)

On the other hand, we write the Yamamoto’s integral as follows.

A =
∫ 1

0
B1(t)B2(t) · · · Bn(t) ·C(t)

dt
1 − t
,

where

Bi(t) =
∫

0<t1<···<tai+1<s1<···<sbi+1<t

dt1

1 − t1

dt2

t2
· · ·

dtai+1

tai+1

ds1

1 − s1

ds2

s2
· · ·

dsbi+1

sbi+1
,

C(t) =
∫

t<w2<···<ws+1<u1<···<ut+1<1

dw2

1 − w2
· · ·

dws

1 − ws

dws+1

ws+1

du1

1 − u1
· · ·

dut

1 − ut

dut+1

ut+1
.

We represent B(w1) and C(w1) as a power series:

Bi(t) =
∑

1≤ki<mi

tmi

kai+1
i mbi+1

i

and C(t) =
∑

1≤ℓ<mn+1

(1 − t)mn+1

ℓt+1ms
n+1
.

Therefore,

A =
∑

m1,...,mn+1≥1

H(a1+1)
m1−1 H(a2+1)

m2−1 · · ·H
(an+1)
mn−1 H(t+1)

mn+1−1

mb1+1
1 mb2+1

2 · · ·mbn+1
n ms

n+1

∫ 1

0
tm1+···+mn(1 − t)mn+1−1 dt.

Given that the integral on the righthand side is the beta function, we deduce that

A =
∑

m1,...,mn+1≥1

H(a1+1)
m1−1 H(a2+1)

m2−1 · · ·H
(an+1)
mn−1 H(t+1)

mn+1−1

mb1+1
1 mb2+1

2 · · ·mbn+1
n ms+1

n+1

(
m1+···+mn+1

mn+1

) . (4.7)

Combining the two expressions for A given by Eqs (4.6) and (4.7), we obtain the desired formula. □
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5. Main results and conclusions

Now, we treat the main result with the following fact [14]:

(
�

n
i=1xyai xybi

)
�

(
�

m
k=1xyck

)
=

∑
∑2n+m

i=1 di=
∑n

i=1(ai+bi)+
∑m

k=1 ck
di>=0,∀i

E(d1, . . . , d2n+m)
2n+m∏

j=1

xyd j , (5.1)

where E(d1, . . . , d2n+m) is a suitable constant depending on the variables d1, . . . , d2n+m.
Given 2n+m+1 nonnegative integers a1, . . . , an, b1, . . . , bn, c1, . . . , cm, s, with

∑n
i=1(ai+bi)+

∑m
k=1 ck =

w, we have

I


•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

•

◦

s

a1

b1

an

bn c1 cm


=

∑
k1,...,kn,ℓ1,...,ℓm+1≥1

H(a1+1)
k1−1 H(a2+1)

k2−1 · · ·H
(an+1)
kn−1

kb1+1
1 · · · kbn+1

n ℓc1+1
1 · · · ℓcm+1

m ℓs+1
m+1

(
k1+···+kn+ℓ1+···+ℓm+1

ℓm+1

)

=
∑

∑2n+m
i=1 di=w
di>=0,∀i

E(d1, . . . , d2n+m)ζ(d1 + 1, . . . , d2n+m + 1, {1}s−1, 2).

Since H(ai+1)
ki

= H(ai+1)
ki−1 +

1
kai+1

i

, in combination with Theorem 3.1, we conclude our main result.

Theorem 5.1. For any nonnegative integers n,m, a1, . . . , an, b1, . . . , bn, c1, . . . , cm, s, the following
infinite series ∑

k1,...,kn,ℓ1,...,ℓm+1≥1

H(a1+1)
k1

H(a2+1)
k2

· · ·H(an+1)
kn

kb1+1
1 · · · kbn+1

n ℓc1+1
1 · · · ℓcm+1

m ℓs+1
m+1

(
k1+···+kn+ℓ1+···+ℓm+1

ℓm+1

) (5.2)

can be expressed as a finite sum of MZVs.

In the following, we will provide concrete examples for clarification. Substitute b = 0 in
Theorem 3.1, and we have ∑

m,n≥1

1

ma+1n
(

m+n
m

) = ζ(a + 2).

This identity is appeared in [7, Proposition 5].
Since H(a+1)

n = H(a+1)
n−1 +

1
na+1 , utilizing Theorems 3.1 and 4.1, we deduce that

∑
m,n≥1

H(a+1)
n

mc+1nb+1
(

m+n
m

) = ζ(a + 1, b + 1, {1}c−1, 2) + ζ(a + b + 2, {1}c−1, 2). (5.3)

Letting a = b = c = 0 in Eq (5.3), we have (see [4, 7])∑
m,n≥1

Hn

mn
(

m+n
m

) = ζ(1, 2) + ζ(3) = 2ζ(3).

AIMS Mathematics Volume 9, Issue 7, 16885–16900.



16896

Let a = 1, b = c = 0, and we have ∑
m,n≥1

H(2)
n

mn
(

m+n
m

) = ζ(2, 2) + ζ(4). (5.4)

Let a = b = c = 1, and we have ∑
m,n≥1

H(2)
n

m2n2
(

m+n
m

) = ζ(2, 2, 2) + ζ(4, 2). (5.5)

Let a = b = c = 2, and we have∑
m,n≥1

H(3)
n

m3n3
(

m+n
m

) = ζ(3, 3, 1, 2) + ζ(6, 1, 2). (5.6)

In general, we set a = b = c ≥ 1, then∑
m,n≥1

H(a+1)
n

ma+1na+1
(

m+n
m

) = ζ(a + 1, a + 1, {1}a−1, 2) + ζ(2a + 2, {1}a−1, 2). (5.7)

Following the similar method, we have

I

• ◦
◦

•

◦

◦

•

•

◦

•

•

◦

a

b

d

c

=

∑
m,n≥1

H(a+1)
n−1 H(c+1)

m−1

nb+1md+1
(

m+n
m

) = ζ(a + 1, b + 1, {1}d−1, 2, {1}c−1, 2), (5.8)

where a, b, c, d are nonnegative integers. Similarly, we use Eq (5.4), Theorems 3.1 and 4.1 to get∑
m,n≥1

H(a+1)
n H(c+1)

m

nb+1md+1
(

m+n
m

) = ζ(a + 1, b + 1, {1}d−1, 2, {1}c−1, 2) + ζ(a + b + 2, {1}d−1, 2, {1}c−1, 2) (5.9)

+ζ(a + 1, b + 1, {1}c+d, 2) + ζ(a + b + 2, {1}c+d, 2).

In particular, we get∑
m,n≥1

HnHm

nm
(

m+n
m

) = ζ(1, 3) + ζ(4) + ζ(1, 1, 2) + ζ(2, 2) = 3ζ(4) =
π4

30
. (5.10)

If we consider the triple infinite series as examples, then we first apply Theorem 3.1 to get∑
m,n,k≥1

1

ma+1nb+1ks+1
(

m+n+k
k

) = ∑
a1+a2=a

(
a2 + b

a2

)
ζ(a1 + 1, a2 + b + 1, {1}s−1, 2) (5.11)
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+
∑

b1+b2=b

(
b2 + a

b2

)
ζ(b1 + 1, b2 + a + 1, {1}s−1, 2).

Then we evaluate

I


•

◦

◦

•

◦

◦

•

•

◦

•

•

◦

a b

s

t


=

∑
m,n,k≥1

H(t+1)
k−1

ma+1nb+1ks+1
(

m+n+k
k

) (5.12)

=
∑

a1+a2=a

(
a2 + b

a2

)
ζ(a1 + 1, a2 + b + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

b1+b2=b

(
b2 + a

b2

)
ζ(b1 + 1, b2 + a + 1, {1}s−1, 2, {1}t−1, 2).

Second, we consider the following Yamamoto’s integral

I


•

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

•

•

◦

a

b

c

d

s


=

∑
m,n,k≥1

H(a+1)
m−1 H(c+1)

n−1

mb+1nd+1ks+1
(

m+n+k
k

) (5.13)

=
∑

b1+b2+b3=b

(
b2 + c

b2

)(
b3 + d

b3

)
ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + 1, {1}s−1, 2)

+
∑

d1+d2+d3=d

(
d2 + a

d2

)(
d3 + b

d3

)
ζ(c + 1, d1 + 1, d2 + a + 1, d3 + b + 1, {1}s−1, 2)

+
∑

a1+a2=a
b1+b2=b
c1+c2=c

(
a2 + c1

a2

)(
c2 + b1

c2

)(
b2 + d

b2

)
ζ(a1 + 1, a2 + c1 + 1, c2 + b1 + 1, b2 + d + 1, {1}s−1, 2)

+
∑

d1+d2=d
c1+c2=c
a1+a2=a

(
c2 + a1

c2

)(
a2 + d1

a2

)(
d2 + b

d2

)
ζ(c1 + 1, c2 + a1 + 1, a2 + d1 + 1, d2 + b + 1, {1}s−1, 2)

+
∑

a1+a2+a3=a
d1+d2=d

(
a2 + c

a2

)(
a3 + d1

a3

)(
d2 + b

d2

)
ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, d2 + b + 1, {1}s−1, 2)

+
∑

c1+c2+c3=c
b1+b2=b

(
c2 + a

c2

)(
c3 + b1

c3

)(
b2 + d

b2

)
ζ(c1 + 1, c2 + a + 1, c3 + b1 + 1, b2 + d + 1, {1}s−1, 2).
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Third, we evaluate

I

• ◦
◦

•

◦

◦ ◦

◦

•

◦

◦

•

•

•

◦

•

•

◦

a

b

c

d

s

t

=

∑
m,n,k≥1

H(a+1)
m−1 H(c+1)

n−1 H(t+1)
k−1

mb+1nd+1ks+1
(

m+n+k
k

) (5.14)

=
∑

b1+b2+b3=b

(
b2 + c

b2

)(
b3 + d

b3

)
ζ(a + 1, b1 + 1, b2 + c + 1, b3 + d + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

d1+d2+d3=d

(
d2 + a

d2

)(
d3 + b

d3

)
ζ(c + 1, d1 + 1, d2 + a + 1, d3 + b + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

a1+a2=a
b1+b2=b
c1+c2=c

(
a2 + c1

a2

)(
c2 + b1

c2

)(
b2 + d

b2

)
ζ(a1 + 1, a2 + c1 + 1, c2 + b1 + 1, b2 + d + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

d1+d2=d
c1+c2=c
a1+a2=a

(
c2 + a1

c2

)(
a2 + d1

a2

)(
d2 + b

d2

)
ζ(c1 + 1, c2 + a1 + 1, a2 + d1 + 1, d2 + b + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

a1+a2+a3=a
d1+d2=d

(
a2 + c

a2

)(
a3 + d1

a3

)(
d2 + b

d2

)
ζ(a1 + 1, a2 + c + 1, a3 + d1 + 1, d2 + b + 1, {1}s−1, 2, {1}t−1, 2)

+
∑

c1+c2+c3=c
b1+b2=b

(
c2 + a

c2

)(
c3 + b1

c3

)(
b2 + d

b2

)
ζ(c1 + 1, c2 + a + 1, c3 + b1 + 1, b2 + d + 1, {1}s−1, 2, {1}t−1, 2).

Therefore, we have the formulas for∑
m,n,k≥1

H(t+1)
k

ma+1nb+1ks+1
(

m+n+k
k

) , ∑
m,n,k≥1

H(a+1)
m H(c+1)

n

mb+1nd+1ks+1
(

m+n+k
k

) , and
∑

m,n,k≥1

H(a+1)
m H(c+1)

n H(t+1)
k

mb+1nd+1ks+1
(

m+n+k
k

) .
As a final example, we list∑

m,n,k≥1

Hk

mnk
(

m+n+k
k

) = 2ζ(4) + 2ζ(1, 3) =
5
2
ζ(4) =

π4

36
. (5.15)

In this paper, we present a method for assessing the form described in Eq (5.2). Specifically, we
derive this assessment by evaluating a particular Yamamoto’s integral linked to a 2-poset Hasse diagram
in two distinct manners: one employs the shuffle relations with its corresponding Lyndon words, while
the other utilizes the corresponding summation expansions. Although we do not provide an explicit
closed formula for the multiple series in Eq (5.2), if all the parameters are provided, our method enables
us to derive the corresponding explicit expression as a linear combination of MZVs.
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