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Abstract: Yamamoto’s integral was the integral associated with 2-posets, which was first introduced
by Yamamoto. In this paper, we obtained the values of infinite series involving harmonic numbers and
reciprocal of binomial coefficients by using some techniques of Yamamoto’s integral. We determine
the value of infinite series of the form:
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1. Introduction

Given a r-tuple o = (a1, @y, ..., a,) of positive integers with @, > 2, a multiple zeta value {(c)
(MZV) is defined to be [6, 8,9]

1
)= ) o
2 r

1<k <kp <<k, 1

We let {a}* be k repetitions of a such that £({1}*,3) = £(1,1,1,3) and £(2,{3}%,5) = £(2, 3,3, 5).
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The generalized harmonic numbers are defined by

‘ : 1
H(()A) =0 and Hl(f) = Z =

where s and n are positive integers. In particular, H'” = H, is the classical harmonic number. The
famous formula

PIERIEY

n=1

was discovered by Euler. Series incorporating harmonic numbers find application in various

mathematical disciplines and related fields [1,2,5]. It is well-known that binomial coefficients play a

crucial role in various subjects, such as combinatorics, graph theory, number theory, and probability.
Sofo [16, 17] discovered closed-form representations for sums involving harmonic numbers with

reciprocal binomial coefficients of various forms:

H(P) o H(p)
> 2y Z
n+k 4 n+k n+k

n=1

In the literature, numerous papers explore infinite sums involving reciprocals of binomial and
harmonic numbers [1, 13, 15, 18]. Recently, Chu [7] investigated double series of the following forms:

S @), and Y 3,

m+n m+n
nm>1 nm( ) n,m=1 nm( m )

Additionally, the first author [4] developed g-analogues of such series. It prompts us to explore this
general type of series further. This paper focuses on determining the value of an infinite series given
by the expression:

H(al ) H(an)

fck(m1+ A1+l +t’k)
143

1.1
bl e bngcl . ( )
MY oMy 1 ey (=1 ml m, 1

This series is evaluated as a finite sum of MZVs, with the parameters being positive integers

ai,...,ayby,...,b,cy,...,c,. For example,
H,H,

pm+n

m,n>1 m‘n ( m )

{(La {(1)72,3) + L(b + 1,{1)",3)

+(a+ 1L,{1}753) + La+ 1,{1)771)2),

where a, b are positive integers. It is noted that for our convenience, we denote £(aj, . .., a,, {1}7!, ¢) as
{(ay,...,a, +c—1). Therefore, we have

H,H, nt
4) = —
o mn(m’;—n) {( ) =

In the next section, we introduce the algebraic structure for MZVs, as originally proposed by
Hoffman [10]. Furthermore, we present a combinatorial generalization of the iterated integral
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associated with a 2-poset, represented by a Hasse diagram. These integrals are referred to as
Yamamoto’s integrals [19, 20]. In Section 3, for given positive integers n and ay,a,,...,a,, we
determine the value of .

Z m1+---+m,,)

a1 a2 .« .. an
my,..,m,>1 m] m2 m, ( my,

in terms of MZVs. Then, in Section 4, we express the value of

H(alz H(@z - H(anz
Z mi—1""mp—1 mu—1
bi by . mzrl(ml+"'+Mn)

my>1 1My 1My My

using MZVs, wherenand a4, ..., a,, by, ..., b, are positive integers. Finally, we present the conclusion
of our main results in Section 5, along with additional concrete examples. For example,

HY HO
() €2.2) + @), 2. () £(2,2,2) +{(4,2),
m,n>1 m m’n>1 m
(3
s = £(3,3,1,2)+(6,1,2), iy = 204 +2£01,3).

2. Algebraic settings and integrals associated with 2-posets

We review the algebraic setup of MZVs introduced by Hoffman [10]. Let Q(x, y) be the Q-algebra
of polynomials in two noncommutative variables which is graded by the degree (where each of the
variables x and y is assumed to be of degree 1); we identify the algebra Q(x,y) with the graded Q-
vector space £ spanned by the monomials in the variables x and y.

We also introduce the graded Q-vector spaces H° € ' ¢ H by H! = Q1 P x9, 9° = Q1 P x9y,
where 1 denotes the unit (the empty word of weight 0 and length 0) of the algebra $. A word starts
with x and ends with y, and we refer to such words as “admissible.” In other words, the subalgebra
" is generated by admissibile words. Let Z : $° — R be the Q-linear map that assigns to each word
uiuy -+ uy in H°, where u; € {x, y}, the multiple integral

f W (01 Wy (2) - - Wi (1. @1
O<ty<--<fr<l1

Here, w.(t) = dt/(1—1), wy(t) = dt/t. Asthe word u;u; - - - uy is in $°, we always have wy, (1) =dt/(1-1)
and w,, (t) = dt/t, so the integral converges. The space $' can be regarded as the subalgebra of Q(x, y)
generated by the words z, = xy*! (s = 1,2,3,...).

Let us define the bilinear product LU (the shuffle product) on $ by the rules

lww=wwl=w, 2.2)

for any word w, and
wiX) W woaxy, = (Wl L W2X2))C1 + (W1X1 L W2)x2, (23)

for any words wy, w,, any letters x; = x or y (i = 1,2), and then extend the above rules to the whole
algebra $ and the whole subalgebra $' by linearity. It is known that each of the above products
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is commutative and associative. We denote the algebras (', +, L) by Sf)L. By the standard shuffle
product identity of iterated integrals, the evaluation map Z is again an algebra homomorphism for the
multiplication U [11]:

Z(wy Wwy) = Z(w1)Z(wy). (2.4)

Yamamoto [19] introduced a combinatorial generalization of the iterated integral, the integral
associated with a 2-poset. We review the definitions and basic properties of 2-labeled posets (we will
call them 2-posets for short in this paper) and the associated integrals first introduced by
Yamamoto [19].

Definition 2.1. [12, Definition 3.1] A 2-poset is a pair (X, 0x), where X = (X, <) is a finite partially
ordered set (poset for short) and Jx is a map from X to {0, 1}. We often omit dx and simply say
“a 2-poset X.” The 6y is called the label map of X.

A 2-poset (X, 0x) is called admissible if 6x(x) = 0 for all maximal elements x € X and 6x(x) = 1 for
all minimal elements x € X.

A 2-poset is depicted as a Hasse diagram in which an element x with 6(x) = 0 (resp. d(x) = 1) is
represented by o (resp. e). For example, the diagram

i

represents the 2-poset X = {x,xy, X3, X4, X5} with order x; < x, < x3 > x4 < xs and label
(0x(x1), - - ., 0x(x5)) = (1,0,0, 1, 0).

Definition 2.2. [12, Definition 3.2] For an admissible 2-poset X, we define the associated integral

1) = | [ ]wsnw (2.5)
Ax yex
where » .,
t
AX = {(tx)x € [0’ I]X | 1, < ty if x < y} and (1)0([) = 7, (,()l(t) = 1_t

Note that the admissibility of a 2-poset corresponds to the convergence of the associated integral.
We also recall an algebraic setup for 2-posets (cf. Remark at the end of §2 of [19]). Let B be the Q-
algebra generated by the isomorphism classes of 2-posets, whose multiplication is given by the disjoint
union of 2-posets. Then, the integral (2.5) defines a Q-algebra homomorphism 7: P — R from the
subalgebra B of P generated by the classes of admissible 2-posets. We refer to this type of integral as
Yamamoto’s integral.

It is known that [20] there is a Q-linear map

WP = $, (2.6)

which transforms a 2-poset into a finite sum of words in x and y. This transformation is characterized by
the following two conditions: The first condition states that for a totally ordered X = x; < x; < -+ < Xz,
W(X) = Zsx)2s(xy) * * * Z6(x,)» and the second condition asserts that if ¢ and b are noncomparable in X,
then W(X) can be expressed as W(X,’l’) + W(X}), where Xg represents the 2-poset obtained from X by
adjoining a new relation a < b. This W sends B° onto $° and satisfies I = Zo W : P — R.
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Here, we present three known examples in [19,20]: For an index @ = (ay,..., @,) (admissible or
not), we write the ‘totally ordered” diagram:

as

For an index 3 = (81,02, . . . ,Bn), we write the following diagram:

ﬁ//\ _______ ﬁﬂ\ﬁ/ﬁ as Ve Ve

Then, if o and 3 are admissible, we have [20, Propositions 2.4 and 2.7]

dc@=i(F).we c@=1E, @)

For example,

The last example is the MZV of Mordell-Tornheim type which is defined by the series
1

...mi’_‘ll(ml + ... +mr_1)sr.

gMT(Sl"--’S}’—l;sr): Z S1
m

Mmp,...,mMp2> 1

They have the following integral form [20, Proposition 2.8]

I)
Cur(Sts ooy s-138,) =1 A\

3. Series with reciprocal of binomial coefficients

We first address the basic form of double series, employing primarily the approach of evaluating
Yamamoto’s integral using both integral and series modes separately.

Theorem 3.1. For integers a > 0 and b > 0, we have

Z S =¢(a+1,{1)"7,2). 3.1)

ma+1pb+l (m+n)

mn>1 m
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Proof. Using Eq (2.7), we know that

1 // = (a+1,{1}7,2). 3.2)

On the other hand, we evaluate this Yamamoto’s integral as follows.

l

I a / _ f dtl @ . dta+1 ds1 o dsb dsb-l—l.
/ 0<t) <tr<--<tgy1 <851 <-<Sps1<1 I- nhn o+l I- S 1 - Sp Sp+1
We treat this integral as
! dSl
A(S])B(Sl)l ;
0 )
where
dt, dt dt, d ds, d
A(Sl):f L2220 and B(s1)=f 52 .. _%% %Sev1
0<t <ty <-+<lgs1<S1 -1 o Lav1 S1<8p<<5pp1<1 I -5 I —sp Spe

We represent A(s;) and B(s;) as a power series:

m

1- n
A=) —o and By =), (n—bs‘)

m>1 nx1

! dsi 1 L -
; A(Sl)B(Sl)l — s = Z W . Sl(l —Sl) dSl.

nm>1

Therefore,

Since the integral in the righthand side is the beta function, we obtain

I'(m+ DI'(n) 3 1
Z m T +n+ 1) Z Wﬂ(’”")'

mn>1 m,n>1 m

Combing Eq (3.2), we conclude our result.

Next, we generalize the result stated in the theorem above to a more general form.

Theorem 3.2. Given n + 1 nonnegative integers ay, ay, . ..,a, and s with )., a; = w, we have

2 1
ar+l_a)+1 a,+1 s+l(m1+"'+mn+l)

MY yeeny My+1=>1 m] m2 o mn m}’l+1 My+1
n n d n
— =ik — 2ik=i+1 Gk
= Y ddi+Led 10 ‘,2)Zaa{ﬂ(z’” " ey )}
di+tdy=w 0€S, j=2 J
di>=0,Yi

(3.3)

where S, is the symmetric group of n objects and o, is induced permutations of o € S, on the set

{abaZa e aan}'
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Proof. Consider the following Yamamoto’s integral

We use the map W which is defined in Eq (2.6) to transform the n legs in the 2-poset as
(xy™, xy®, ..., xy*). Since (see [3, Eq (4.6)])

i 3 [l gl )
J

di+—+d,=w €=1 og€eSs, J=2
di>=0,Yi

where S, is the symmetric group of n objects and o, is induced permutations of oo € S, on the set
{ai,ay,...,a,}. Then, we shuffle them together as a totally ordered diagram, and by Eq (2.7) we have

A= > g(dl+1,...,dn+1,{1}f-1,2)zaa{ﬂ(ZZ:fdk;jZZ:f““")}. (3.4)

di+-+dp=w og€es, Jj=2
d,'>:O,Vi

On the other hand, we write the Yamamoto’s integral as follows.

1 dt
A= f Bl(t)Bz(f)"'Bn(f)'C(t)l_»
0 -t

where
D 0
ai’ a)  di) du, du,_, du
Bz'(t):f - 5w and C(t)=f R 3
0<r? <tV <ect® <t 1- 1ot 1 t<uy <-<ug<l I —u I —usy ug

We expand them into a power series:

m; 1_ Mp+1
B()=Y mtai+l and c= Y =0

mi>1 """ Mps121 n+l

1 b
— [ +eetmy _ mys1—1
A= Z — —— fot (1—1) dr.

Myy121 ml Ty mn+1

Therefore,

Given that the integral on the righthand side is the beta function, we deduce that

1
A= Z ar+l ar+1 an+1 S+1(m1+"'+mn+l). 3.5

My 21 ml m2 o mn ml’H—l Myt

Combining the two expressions for A given by Egs (3.4) and (3.5), we obtain the desired formula. O

AIMS Mathematics Volume 9, Issue 7, 16885-16900.



16892

4. Series involving harmonic numbers

In this section, we begin by computing the double series form where the numerator involves

harmonic numbers.

Theorem 4.1. Given three nonnegative integers a, b, c, we have
(a+1)

> =@+ 1,b+ 1,{1F7,2).

m+n
gy nb+1mc+l( " )

Proof. Consider the following Yamamoto’s integral:

Using Eq (2.7), we know that
A=Cl(a+1,b+1,{1)"2).

On the other hand, we evaluate this Yamamoto’s integral as follows.

dWC dWc+l

A—f dl] dlz dfa+1 dS] dSz dS}H_] dWl
A

-t n a1 1 =51 8 Spe1 1 —wy

where A is a simplex in [0, 1]97+¢*3 with

< o <lp <81 << Spyp <wp <00 < Weyt.

We treat this integral as

1
dW]
f B(w1)C(wy) ,
0 1-
where
B(wy) f dt; dt dt,.1 ds; ds,
Wl = —_— e — e .
0<t] <-<lgy] <81 <-+<Spe1<WI -t 1 tar1 1 =51 82
dw, dw,. dwq4
Cow)) = f oW Wit
Wi <Wp<--<Wey1<1 L —ws I —we Weq

We represent B(w;) and C(w,) as a power series:

Wi (1 —w)"
B(Wl) = Z kaTl,llb-i-l and C(Wl) = Z Tcl

1<k<n m>1

Therefore,
(a+1)

° b
I- We Wetd

dsps

Sb+1

1 1
dWl Hn—l n m—1
fo Bv)Con)y—— = )~ fo Wil —w)" ™ dw,.

1 n,m>1

b

4.1)

(4.2)

Since the integral on the righthand side is the beta function, and by combining it with Eq (4.2), we

arrive at our result.

AIMS Mathematics
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Next, we extend this to multiple series and sums where the numerator involves additional harmonic
numbers. However, before proceeding further, we will introduce some basic concepts regarding the
shuffle product identities that we will utilize.

The shuffle product can be described combinatorially. Utilizing the definition of the shuffle product
LU in $, we readily obtain

Uy =+ Uy W Uy Unpsp " Upem = § Us(H)Ua2) " * " Ug(n+m)>

€S nm
where u; € {x, y} are letters, and
ol <o Q)< - <o l(n),
Som =90 €Snim -1 -1 _1 .
’ ocom+l)<oT(n+2)<---<o ' (n+m)
Therefore,
2n
xyalxybl LL] xyazxbe L] -~ L xya"xyb" = Z C(dl, RN dzn) l_[ xydj, (43)
T =Yl (ai+hi) J=1
d,'>:O,Vi

where C(d,, .. .,d,,) is a suitable constant depending on the variables d, . .., d,,.
Some explicit formulas can be found in [14].
Here, we express a formula of xy“xy” L xy“xy? as follows (ref. [14, Eq (2.11)]).

xy“xy” L xy“xy? 4.4)
by +c\[(bs +d
_ Z ( 2b )( 3b )xyaxybl xyh2+c xyb3+d

by+by+hy=b 2 3

+ (d2d+ a)(d3d+ b)xy” xydl xyd2+a xyd3+b
d+dordy=d \ ©2 3

+ Z a, + ci1\[cr + bl b2 + d xya|xya2+c1xycz+b|xyb2+d
ay+ar=a a 2 b2
by+by=b
L‘|+L‘2:(‘

+ Z (Cz + 611) a + dl)(dZ + b)xyclxch+a|xya2+d1 xyd2+b
dy+dy=d €2 az da
(7| +('2:C
al+a2:a

N Z (Clz +c (a3 + d1)(d2 + b)xyalxya2+c Xy ey
ay+ay+az=a a2 a3 d2

dy+dy=d

+ Z Cr +a (C3 + b])(b2 + d xyclxycz+axyc3+blxyb2+d’

cpteptez=c C2 C3 b2
by+by=b

Theorem 4.2. Given 2n + 2 nonnegative integers a, ..., ay, by, ..., b, and s,t with },;_, a; + b; = w,

we have
(a1+1) ry(az+1) (an+1) ry(t+1)
Z Hml—l Hmz—l Hmn—l Hm,Hl—l (4 5)
bi+l by+1l byl st (mytetmg '
mi,..., m)H-IZl ml m2 mn ml’H—l( Myt

AIMS Mathematics Volume 9, Issue 7, 16885-16900.
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= DL Gl da)(di+ 1,y + L{TPTL 2412,

di+-+dy=w
d,'>=0,V[

where C(d,, .. .,d,,) is defined in Eq (4.3).

Proof. Consider the following Yamamoto’s integral:

We use the map W which is defined in Eq (2.6) to transform the n legs in the 2-poset as
(xy“ xyP1, xy2xy?, ..., xy"xy’"). Then, we shuffle them together (by Eq (4.3)) as a totally ordered
diagram, and by Eq (2.7) we have

A= > Cl,....dy)(di+ 1, .dy + 1, (117, 2,{1)7,2). (4.6)

dy+-+dy=w
di>=0,Yi

On the other hand, we write the Yamamoto’s integral as follows.

I dt
A= f Bl(t)Bz(t)"'Bn(t)'C(t)l_»
0 -t

where
B = | di_dty  dign_dsi ds2 | dso
O<ty < <ta1 <1< <Sp1 <t -1 1 fav1 1= 51 82 Sbi+1
Cr = f dwy  _dws dwy dw - du d”r+1.
1W< <Wgp ] <UY <<ty <1 I —ws 1-w, weig 1 —uy 1 —u,

We represent B(w;) and C(wy) as a power series:
l-m[ (1 — t)mn+|
Bi(t) = ——— and C()= —.
1skz,-<:m,- kilﬂm?lﬂ 1s;n+1 et

Therefore,
garthglatD || glas)) grlesh)

1
_ mp—1 my—1 my—1 Myy1—1 miy+---+my my+1—1
A= z : bi+l by+1 by+l f(; t (I-1 dt.

my m, ey m

Given that the integral on the righthand side is the beta function, we deduce that

H(a1+1)H(a2+1) . H(a,,+1)H(t+l)

mi—1 " "mp—1 mp—1 " Tmy—1
A= E - — . 4.7)
mb1+1mb2+1 . b+l s+l M+
M.y Mys121 1 2 n n+1 My

Combining the two expressions for A given by Eqgs (4.6) and (4.7), we obtain the desired formula. O
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5. Main results and conclusions

Now, we treat the main result with the following fact [14]:

2n+m

(L™ ) L (Wt ™) = D E(d,....dwen) | | 0% D)
mm gi= 3 (@b + 20 ok j=1
d,'>:0,Vi

where E(d,, ..., dy, ) 1s a suitable constant depending on the variables d, . . ., dy 4.
Given 2n+m+1 nonnegative integers ay, . .., dy, by, ..., by, C1, ..., Cy 8, With D70 (a;+D)+ 20 ¢k =
w, we have

(a1+1) ry(az+1) (ap+1)
H H

KL (Qﬁ)m) Cm k-1 kn—1

------ bi+1  pbntl pei+l  pem+] ps+1 (kiteothkytl et
k1o, C1 b1 21 kl k” 51 f’" £m+l Ll

DL EWr. o) (dy+ 1 da + 1,{117,2).

52 e
dl‘>=0,Vi
. 1 1 . .. . .
Since H,Ef‘ D= H,(f’j )+ k“}“ , in combination with Theorem 3.1, we conclude our main result.

Theorem 5.1. For any nonnegative integers n,m,ai,...,a,,by,...,b,,c1,...,cn,s, the following
infinite series
H](€a1+1)H](Ca2+l) - _H](ca,l+1)
1 2 n

b1+1 bu+1 pcy+1 Cmt1 ps+1 (ki+-+hkn+01++Ens1 (52)
klv--vkna[l,---a[erlZl kl t kn gl e gm €m+1( '[m+| )
can be expressed as a finite sum of MZVs.
In the following, we will provide concrete examples for clarification. Substitute » = 0 in
Theorem 3.1, and we have
——— ={(a+2).
2
This identity is appeared in [7, Proposition 5].
Since H“*Y = Hr(fll) + —i7, utilizing Theorems 3.1 and 4.1, we deduce that
F@+D
>~ =@+ Lb+ LT ) + La+ b+ 2,{1)7,2). (5.3)
—i mc+lnb+1(m”+1”)

Letting a = b = ¢ = 0in Eq (5.3), we have (see [4,7])

H,
=¢(1,2) +{(3) = 24(3).

m+n
mn>1 I’I’Ll’l( m )

AIMS Mathematics Volume 9, Issue 7, 16885-16900.
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Leta=1,b =c =0, and we have

2)
— = {(2,2) +{(@4). (5.4)

m+n
mn>1 mn( m )

Leta =b =c¢ =1, and we have

H(Z)
——— ={(2,2,2) + {(4,2). (5.5)
m,n>1 mznz(m,;:n)
Leta =b = ¢ = 2, and we have
3)
———— ={(3,3,1,2) + {(6, 1,2). (5.6)
m,n>1 m3n3(m’:1-n)
In general, we seta = b = ¢ > 1, then
gD
— L =(a+1,a+ 1L,{1}*2) + 2Qa +2,{1}*", 2). (5.7)
s ma+1na+l(mr:”)

Following the similar method, we have

H(a+1) (c+1)

- Z el Tmel C da+1,b+ L {1 2,{17,2),  (5.8)

b+1,,d+1(m+n
mn>1 77" ( m )

where a, b, ¢, d are nonnegative integers. Similarly, we use Eq (5.4), Theorems 3.1 and 4.1 to get

Hy(la+1)H;(nC+ 1)

m+n
A nb+lmd+l( " )

= Ja+1,b+ 1,112,132+ La+ b+ 2, (1), 2, (1)1, 2) (5.9)

+l(a+ 1,0+ 1,{1)2) + L(a+ b+ 2, {1}, 2).
In particular, we get

4
H.H, =0(1,3)+ L4+ £(1,1,2) +£(2,2) = 3,(4) = ﬂ— (5.10)
mn>1 nm(m,:,— ) 30

If we consider the triple infinite series as examples, then we first apply Theorem 3.1 to get

: - Z (a2+b)5(“1+1,az+b+1,{1}“‘1,2) (5.11)

+1,b+1 ] s+1 (m+n+k
m,n,k>1 mtin ks ( k ) aj+ay=a a2
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+ Z (b2b+ a)((bl +1L,by+a+1,{1)"",2).

bi+ba=b 2

Then we evaluate

T
{ H]({H—ll)

B Z +1 b1 s+l (men+k
/)\D m,nk>1 mtin ks ( k )

= > (“2 N b)g(a1 +Lay+b+ L{1PL2,{1)7,2)

a
ayt+az=a 2

2

b
+ SN+ L a0 2,00, 2),
, b

b1+b2:
Second, we consider the following Yamamoto’s integral
/\ (a+1) py(c+1)

I b( )d — Hm—l Hn—l

b+1yd+1 Jps+1(mHn+k
[ m,n,kzlm n k* ( k )

by +c\[bs +d
= Z (2 C)(3 ){(a+1,b1+1,b2+c+1,b3+d+1,{1}3‘1,2)
b

by+by+b3= by b3
d, +a\(ds + b
" Z 2N E TV e+ dy + 1 dy+a+ 1,ds + b+ 1,{117,2)
d d ds
1+dy+d3=d

(5.12)

(5.13)

+ +bi\(b,+d
+ (“2 C‘)(Cz )( 2 )(a1+1,a2+cl+1,c2+b1+1,b2+d+1,{1}s—1,2)
a1+a2—a

by+by=b
(‘l +L‘2 C

dy+dy= d2
L| +(2 C
al +a2—a

+ +d\(d, +
oy (CZ “‘)(“2 ‘)( ? )g(q+1,c2+a1+1,a2+d1+1,d2+b+1,{1}s-1,2)
d

+ +dy\(dy + b
+ (az C)(Cl3 1)( ){(01 +l,ay+c+l,a3+d +1,dy +b+1,{1}",2)
a1+a2+a3_a

dy+dy=d

by+by=b

AIMS Mathematics

7+
+ +bi\(by, +d
+ (c2 a)(c3 )( 2 ){(cl+1,c2+a+1,c3+b1+1,b2+d+1,{1}5‘1,2).
zl+c2+zg—c
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Third, we evaluate

(a+1) gy(c+1) py(r+1)
_ Hmjl Hn—+1 Hk—+1
- (5.14)

b+1,d+1fs+1(m+n+k
m,n,kzlm n k* ( k )

= > (b2 ’ C)(b3b+ d){(a + Lbi+ Lby+c+1,by+d+1,{1)7,2,{1)7,2)

b +by+b3=b by 3
dy +a\(ds+ b
+ Z 2 T ajyfas g(C+l,dl+1,d2+a+1,d3+b+1’{1}s—1’2’{1}1_1’2)
d d> ds
1+dr+d3=d

+ +bi\[by+d
+ (“2 C‘)(Cz )(2 )g(a1+1,a2+c1+1,c2+b1+1,b2+d+1,{1}S-1,2,{1}f-1,2)
a1+a2—a

by +by=b
(‘1+L‘2—L‘

+ +d\(dr +b
>y (Cz “‘)(“2 ‘)( ? )g“(cl+1,c2+a1+1,a2+d1+1,d2+b+1,{1}“_1,2,{1}t_1,2)
=d

dy+dy=
cptep=c
ay+ay=a

+ +d\[d, + b
+ (“2 C)(“3 ‘)( 2 )§(a1+1,a2+c+1,a3+d1+1,d2+b+1,{1}3_1,2,{1}’_1,2)
a1+a2+a3—a

dy+dy=d
+ +bi\(b+d
Y (c2 “)(c3 1)( ? ){(cl+1,c2+a+1,c3+b1+1,b2+d+1,{1}5_1,2,{1}’_1,2).
1 +eptez=c 2 C3 b2
by +by=h

Therefore, we have the formulas for

(t+1) 1 +1 (a+1) py(c+1) ry(t+1)
+1 5,41 pst1 (mn+k)’ bl yyd+1 ps+1(m+n+k)’ b1 yyd+] st (m+n+k)’
m,n,k>1 metin ks ( k ) m,n,k>1 m n ks ( k m,n,k>1 m n ks k

As a final example, we list

H, at
—_— =204+ 22(1,3 4) = —. 5.15
P — k(m+n+k) (@A) +2£(1,3) = §( ) EY: (5.15)

In this paper, we present a method for assessing the form described in Eq (5.2). Specifically, we
derive this assessment by evaluating a particular Yamamoto’s integral linked to a 2-poset Hasse diagram
in two distinct manners: one employs the shuffle relations with its corresponding Lyndon words, while
the other utilizes the corresponding summation expansions. Although we do not provide an explicit
closed formula for the multiple series in Eq (5.2), if all the parameters are provided, our method enables
us to derive the corresponding explicit expression as a linear combination of MZVs.
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