This manuscript explores a new class of Hilfer fractional stochastic differential system, as driven by the Wiener process and Rosenblatt process through the application of non-instantaneous impulsive effects and Poisson jumps. Existence of a mild solution to the considered system is proved. Sufficient conditions for the controllability of the proposed control system are established. To prove our main results, we utilize fractional calculus, stochastic analysis, semigroup theory, and the Sadovskii fixed point theorem. In addition, to illustrate the theoretical findings, we present an example.
Citation: Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem. Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps[J]. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
[1] | Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403 |
[2] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[3] | Kulandhaivel Karthikeyan, Palanisamy Raja Sekar, Panjaiyan Karthikeyan, Anoop Kumar, Thongchai Botmart, Wajaree Weera . A study on controllability for Hilfer fractional differential equations with impulsive delay conditions. AIMS Mathematics, 2023, 8(2): 4202-4219. doi: 10.3934/math.2023209 |
[4] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[5] | A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed . Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290 |
[6] | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551 |
[7] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[8] | Noorah Mshary, Hamdy M. Ahmed . Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces. AIMS Mathematics, 2025, 10(3): 5552-5567. doi: 10.3934/math.2025256 |
[9] | Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa . Existence theory and stability analysis of neutral $ \psi $–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396 |
[10] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
This manuscript explores a new class of Hilfer fractional stochastic differential system, as driven by the Wiener process and Rosenblatt process through the application of non-instantaneous impulsive effects and Poisson jumps. Existence of a mild solution to the considered system is proved. Sufficient conditions for the controllability of the proposed control system are established. To prove our main results, we utilize fractional calculus, stochastic analysis, semigroup theory, and the Sadovskii fixed point theorem. In addition, to illustrate the theoretical findings, we present an example.
Fractional stochastic differential equations (SDEs) have been used in different fields, such as control theory, thermodynamics, signal processing, and so on (see [1,2,3,4,5,6,7,8,9,10]). The theory of impulsive SDEs has been more widely explored than classical order problems. Impulsive SDEs describ several phenomena as sudden updates of software, rhythmic beats, attacks of hackers, influence of the Internet market (see [11,12,13]). Impulsive actions that begin suddenly and continue for a specific period of time are called non-instantaneous impulses (see [14,15,16]). There are different forms of controllability such as (exact, local, approximate, null) controllability. In recent years, many authors have been interested in studying the controllability of a fractional stochastic differential system; for example, the approximate controllability of fractional SDEs driven by a Rosenblatt process with non-instantaneous impulses has been investigated in [17]. Approximate controllability and null controllability for conformable SDEs have been studied in [18]. The controllability and stability of fractional stochastic functional systems driven by a Rosenblatt process have been discussed in [19]. The existence of solutions and approximate controllability of fractional nonlocal neutral impulsive SDEs of order 1<q<2 with infinite delay and Poisson jumps have been studied in [20]. Controllability of Prabhakar fractional dynamical systems has been established in [21]. Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps has been studied in [22]. Approximate controllability for Hilfer fractional stochastic non-instantaneous impulsive differential systems with a Rosenblatt process and Poisson jumps has been established in [23]. Controllability of Hilfer fractional differential systems with and without impulsive conditions was studied in [24] by focusing on infinite delay. the existence and controllability of nonlocal mixed Volterra‐Fredholm type fractional delay integro‐differential equations of order 1<r<2 have been discussed in [25]. Approximate controllability of delayed fractional stochastic differential systems with mixed noise and impulsive effects has been investigated in [26]. Motivated by the works mentioned previously, our objective here was to establish the existence of mild solution and controllability of Hilfer fractional stochastic differential systems driven by Wiener process and Rosenblatt process that are also subject to non-instantaneous impulsive effects and Poisson jumps of the following form:
{Dℵ,ℏ0+x(d)=−Ax(d)+ℜ(d,x(d))+ℑ(d,x(d))dωdd+σ(d,x(d))dZHdd+∫Vh(d,x(d),v)˜N(dd,dv),d∈(℘κ,dκ+1],κ∈[0,ς],x(d)=yκ(d,x(d)),d∈(dκ,℘κ],κ∈[1,ς],I(1−ℵ)(1−ℏ)0+x(0)=x0, | (1.1) |
and
{Dℵ,ℏ0+x(d)=−Ax(d)+ℜ(d,x(d))+Bu(d)+ℑ(d,x(d))dωdd+σ(d,x(d))dZHdd+∫Vh(d,x(d),v)˜N(dd,dv),d∈(℘κ,dκ+1],κ∈[0,ς],x(d)=yκ(d,x(d)),d∈(dκ,℘κ],κ∈[1,ς],I(1−ℵ)(1−ℏ)0+x(0)=x0, | (1.2) |
where
Dℵ,ℏ0+f(d)=Iℵ(1−ℏ)0+dddI(1−ℵ)(1−ℏ)0+f(d),Iℏf(d)=1Γ(ℏ)∫d0f(s)(d−s)1−ℏds,d>0 |
is the Hilfer fractional derivative (HFD) of order 0≤ℵ≤1,0<ℏ<1 [27]. F and K are separable Hilbert spaces with ∥.∥ and ⟨.,.⟩. Additionally, −A generates an analytic semigroup S(d),d≥0, on F where ∥S(d)∥≤M, M≥1. Let U be a Hilbert space and u(⋅) be the control function in the Hilbert space of admissible control functions denoted by (L2(J,U)). B:U→F is a bounded linear operator. yκ, κ=1,2,…,ς denotes the non-instantaneous impulsive function. Let J=(0,T] and 0=℘0<d1≤℘1≤d2<…<℘ς−1<dς≤℘ς≤dς+1=T. Suppose that {ω(d)}d≥0 in K is an R-Wiener process on (Ω,Υ,{Υd}d≥0,P) and {ZH(d)}d≥0 in Hilbert space Y is an R-Rosenblatt process with 12<H<1 on (Ω,Υ,{Υd}d≥0,P). Then, ∥.∥ denotes the norm in F,K,Y,L(K,F) and L(Y,F). L(K,F) and L(Y,F) denote the spaces of all bounded linear operators from K into F and Y into F.
The given functions are defined as follows: ℜ from (0,T]×F into F, ℑ from (0,T]×F into L(K,F), σ from (0,T]×F into L02(Y,F), h from (0,T]×F×V into F and yκ from (dκ,℘κ]×F into F.
The contributions of the present work are as follows:
∙ A new class of Hilfer fractional stochastic differential system driven by a Wiener process and Rosenblatt process through the application of non-instantaneous impulsive effects and Poisson jumps is introduced.
∙ Existence of a mild solution to the proposed system (1.1) is proved.
∙ Sufficient conditions for the controllability of the proposed control system (1.2) are established.
∙ An example is offered to illustrate the obtained results.
The following definitions and lemmas are necessary in order to analyze the suggested problem.
In this paper, a complete probability space is denoted by (Ω,Υ,P) with a normal filtration Υd,d∈[0,T]. Suppose that (V,ϝ,ℓ(dv)) is a σ-finite measurable space. (pd)d≥0 is defined on (Ω,η,P) with values in V and the characteristic measure ℓ. N(d,dv) denotes the counting measure of pd such that ˜N(d,G):=E(N(d,G))=dℓ(G) ∀G∈Ψ. Additionally, ˜N(d,dv):=N(d,dv)−dλ(dv) i.e., the Poisson martingale measure generated by pd.
The operator R∈L(Y,Y) is defined by Ren=λnen with Tr(R)=∑∞n=1λn<∞, λn≥0(n=1,2,...) and {en} is a complete orthonormal basis in Y.
The R-Rosenblatt process on Y is defined by
ZH(d)=ZR(d)=∞∑n=1√λnenzn(d), |
where (zn)n≥0 is a family of real, independent Rosenblatt processes.
Let L02:=L02(Y,F) be the space of all R-Hilbert Schmidt operators ψ:Y→F.
ψ∈L(Y,F) is an R-Hilbert-Schmidt operator, if
‖ψ‖2L02:=∞∑n=1‖√λnψen‖2<∞. |
The space L02 equipped with ⟨ϑ,ψ⟩L02=∑∞n=1⟨ϑen,ψen⟩ is a separable Hilbert space.
Let the function ϕ(s);s∈[0,T] exist in L02(Y,F).
We define the Wiener integral of ϕ with respect to ZR as follows:
∫d0ϕ(s)dZR(s)=∞∑n=1∫d0√λK∗H(ϕen)(μ1,μ2)dB(μ1)dB(μ2), |
where
K∗H(ϑ)(μ1,μ2)=∫Tμ1∨μ2ϑ(r)∂K∂r(r,μ1,μ2)dr[28]. |
Lemma 2.1. [29] If ψ:[0,T]→L02(Y,F) verifies ∫T0‖ψ(s)‖2L02<∞, then the following holds:
E‖∫d0ψ(s)dZH(s)‖2≤2Hd2H−1∫d0‖ψ(s)‖2L02ds. |
Let L2(Ω,F), with ∥x(⋅)∥2L2(Ω,F)=E∥x(.,ω)∥2 as a Banach space.
The Banach space of all continuous maps from (0,T] into L2(Ω,F) is denoted by C((0,T],L2(Ω,F)).
Here ˉC={x:d(1−ℵ)(1−ℏ)x(d)∈C((0,T],L2(Ω,F))} with ‖⋅‖ˉC=(supd∈JE|d(1−ℵ)(1−ℏ)x(d)|2)12 is a Banach space.
We need the following hypotheses:
(H1) ℜ:(0,T]×F→F verifies the following:
(i) ℜ:(0,T]×F→F is continuous;
(ii)∀ q∈N, ∃ fq(⋅):(0,T]→R+ such that (s.t.)
sup∥x∥2≤qE‖ℜ(d,x)‖2≤fq(d),q>0, |
s→(d−s)ℏ−1fq(s)∈L1((0,T],R+) s.t.
limq→∞inf∫d0(d−s)ℏ−1fq(s)dsq=Λ1<∞,d∈(0,T],Λ1>0. |
(H2) ℑ:(0,T]×F→L(K,F) verifies the following:
(i) ∀ d∈(0,T], ℑ(d,.):F→L(K,F) is continuous;
(ii) ∀ x∈F; ℑ(.,x):(0,T]→L(K,F) is Υd-measurable;
(iii) ∀ q∈N, ∃ hq(⋅):(0,T]→R+ s.t.
sup∥x∥2≤qE∥ℑ(d,x)∥2R≤hq(d),q>0, |
s→(d−s)ℏ−1hq(s)∈L1((0,T],R+) s.t.
limq→∞inf∫d0(d−s)ℏ−1hq(s)dsq=Λ2<∞,d∈(0,T],Λ2>0. |
(H3) σ:(0,T]×X→L02(Y,F) verifies the following:
(i) ∀ d∈J, the function σ(d,.):F→L02(Y,F) is continuous and ∀ x∈F; σ(.,x):(0,T]→L02(Y,F) is Υd-measurable;
(ii) ∀ q∈N, ∃ ˉhq(⋅):(0,T]→R+ s.t.
sup∥x∥2≤qE∥σ(d,x)∥2L02≤ˉhq(d),q>0, |
s→(d−s)ℏ−1ˉhq(s)∈L1((0,T],R+) s.t.
limq→∞inf∫d0(d−s)ℏ−1ˉhq(s)dsq=Λ3<∞,d∈(0,T],Λ3>0. |
(H4) h:(0,T]×F×V→F verifies the following:
(i) h:(0,T]×F×V→F is continuous;
(ii) ∀ q∈N, ∃ χq(⋅):(0,T]→R+ s.t.
sup∥x∥2≤q∫VE‖h(d,x,v)‖2λ(dv)≤χq(d),q>0, |
the function s→(d−s)ℏ−1χq(s)∈L1((0,d],R+), s.t.
limq→∞inf∫d0(d−s)ℏ−1χq(s)dsq=Λ4<∞,d∈(0,T],Λ4>0. |
(H5) yκ:(dκ,℘κ]×F→F is continuous and verifies the following:
(i) ∃ M3>0, s.t.
E‖yκ(d,x)‖2≤M3E‖x‖2,x∈X;d∈(dκ,℘κ],κ=1,2,…,ς. |
(ii) ∃ M6>0 s.t.
E‖yκ(d,x1)−yκ(d,x2)‖2≤M4E‖x1−x2‖2,x1,x2∈F;d∈(dκ,℘κ],κ=1,2,…,ς. |
Definition 2.1. [30] x(d):(0,T]→F is a mild solution of (1.1) if x0∈F ∀ s∈[0,T), Pℏ(d−s)ℜ(s,x(s)) is integrable and
x(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds+∫d0Pℏ(d−s)ℑ(s,x(s))dω(s)+∫d0Pℏ(d−s)σ(s,x(s))dZH(s)+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ςSℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds+∫d℘κPℏ(d−s)ℑ(s,x(s))dω(s)+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),t∈(℘κ,dκ+1],κ=1,2,…,ς |
where
Sℵ,ℏ(d)=Iℵ(1−ℏ)0+Pℏ(d),Pℏ(d)=dℏ−1Tℏ(d),Tℏ(d)=∫∞0ℏϰΨℏ(ϰ)S(dℏϰ)dϰ, | (2.1) |
Ψℏ(ϰ)=∞∑n=1(−ϰ)n−1(n−1)!Γ(1−nℏ),ϰ∈(0,∞) |
and ∫∞0ϰτΨℏ(ϰ)dϰ=Γ(1+τ)Γ(1+ℏτ) for ϰ≥0.
Lemma 2.2. [30] Sℵ,ℏ and Pℏ have the following conditions:
(i){Pℏ(d):d>0} is continuous in the uniform operator topology.
(ii)‖Pℏ(d)x‖≤Mdℏ−1Γ(ℏ)‖x‖,‖Sℵ,ℏ(d)x‖≤Md(ℵ−1)(1−ℏ)Γ(ℵ(1−ℏ)+ℏ)‖x‖. | (2.2) |
(iii){Pℏ(d):d>0} and {Sℵ,ℏ(d):d>0} are strongly continuous.
In this section, we prove the existence of a mild solution to the Hilfer fractional evolution system (1.1).
Theorem 3.1. If (H1)–(H5) are verified, then the system (1.1) has a mild solution on J s.t.
25{M3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)[Λ1+Tr(R)Λ2+Λ4]+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)Λ3}+T2(1−ℵ)(1−ℏ)M3<1 | (3.1) |
and
γ1=4M2T2(ℵ−1)(1−ℏ)M4Γ2(ℵ(1−ℏ)+ℏ)+M4+4M2T2ℏΓ2(ℏ+1)<1. | (3.2) |
Proof. Define Φ on ˉC as follows:
(Φx)(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds+∫d0Pℏ(d−s)ℑ(s,x(s))dω(s)+∫d0Pℏ(d−s)σ(s,x(s))dZH(s)+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ς,Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds+∫d℘κPℏ(d−s)∫s0ℑ(s,x(s))dω(s)+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(℘κ,dκ+1],κ=1,2,…,ς. |
Set Kq={x∈ˉC,∥x∥2ˉC≤q,q>0}.
Clearly, Kq⊂ˉC is a bounded closed convex set in ˉC ∀q.
From (H1), the Hölder inequality and Lemma 2.2, we get
E∥∫d0Pℏ(d−s)ℜ(s,x(s))ds∥2≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE‖ℜ(s,x(s))‖2ds≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1fq(s)ds. | (3.3) |
From Bochner's theorem, Pℏ(d−s)ℜ(s,x(s)) is integrable on J, so Φ is defined on Kq.
From Burkholder Gundy's inequality and (H2)(ii), we get
E∥∫d0Pℏ(d−s)ℑ(s,x(s))dω(s))∥2≤Tr(R)M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE∥ℑ(s,x(s))∥2Qds≤Tr(R)M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1hq(s)ds. | (3.4) |
From Burkholder Gundy's inequality and (H3)(ii), we obtain
E‖∫d0Pℏ(d−s)σ(s,x(s))dZH(s)‖2≤2HM2T2H+ℏ−1ℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE‖σ(s,x(s))‖2L02ds≤2HM2T2H+ℏ−1ℏΓ2(ℏ)∫d0(d−s)ℏ−1ˉhq(s)ds. | (3.5) |
From the Hölder inequality and (H4)(ii), we get
E‖∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)‖2≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1(sup∥x∥2≤q∫VE∥h(s,x(s),v)∥2λdv)ds≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1χq(s)ds. | (3.6) |
We claim that there exists q>0 s.t. Φ(Kq)⊆Kq. If it is not true, then ∀ q>0, ∃ xq(⋅)∈Kq, but Φ(xq)∉Kq, that is ∥(Φxq)(d)∥2ˉC>q for d=d(q)∈J. From (3.3)–(3.6), we have the following for d∈(0,d1]
∥Φxq∥2ˉC≤25supd∈Jd2(1−ℵ)(1−ℏ){E‖Sℵ,ℏ(d)x0‖2+E∥∫d0Pℏ(d−s)ℜ(d,x(d))ds∥2+E∥∫d0Pℏ(d−s)∫s0ℑ(τ,x(τ))dω(τ)ds∥2+E∥∫d0Pℏ(d−s)σ(s,x(s))dZH(s)∥2+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2}≤25{M2E‖x(0)‖2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1fq(s)ds+Tr(R)M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1hq(s)ds+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1ˉhq(s)ds+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(d−s)ℏ−1χq(s)ds}. | (3.7) |
From (H5), we have the following for d∈(dκ,℘κ]
∥Φxq∥2ˉC≤supt∈Jd2(1−ℵ)(1−ℏ)E‖yκ(d,x(d))‖2≤T2(1−ℵ)(1−ℏ)M3q. | (3.8) |
From (H5) and (3.3)–(3.6), we have for d∈(℘κ,dκ+1]
∥Φxq∥2ˉC≤25supt∈Jd2(1−ℵ)(1−ℏ){E‖Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))‖2+E∥∫d℘κPℏ(d−s)ℜ(s,x(s))ds∥2+E∥∫d0Pℏ(d−s)∫s℘κℑ(τ,x(τ))dω(τ)ds∥2+E∥∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)∥2+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2}≤25{qM3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1fq(s)ds+Tr(R)M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1hq(s)ds+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1ˉhq(s)ds+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(d−s)ℏ−1χq(s)ds}. | (3.9) |
Combining (3.7), (3.8) and (3.9) in the inequality q≤∥(Φxq)(d)∥2ˉC, dividing both sides by q, and taking the limit q→+∞, we get
25{M3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)[Λ1+Tr(R)Λ2+Λ4]+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)Λ3}+T2(1−ℵ)(1−ℏ)M3≥1. |
From (3.1), this is a contradiction. Hence for q>0, Φ(Kq)⊆Kq.
Next we show that Φ has a fixed point on Kq, so (1.1) has a mild solution.
We split Φ into two components Π1 and Π2, where
(Π1x)(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds,d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ς,Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds,d∈(℘κ,dκ+1],κ=1,2,…,ς. |
(Π2x)(d)={∫d℘κPℏ(d−s)∫s0ℑ(τ,x(τ))dω(τ)ds+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(℘κ,dκ+1],κ=0,1,…,ς,0,otherwise. |
We prove that Π1 satisfies a contraction condition.
Take x1,x2∈Kq; then, by (H1) and (H5), we have:
for d∈(0,d1],
E∥(Π1x1)(d)−(Π1x2)(d)∥2≤4E∥∫d0Pℏ(d−s)[ℜ(d,x1(d))−ℜ(d,x2(d))]ds∥2≤4M2T2ℏΓ2(ℏ+1)E∥x1(d)−x2(d)∥2, | (3.10) |
for d∈(dκ,℘κ]
E∥(Π1x1)(d)−(Π1x2)(d)∥2≤E∥yκ(d,x1(d))−yκ(d,x2(d))∥2≤M4E∥x1(d)−x2(d)∥2 | (3.11) |
and for d∈(℘κ,dκ+1]
E∥(Π1x1)(d)−(Π1x2)(d)∥2≤4E∥Sℵ,ℏ(d−℘κ)(yκ(℘κ,x1(℘κ))−yκ(℘κ,x2(℘κ)))∥2+4E∥∫d℘κPℏ(d−s)[ℜ(d,x1(d))−ℜ(d,x2(d))]ds∥2≤4[M2T2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)M4+M2T2ℏΓ2(ℏ+1)]E∥x1(d)−x2(d)∥2. | (3.12) |
Combining (3.10), (3.11) and (3.12), we get
E∥(Π1x1)(d)−(Π1x2)(d)∥2≤[4M2T2(ℵ−1)(1−ℏ)M4Γ2(ℵ(1−ℏ)+ℏ)+M4+4M2T2ℏΓ2(ℏ+1)]E∥x1(d)−x2(d)∥2≤γ1E∥x1(d)−x2(d)∥2. |
Taking supd∈Jd2(1−ℵ)(1−ℏ), we get
supd∈Jd2(1−ℵ)(1−ℏ)E∥(Π1x1)(d)−(Π1x2)(d)∥2≤γ1supd∈Jd2(1−ℵ)(1−ℏ)E∥x1(d)−x2(d)∥2, |
so,
∥Π1x1−Π1x2∥2ˉC≤γ1∥x1−x2∥2ˉC. |
Hence, Π1 is a contraction.
We prove that Π2 is compact.
First, we show that Π2 is continuous on Kq.
Let {xn}⊆Kq with xn→x in Kq and rewrite the control function u(d)=u(d,x). Then, ∀ s∈J,xn(s)→x(s), and by (H2)(i), (H3)(i) and (H4)(i), we have that ℑ(s,xn(s))→ℑ(s,x(s)) as n→∞, σ(s,xn(s))→σ(s,x(s)), as n→∞ and h(s,xn(s),v)→h(s,x(s),v), as n→∞.
From the dominated convergence theorem, we have
∥Π2xn−Π2x∥2ˉC=supd∈Jd2(1−ℵ)(1−ℏ){∫d℘κPℏ(d−s)∫s0[ℑ(τ,xn(τ))−ℑ(τ,x(τ))]dω(τ)ds+∫d℘κPℏ(d−s)[σ(s,xn(s))−σ(s,x(s))]dZH(s)+∫d℘κPℏ(d−s)∫V[h(s,xn(s),v)−h(s,x(s),v)]˜N(ds,dv)∥2}→0, |
as n→∞, which is continuous.
We show that {Π2x:x∈Kq} is equicontinuous.
Let ϵ>0 be small and ℘κ<dα<dβ≤dκ+1; then,
E∥(Π2x)(dβ)−(Π2x)(dα)∥2≤E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))∫s0ℑ(τ,x(τ))ds∥2+E∥∫dαdα−ϵ(Pℏ(dβ−s)−Pℏ(dα−s))∫s0ℑ(τ,x(τ))ds∥2+E∥∫dβdαPℏ(dβ−s)∫s0ℑ(τ,x(τ))dω(τ)ds∥2+E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))σ(s,x(s))dZH(s)∥2+E∥∫dαdα−ϵ(Pℏ(tβ−s)−Pℏ(dα−s))σ(s,x(s))∥2+E∥∫dβdαPℏ(dβ−s)σ(s,x(s))dZH(s)∥2+E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))∫Vh(s,x(s),v)˜N(ds,dv)∥2+E∥∫dαdα−ϵ(Pℏ(dβ−s)−Pℏ(dα−s))∫Vh(s,x(s),dv)∥2+E∥∫dβdαPℏ(dβ−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2. |
Thus, when dβ→dα and ϵ→0, then, E∥(Π2x)(dβ)−(Π2x)(dα)∥2→0 independent of x∈q. Also, we can show that Π2x,x∈Kq are equicontinuous at d=0. Hence Π2 maps Kq into a family of equicontinuous functions.
In what follows, we show that V(d)={(Π2x)(d):x∈Kq} is relatively compact in Kq. Clearly, V(0)∈Kq is relatively compact.
Let ℘κ<d≤dκ+1 be fixed and ℘κ<ϵ<d; we define the following for x∈Kq,ρ>0:
(Πϵ,ρ2x)(d)=ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds+ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)+ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)=ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)∫s0ℑ(τ,x(τ))dω(τ)dϰds+ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)σ(s,x(s))dϰdZH(s)+ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)∫Vh(s,x(s),v)dϰ˜N(ds,dv). |
Since S(ϵℏρ),ϵℏρ>0 is a compact operator, it follows that Vϵ,ρ(d)={(Πϵ,ρ2x)(d):x∈Kq} is relatively compact in F ∀ ℘κ<ϵ<d,ρ>0.
Furthermore, we have the following ∀ x∈Kq:
∥Π2x−Πϵ,ρ2x∥2ˉC≤supd∈Jd2(1−ℵ)(1−ℏ){ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds∥2+ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)∥2ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)∥2}≤16Tℏ+2(1−ℵ)(1−ℏ)ℏM2{∫dd−ϵ(d−s)ℏ−1∫s0E∥ℑ(τ,x(τ))∥2Qdτds(∫∞ρϰΨℏ(ϰ)dϰ)2+Tr(R)∫dd−ϵ(d−s)ℏ−1∫s0E∥ℑ(τ,x(τ))∥2Qdτds(∫∞ρϰΨℏ(ϰ)dϰ)2+2HT2H+−1∫d℘κ(d−s)ℏ−1E∥σ(s,x(s))∥2L02ds(∫ρ0ϰΨℏ(ϰ)dϰ)2+2HT2H−1∫dd−ϵ(d−s)ℏ−1E∥σ(s,x(s))∥2L02ds(∫∞ρϰΨℏ(ϰ)dϰ)2+∫d℘κ(d−s)ℏ−1∫VE∥h(s,x(s),v)∥2λdvds(∫ρ0ϰΨℏ(ϰ)dϰ)2+∫dd−ϵ(d−s)ℏ−1∫VE∥h(s,x(s),v)∥2λdvds(∫∞ρϰΨℏ(ϰ)dϰ)2}→0 |
as ϵ→0+, ρ→0+. Thus V(d)∈Kq is relatively compact.
Therefore, from the Arzela-Ascoli theorem Π2 is a compact operator. Hence, Φ=Π1+Π2 is a condensing map on Kq, and by the Sadovskii fixed point theorem ∃ a fixed point x(⋅) for Φ on Kq. Thus, (1.1) has a mild solution on J.
In this section, we investigate the controllability of the system (1.2).
Definition 4.1. [29] x(d):(0,T]→F is a mild solution of (1.2) if x0∈F ∀ s∈[0,T), Pℏ(d−s)ℜ(s,x(s)) is integrable and
x(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds+∫d0Pℏ(d−s)Bu(s)ds+∫d0Pℏ(d−s)ℑ(s,x(s))dω(s)+∫d0Pℏ(d−s)σ(s,x(s))dZH(s)+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ς,Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds+∫d℘κPℏ(d−s)Bu(s)ds+∫d℘κPℏ(d−s)ℑ(s,x(s))dω(s)+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),t∈(℘κ,dκ+1],κ=1,2,…,ς. |
Definition 4.2. Equation (1.2) is said to be controllable on J, if ∀ x0,x1∈F there exists a control u∈L2(J,U) s.t. the mild solution x(d) of (1.2) verifies that x(T)=x1, where x1 is the preassigned terminal state and T is the time.
To investigate the result, we impose the following condition:
(H6) We define W:L2(J,U)→F as follows:
Wu=∫T0Pℏ(T−s)Bu(s)ds, |
which has W−1 in L2(J,U)∖kerW, where kerW={x∈L2(J,U):Wx=0} and ∃ MB>0,Mw>0 s.t. ‖B‖2=MB,‖W−1‖2=Mw.
Theorem 4.1. If (H1)–(H6) are verified, then the control system (1.2) is controllable on J s.t.
{1+36MwM2T2ℏM2Bℏ2Γ2(ℏ)}{M3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)[Λ1+Tr(R)Λ2+Λ4]+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)Λ3}+T2(1−ℵ)(1−ℏ)M3+36MwM2T2ℏE‖x1‖2M2Bℏ2Γ2(ℏ)<1, | (4.1) |
and γ1<1.
Proof. Define Δ on ˉC as follows:
(Δx)(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds+∫d0Pℏ(d−s)Bu(s)ds+∫d0Pℏ(d−s)ℑ(s,x(s))dω(s)+∫d0Pℏ(d−s)σ(s,x(s))dZH(s)+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ς,Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds+∫d℘κPℏ(d−s)Bu(s)ds+∫d℘κPℏ(d−s)∫s0ℑ(s,x(s))dω(s)+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(℘κ,dκ+1],κ=1,2,…,ς, |
where
u(d)={W−1{x1−Sℵ,ℏ(T)x0−∫T0Pℏ(T−s)ℜ(s,x(s))ds−∫T0Pℏ(T−s)ℑ(s,x(s))dω(s)+∫T0Pℏ(T−s)σ(s,x(s))dZH(s)+∫T0Pℏ(T−s)∫Vh(s,x(s),v)˜N(ds,dv)}(d),d∈(0,d1],W−1{x1−Sℵ,ℏ(T−℘κ)yκ(℘κ,x(℘κ))+∫T℘κPℏ(T−s)ℜ(s,x(s))ds+∫T℘κPℏ(T−s)∫s0ℑ(s,x(s))dω(s)+∫T℘κPℏ(T−s)σ(s,x(s))dZH(s)+∫T℘κPℏ(T−s)∫Vh(s,x(s),v)˜N(ds,dv)}(d),d∈(℘κ,dκ+1]. |
Set Kq={x∈ˉC,∥x∥2ˉC≤q,q>0}.
Clearly, Kq⊂ˉC is a bounded closed convex set in ˉC ∀q.
From (H1), the Hölder inequality and Lemma 2.2, we get
E∥∫d0Pℏ(d−s)ℜ(s,x(s))ds∥2≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE‖ℜ(s,x(s))‖2ds≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1fq(s)ds. | (4.2) |
From Bochner's theorem, Pℏ(d−s)ℜ(s,x(s)) is integrable on J, so Δ is defined on Kq.
From Burkholder Gundy's inequality and (H2)(ii), we get
E∥∫d0Pℏ(d−s)ℑ(s,x(s))dω(s))∥2≤Tr(R)M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE∥ℑ(s,x(s))∥2Qds≤Tr(R)M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1hq(s)ds. | (4.3) |
From Burkholder Gundy's inequality and (H3)(ii), we obtain
E‖∫d0Pℏ(d−s)σ(s,x(s))dZH(s)‖2≤2HM2T2H+ℏ−1ℏΓ2(ℏ)∫d0(d−s)ℏ−1sup∥x∥2≤qE‖σ(s,x(s))‖2L02ds≤2HM2T2H+ℏ−1ℏΓ2(ℏ)∫d0(d−s)ℏ−1ˉhq(s)ds. | (4.4) |
From the Hölder inequality and (H4)(ii), we get
E‖∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)‖2≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1(sup∥x∥2≤q∫VE∥h(s,x(s),v)∥2λdv)ds≤M2TℏℏΓ2(ℏ)∫d0(d−s)ℏ−1χq(s)ds. | (4.5) |
Also, from the Hölder inequality and (H1)–(H6), we get
E‖∫d0Pℏ(d−s)Bu(s)ds‖2=E‖∫d0(d−s)ℏ−1Tℏ(d−s)Bu(s)ds‖2≤M2TℏMBℏΓ2(ℏ)∫d0(d−s)ℏ−1E‖u(s)‖2ds, |
where, for d∈(0,d1]
E‖u(s)‖2≤MwE‖x1‖2+M2MwE‖x(0)‖2T2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)+M2MwTℏℏΓ2(ℏ)∫T0(T−s)ℏ−1fq(s)ds+Tr(R)M2MwTℏℏΓ2(ℏ)∫T0(T−s)ℏ−1hq(s)ds+2HM2MwT2H+ℏ−1ℏΓ2(ℏ)∫T0(T−s)ℏ−1ˉhq(s)ds+M2MwTℏℏΓ2(ℏ)∫T0(d−s)ℏ−1χq(s)ds, |
and for d∈(℘κ,dκ+1]
E‖u(s)‖2≤MwE‖x1‖2+qM3M2MwT2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)+M2MwTℏℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1fq(s)ds+Tr(R)M2MwTℏℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1hq(s)ds+2HM2MwT2H+ℏ−1ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1ˉhq(s)ds+M2MwTℏℏΓ2(ℏ)∫T℘κ(d−s)ℏ−1χq(s)ds. |
Thus, we have
E‖∫d0Pℏ(d−s)Bu(s)ds‖2≤MwM2T2ℏMBℏ2Γ2(ℏ){E‖x1‖2+M2E‖x(0)‖2T2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)+M2TℏℏΓ2(ℏ)∫T0(T−s)ℏ−1fq(s)ds+Tr(R)M2TℏℏΓ2(ℏ)∫T0(T−s)ℏ−1hq(s)ds+2HM2T2H+ℏ−1ℏΓ2(ℏ)∫T0(T−s)ℏ−1ˉhq(s)ds+M2TℏℏΓ2(ℏ)∫T0(d−s)ℏ−1χq(s)ds},d∈(0,d1]. | (4.6) |
E‖∫d℘κPℏ(d−s)Bu(s)ds‖2≤MwM2T2ℏMBℏ2Γ2(ℏ){E‖x1‖2+qM3M2T2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)+M2TℏℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1fq(s)ds+Tr(R)M2TℏℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1hq(s)ds+2HM2T2H+ℏ−1ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1ˉhq(s)ds+M2TℏℏΓ2(ℏ)∫T℘κ(d−s)ℏ−1χq(s)ds},d∈(℘κ,dκ+1]. | (4.7) |
We claim that there exists q>0 s.t. Δ(Kq)⊆Kq. If it is not true, then ∀ q>0, ∃ xq(⋅)∈Kq, but Δ(xq)∉Kq, that is ∥(Δxq)(d)∥2ˉC>q for d=d(q)∈J. From (4.2)–(4.7), we have the following for d∈(0,d1]
∥Δxq∥2ˉC≤36supd∈Jd2(1−ℵ)(1−ℏ){E‖Sℵ,ℏ(d)x0‖2+E∥∫d0Pℏ(d−s)ℜ(d,x(d))ds∥2+E∥∫d0Pℏ(d−s)Bu(s)ds∥2+E∥∫d0Pℏ(d−s)∫s0ℑ(τ,x(τ))dω(τ)ds∥2+E∥∫d0Pℏ(d−s)σ(s,x(s))dZH(s)∥2+∫d0Pℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2}≤{1+36MwM2T2ℏM2Bℏ2Γ2(ℏ)}{M2E‖x(0)‖2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1fq(s)ds+Tr(R)M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1hq(s)ds+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(T−s)ℏ−1ˉhq(s)ds+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T0(d−s)ℏ−1χq(s)ds}+36MwM2T2ℏE‖x1‖2M2Bℏ2Γ2(ℏ). | (4.8) |
From (H5), we have the following for d∈(dκ,℘κ]
∥Δxq∥2ˉC≤supt∈Jd2(1−ℵ)(1−ℏ)E‖yκ(d,x(d))‖2≤T2(1−ℵ)(1−ℏ)M3q. | (4.9) |
From (H5), (4.3)–(4.6) and (4.8), we have the following for d∈(℘κ,dκ+1]
∥Δxq∥2ˉC≤36supd∈Jd2(1−ℵ)(1−ℏ){E‖Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))‖2+E∥∫d℘κPℏ(d−s)ℜ(s,x(s))ds∥2+E∥∫d℘κPℏ(d−s)Bu(s)ds∥2+E∥∫d0Pℏ(d−s)∫s℘κℑ(τ,x(τ))dω(τ)ds∥2+E∥∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)∥2+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2}≤{1+36MwM2T2ℏM2Bℏ2Γ2(ℏ)}{qM3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1fq(s)ds+Tr(R)M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1hq(s)ds+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(T−s)ℏ−1ˉhq(s)ds+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)∫T℘κ(d−s)ℏ−1χq(s)ds}+36MwM2T2ℏE‖x1‖2M2Bℏ2Γ2(ℏ). | (4.10) |
Combining (4.8), (4.9) and (4.10) in the inequality q≤∥(Δxq)(d)∥2ˉC, dividing both sides by q, and taking the limit q→+∞, we get
{1+36MwM2T2ℏM2Bℏ2Γ2(ℏ)}{M3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)[Λ1+Tr(R)Λ2+Λ4]+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)Λ3}+T2(1−ℵ)(1−ℏ)M3+36MwM2T2ℏE‖x1‖2M2Bℏ2Γ2(ℏ)≥1. |
From (4.1), this is a contradiction. Hence for q>0, Δ(Kq)⊆Kq.
Next we show that Δ has a fixed point on Kq, so (1.2) has a mild solution.
We split Δ into two components Δ1 and Δ2, where
(Δ1x)(d)={Sℵ,ℏ(d)x0+∫d0Pℏ(d−s)ℜ(s,x(s))ds,d∈(0,d1]yκ(d,x(d)),d∈(dκ,℘κ],κ=1,2,…,ς,Sℵ,ℏ(d−℘κ)yκ(℘κ,x(℘κ))+∫d℘κPℏ(d−s)ℜ(s,x(s))ds,d∈(℘κ,dκ+1],κ=1,2,…,ς. |
(Δ2x)(d)={∫d℘κPℏ(d−s)Bu(s)ds+∫d℘κPℏ(d−s)∫s0ℑ(τ,x(τ))dω(τ)ds+∫d℘κPℏ(d−s)σ(s,x(s))dZH(s)+∫d℘κPℏ(d−s)∫Vh(s,x(s),v)˜N(ds,dv),d∈(℘κ,dκ+1],κ=0,1,…,ς,0,otherwise. |
We prove that Δ1 satisfies a contraction condition.
Take x1,x2∈Kq; then, by (H1) and (H5), we have the following:
for d∈(0,d1],
E∥(Δ1x1)(d)−(Π1x2)(d)∥2≤4E∥∫d0Pℏ(d−s)[ℜ(d,x1(d))−ℜ(d,x2(d))]ds∥2≤4M2T2ℏΓ2(ℏ+1)E∥x1(d)−x2(d)∥2, | (4.11) |
for d∈(dκ,℘κ],
E∥(Δ1x1)(d)−(Π1x2)(d)∥2≤E∥yκ(d,x1(d))−yκ(d,x2(d))∥2≤M4E∥x1(d)−x2(d)∥2 | (4.12) |
and for d∈(℘κ,dκ+1],
E∥(Δ1x1)(d)−(Π1x2)(d)∥2≤4E∥Sℵ,ℏ(d−℘κ)(yκ(℘κ,x1(℘κ))−yκ(℘κ,x2(℘κ)))∥2+4E∥∫d℘κPℏ(d−s)[ℜ(d,x1(d))−ℜ(d,x2(d))]ds∥2≤4[M2T2(ℵ−1)(1−ℏ)Γ2(ℵ(1−ℏ)+ℏ)M4+M2T2ℏΓ2(ℏ+1)]E∥x1(d)−x2(d)∥2. | (4.13) |
Combining (4.11), (4.12) and (4.13), we get
E∥(Δ1x1)(d)−(Π1x2)(d)∥2≤[4M2T2(ℵ−1)(1−ℏ)M4Γ2(ℵ(1−ℏ)+ℏ)+M4+4M2T2ℏΓ2(ℏ+1)]E∥x1(d)−x2(d)∥2≤γ1E∥x1(d)−x2(d)∥2. |
Taking supd∈Jd2(1−ℵ)(1−ℏ), we get
supd∈Jd2(1−ℵ)(1−ℏ)E∥(Π1x1)(d)−(Δ1x2)(d)∥2≤γ1supd∈Jd2(1−ℵ)(1−ℏ)E∥x1(d)−x2(d)∥2, |
so,
∥Δ1x1−Δ1x2∥2ˉC≤γ1∥x1−x2∥2ˉC. |
Hence, Δ1 is a contraction.
We prove that Δ2 is compact.
First, we show that Δ2 is continuous on Kq.
Let {xn}⊆Kq with xn→x in Kq and rewrite the control function u(d)=u(d,x). Then, ∀ s∈J,xn(s)→x(s), and by (H2)(i), (H3)(i) and (H4)(i), we have that ℑ(s,xn(s))→ℑ(s,x(s)) as n→∞, σ(s,xn(s))→σ(s,x(s)) as n→∞ and h(s,xn(s),v)→h(s,x(s),v) as n→∞. From the dominated convergence theorem, we have
∥Δ2xn−Δ2x∥2ˉC=supd∈Jd2(1−ℵ)(1−ℏ){E∥∫d℘κPℏ(d−s)B(u(s,xn)−u(s,x))ds+∫d℘κPℏ(d−s)∫s0[ℑ(τ,xn(τ))−ℑ(τ,x(τ))]dω(τ)ds+∫d℘κPℏ(d−s)[σ(s,xn(s))−σ(s,x(s))]dZH(s)+∫d℘κPℏ(d−s)∫V[h(s,xn(s),v)−h(s,x(s),v)]˜N(ds,dv)∥2}→0, |
as n→∞, which is continuous.
We show that {Δ2x:x∈Kq} is equicontinuous.
Let ϵ>0 be small and ℘κ<dα<dβ≤dκ+1; then, we have
E∥(Δ2x)(dβ)−(Δ2x)(dα)∥2≤E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))Bu(s)ds∥2+E∥∫dαdα−ϵ(Pℏ(dβ−s)−Pℏ(dα−s))Bu(s)ds∥2E∥∫dβdαPℏ(dβ−s)Bu(s)ds∥2+E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))∫s0ℑ(τ,x(τ))ds∥2+E∥∫dαdα−ϵ(Pℏ(dβ−s)−Pℏ(dα−s))∫s0ℑ(τ,x(τ))ds∥2+E∥∫dβdαPℏ(dβ−s)∫s0ℑ(τ,x(τ))dω(τ)ds∥2+E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))σ(s,x(s))dZH(s)∥2+E∥∫dαdα−ϵ(Pℏ(tβ−s)−Pℏ(dα−s))σ(s,x(s))∥2+E∥∫dβdαPℏ(dβ−s)σ(s,x(s))dZH(s)∥2+E∥∫dα−ϵ℘κ(Pℏ(dβ−s)−Pℏ(dα−s))∫Vh(s,x(s),v)˜N(ds,dv)∥2+E∥∫dαdα−ϵ(Pℏ(dβ−s)−Pℏ(dα−s))∫Vh(s,x(s),dv)∥2+E∥∫dβdαPℏ(dβ−s)∫Vh(s,x(s),v)˜N(ds,dv)∥2. |
Thus, when dβ→dα and ϵ→0, E∥(Π2x)(dβ)−(Δ2x)(dα)∥2→0, independent of x∈q. Also, we can show that Π2x,x∈Kq are equicontinuous at d=0. Hence Δ2 maps Kq into a family of equicontinuous functions.
In what follows, we show that V(d)={(Δ2x)(d):x∈Kq} is relatively compact in Kq. Clearly, V(0)∈Kq is relatively compact.
Let ℘κ<d≤dκ+1 be fixed and ℘κ<ϵ<d; we define for x∈Kq,ρ>0:
(Δϵ,ρ2x)(d)=ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)Bu(s)dϰds+ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds+ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)+ℏ∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)=ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)∫s0ℑ(τ,x(τ))dω(τ)dϰds+ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)σ(s,x(s))dϰdZH(s)+ℏS(ϵℏρ)∫d−ϵ℘κ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ−ϵℏρ)∫Vh(s,x(s),v)dϰ˜N(ds,dv). |
Since S(ϵℏρ),ϵℏρ>0 is a compact operator, it follows that Vϵ,ρ(d)={(Δϵ,ρ2x)(d):x∈Kq} is relatively compact in F ∀ ℘κ<ϵ<d,ρ>0.
Furthermore, we have the following, ∀ x∈Kq:
∥Δ2x−Δϵ,ρ2x∥2ˉC≤16supt∈Jd2(1−ℵ)(1−ℏ){ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)Bu(s)dϰds‖2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)Bu(s)dϰds‖2+ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫s0ℑ(τ,x(τ))dω(τ)dϰds∥2+ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)σ(s,x(s))dϰdZH(s)∥2ℏ2E∥∫d℘κ∫ρ0ϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)∥2+ℏ2E∥∫dd−ϵ∫∞ρϰ(d−s)ℏ−1Ψℏ(ϰ)S((d−s)ℏϰ)∫Vh(s,x(s),v)dϰ˜N(ds,dv)∥2}≤16Tℏ+2(1−ℵ)(1−ℏ)ℏM2{M2B∫d℘κ(d−s)ℏ−1E∥u(s)∥2ds(∫ρ0ϰΨℏ(ϰ)dϰ)2+M2B∫dd−ϵ(d−s)ℏ−1E∥u(s)∥2ds(∫∞ρϰΨℏ(ϰ)dϰ)2+∫dd−ϵ(d−s)ℏ−1∫s0E∥ℑ(τ,x(τ))∥2Qdτds(∫∞ρϰΨℏ(ϰ)dϰ)2+Tr(R)∫dd−ϵ(d−s)ℏ−1∫s0E∥ℑ(τ,x(τ))∥2Qdτds(∫∞ρϰΨℏ(ϰ)dϰ)2+2HT2H+−1∫d℘κ(d−s)ℏ−1E∥σ(s,x(s))∥2L02ds(∫ρ0ϰΨℏ(ϰ)dϰ)2+2HT2H−1∫dd−ϵ(d−s)ℏ−1E∥σ(s,x(s))∥2L02ds(∫∞ρϰΨℏ(ϰ)dϰ)2+∫d℘κ(d−s)ℏ−1∫VE∥h(s,x(s),v)∥2λdvds(∫ρ0ϰΨℏ(ϰ)dϰ)2+∫dd−ϵ(d−s)ℏ−1∫VE∥h(s,x(s),v)∥2λdvds(∫∞ρϰΨℏ(ϰ)dϰ)2}→0 |
as ϵ→0+, ρ→0+. Thus V(d)∈Kq is relatively compact.
Therefore, from the Arzela-Ascoli theorem Δ2 is a compact operator. Hence, Δ=Δ1+Δ2 is a condensing map on Kq, and by the Sadovskii fixed point theorem ∃ a fixed point x(⋅) for Δ on Kq. Thus, (1.2) is controllable on J.
Take into account the Hilfer fractional stochastic partial differential system driven by a Wiener process and Rosenblatt process through the application of non-instantaneous impulsive Poisson jumps and control functions as follows:
{D23,340+x(d,z)+∂2∂z2x(d,z)=tand1+tandx(d,z)+η(d,z)+e−dx(d,z)dω(d)dd+sind1+sindx(d,z)dZH(d)dd+∫Vˉh(d,x(d,z),v)˜N(dd,dv),d∈(0,23]∪(43,2],0≤z≤π,x(d,0)=x(d,π)=0,d∈(0,2],x(t,z)=27e−(d−23)|x(d,z)|1+|x(d,z)|,d∈(23,43],0≤z≤π,I1120+(x(0,z))=x0(z),0≤z≤π, | (5.1) |
where D23,340+ is an HFD of order ℵ=23,ℏ=34, ω is a Wiener process and ZH is a Rosenblatt process with parameter 12<H<1.
Suppose that F=U=K=Y=L2([0,π]) and Aθ=−(∂2∂z2)θ with D(A)={θ∈X:θ,dθdz are absolutely continuous, and (d2dz2)θ∈X,θ(0)=θ(π)=0}.
−A generates a strongly continuous semigroup S(⋅) and has eigenvalues n2,n∈N with the following associated normalized eigenfunctions
en=√2πsinnx,n=1,2,... |
Then
−Aθ=∞∑n=1n2⟨θ,en⟩en,θ∈D(A) |
and
S(d)θ=∞∑n=1e−n2d⟨θ,en⟩en,θ∈X,d≥0, |
with ‖S(d)‖≤e−d≤1. S23,34(d) and P34(d) can be respectively defined by
S23,34(d)x=34Γ(16)∫d0∫∞0ϰ(d−s)−56s−14Ψ34(ϰ)S(s34ϰ)xdϰds, |
P34(d)x=34∫∞0ϰd−14Ψ34(ϰ)S(s34ϰ)xdϰ. |
Clearly,
‖P34(d)‖≤d−14Γ(34),‖S23,34(d)‖≤d−112Γ(712). |
We define B=I i.e., the identity operator, ℜ(d,x)=tand1+tandx(d,z),ℑ(d,x)(z)=e−dx(d,z), σ(d,x)(z)=sind1+sindx(d,z), h=ˉh(d,x(d,z),v), and g1(d,x(d))=27e−(d−23)|x(d,⋅)|1+|x(d,⋅)|.
Therefore, all assumptions of Theorem 4.1 are verified, and
{1+36MwM2T2ℏM2Bℏ2Γ2(ℏ)}{M3M2Γ2(ℵ(1−ℏ)+ℏ)+M2T1+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)[Λ1+Tr(R)Λ2+Λ4]+2HM2T2H+(1−ℏ)(1−2ℵ)ℏΓ2(ℏ)Λ3}+T2(1−ℵ)(1−ℏ)M3+36MwM2T2ℏE‖x1‖2M2Bℏ2Γ2(ℏ)<1,γ1<1. |
Thus, (5.1) is controllable on (0,2].
In this paper, we established a new class of Hilfer fractional stochastic differential system driven by a Wiener process and Rosenblatt process through the application of non-instantaneous impulsive effects and Poisson jumps. We proved the existence of the mild solution of system (1.1). Sufficient conditions for the controllability of (1.2) were established. Our results were obtained with the aid of fractional calculus, stochastic analysis, semigroup theory and the Sadovskii fixed point theorem. Finally, to explain the results, we offered an example.
The authors declare that they have not used Artificial Intelligence tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP-2024.
The authors declare no conflict of interest.
[1] |
Y. C. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2021), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
![]() |
[2] |
B. P. Moghaddam, A. Mendes Lopes, J. A. Tenreiro Machado, Z. S. Mostaghim, Computational scheme for solving nonlinear fractional stochastic differential equations with delay, Stoch. Anal. Appl., 37 (2019), 893–908. https://doi.org/10.1080/07362994.2019.1621182 doi: 10.1080/07362994.2019.1621182
![]() |
[3] |
G. Shevchenko, Mixed fractional stochastic differential equations with jumps, Stochastics, 86 (2014), 203–217. https://doi.org/10.1080/17442508.2013.774404 doi: 10.1080/17442508.2013.774404
![]() |
[4] |
F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528
![]() |
[5] |
H. M. Ahmed, Sobolev-type nonlocal conformable stochastic differential equations, Bull. Iran. Math. Soc., 48 (2022), 1747–1761. https://doi.org/10.1007/s41980-021-00615-6 doi: 10.1007/s41980-021-00615-6
![]() |
[6] |
P. Balasubramaniam, Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness, Chaos Soliton Fract., 157 (2022), 111960. https://doi.org/10.1016/j.chaos.2022.111960 doi: 10.1016/j.chaos.2022.111960
![]() |
[7] |
M. Abouagwa, J. Li, Stochastic fractional differential equations driven by Lévy noise under Carathéodory conditions, J. Math. Phys., 60 (2019), 022701. https://doi.org/10.1063/1.5063514 doi: 10.1063/1.5063514
![]() |
[8] |
H. M. Ahmed, H. M. El-Owaidy, M. A. Al-Nahhas, Neutral fractional stochastic partial differential equations with Clarke subdifferential, Appl. Anal., 100 (2021), 3220–3232. https://doi.org/10.1080/00036811.2020.1714035 doi: 10.1080/00036811.2020.1714035
![]() |
[9] |
K. Ramkumar, K. Ravikumar, A. Anguraj, H. M. Ahmed, Well posedness results for higher-order neutral stochastic differential equations driven by Poisson jumps and Rosenblatt process, Filomat, 35 (2021), 353–365. https://doi.org/10.2298/FIL2102353R doi: 10.2298/FIL2102353R
![]() |
[10] |
W. Hu, Q. X. Zhu, Stability analysis of impulsive stochastic delayed differential systems with unbounded delays, Syst. Control Lett., 136 (2020), 104606. https://doi.org/10.1016/j.sysconle.2019.104606 doi: 10.1016/j.sysconle.2019.104606
![]() |
[11] |
M. Feckan, J. R. Wang, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8 (2017), 482–496. https://doi.org/10.1515/anona-2017-0015 doi: 10.1515/anona-2017-0015
![]() |
[12] |
T. Sitthiwirattham, R. Gul, K. Shah, I. Mahariq, J. Soontharanon, K. J. Ansari, Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative, AIMS Mathematics, 7 (2022), 4017–4037. https://doi.org/10.3934/math.2022222 doi: 10.3934/math.2022222
![]() |
[13] |
S. A. Karthick, R. Sakthivel, F. Alzahrani, A. Leelamani, Synchronization of semi-Markov coupled neural networks with impulse effects and leakage delay, Neurocomputing, 386 (2020), 221–231. https://doi.org/10.1016/j.neucom.2019.12.097 doi: 10.1016/j.neucom.2019.12.097
![]() |
[14] |
D. Yang, J. R. Wang, Non-instantaneous impulsive fractional-order implicit differential equations with random effects, Stoch. Anal. Appl., 35 (2017), 719–741. https://doi.org/10.1080/07362994.2017.1319771 doi: 10.1080/07362994.2017.1319771
![]() |
[15] |
H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound. Value Probl., 2020 (2020), 120. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0
![]() |
[16] |
H. M. Ahmed, Noninstantaneous impulsive conformable fractional stochastic delay integro-differential system with Rosenblatt process and control function, Qual. Theory Dyn. Syst., 21 (2022), 15. https://doi.org/10.1007/s12346-021-00544-z doi: 10.1007/s12346-021-00544-z
![]() |
[17] |
R. Dhayal, M. Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos Soliton Fract., 151 (2021), 111292. https://doi.org/10.1016/j.chaos.2021.111292 doi: 10.1016/j.chaos.2021.111292
![]() |
[18] |
H. M. Ahmed, Conformable fractional stochastic differential equations with control function, Syst. Control Lett., 158 (2021), 105062. https://doi.org/10.1016/j.sysconle.2021.105062 doi: 10.1016/j.sysconle.2021.105062
![]() |
[19] |
G. J. Shen, R. Sakthivel, Y. Ren, M. Y. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collect. Math., 71 (2020), 63–82. https://doi.org/10.1007/s13348-019-00248-3 doi: 10.1007/s13348-019-00248-3
![]() |
[20] |
P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order 1<q<2 with infinite delay and Poisson Jumps, J. Dyn. Control Syst., 23 (2017), 213–235. https://doi.org/10.1007/s10883-015-9309-0 doi: 10.1007/s10883-015-9309-0
![]() |
[21] |
M. S. H. Ansari, M. Malik, D. Baleanu, Controllability of prabhakar fractional dynamical systems, Qual. Theory Dyn. Syst., 23 (2024), 63. https://doi.org/10.1007/s12346-023-00919-4 doi: 10.1007/s12346-023-00919-4
![]() |
[22] |
H. M. Ahmed, M. M. El-Borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1
![]() |
[23] |
G. Gokul, R. Udhayakumar, Approximate controllability for Hilfer fractional stochastic non-instantaneous impulsive differential system with rosenblatt process and Poisson jumps, Qual. Theory Dyn. Syst., 23 (2024), 56. https://doi.org/10.1007/s12346-023-00912-x doi: 10.1007/s12346-023-00912-x
![]() |
[24] |
C. S. Varun Bose, V. Muthukumaran, S. Al-Omari, H. Ahmad, R. Udhayakumar, Study on the controllability of Hilfer fractional differential system with and without impulsive conditions via infinite delay, Nonlinear Anal. Model., 29 (2023), 166–188. https://doi.org/10.15388/namc.2024.29.33840 doi: 10.15388/namc.2024.29.33840
![]() |
[25] |
W. Kavitha Williams, V. Vijayakumar, R. Udhayakumar, S. K. Panda, K. S. Nisar, Existence and controllability of nonlocal mixed Volterra‐Fredholm type fractional delay integro‐differential equations of order 1<r<2, Numer. Methods Partial Differential Eq., 40 (2024), e22697. https://doi.org/10.1002/num.22697 doi: 10.1002/num.22697
![]() |
[26] |
N. Hakkar, R. Dhayal, A. Debbouche, D. F. M. Torres, Approximate controllability of delayed fractional stochastic differential systems with mixed noise and impulsive effects, Fractal Fract., 7 (2023), 104. https://doi.org/10.3390/fractalfract7020104 doi: 10.3390/fractalfract7020104
![]() |
[27] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[28] |
C. A. Tudor, Analysis of the Rosenblatt process, ESAIM Probab. Stat., 12 (2008), 230–257. https://doi.org/10.1051/ps:2007037 doi: 10.1051/ps:2007037
![]() |
[29] |
E. H. Lakhel. M. A. McKibben, Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt process and impulses, Int. J. Control Autom. Syst., 17 (2019), 286–297. https://doi.org/10.1007/s12555-016-0363-5 doi: 10.1007/s12555-016-0363-5
![]() |
[30] |
H. B. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
1. | Yan Li, Zihan Rui, Bing Hu, Monotone iterative and quasilinearization method for a nonlinear integral impulsive differential equation, 2025, 10, 2473-6988, 21, 10.3934/math.2025002 |