In this article, with the help of Laplace transform, the existence of solution was established in a finite dimensional setting for nonlinear ψ-Hilfer fractional stochastic equation with both retarded and advanced arguments driven by multiplicative and fractional noises, with Hurst index H∈(12,1). At first, we obtained the existence and uniqueness results by using the Banach fixed point theorem (FPT). Second, the existence result was also obtained by applying Schaefer's fixed point theorem with less conservative conditions. Furthermore, we investigated the Hyers Ulam Rasisas stability for the aforementioned system. At the end, an example was illustrated to validate the obtained theoretical results.
Citation: Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa. Existence theory and stability analysis of neutral ψ–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses[J]. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396
[1] | A.G. Ibrahim, A.A. Elmandouh . Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628 |
[2] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[3] | Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663 |
[4] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[5] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[6] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses. AIMS Mathematics, 2021, 6(5): 4474-4491. doi: 10.3934/math.2021265 |
[7] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[8] | Omar Kahouli, Saleh Albadran, Zied Elleuch, Yassine Bouteraa, Abdellatif Ben Makhlouf . Stability results for neutral fractional stochastic differential equations. AIMS Mathematics, 2024, 9(2): 3253-3263. doi: 10.3934/math.2024158 |
[9] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[10] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
In this article, with the help of Laplace transform, the existence of solution was established in a finite dimensional setting for nonlinear ψ-Hilfer fractional stochastic equation with both retarded and advanced arguments driven by multiplicative and fractional noises, with Hurst index H∈(12,1). At first, we obtained the existence and uniqueness results by using the Banach fixed point theorem (FPT). Second, the existence result was also obtained by applying Schaefer's fixed point theorem with less conservative conditions. Furthermore, we investigated the Hyers Ulam Rasisas stability for the aforementioned system. At the end, an example was illustrated to validate the obtained theoretical results.
Fractional differential equations (FDEs) are an effective mathematical tool to model and analyze many real life problems; it has been used by researchers and scientists to get better results than the integer order differential equations. Fractional order differential equations offer a superior framework for capturing the intricate dynamics of real-world phenomena compared to their integer-order counterparts. This superiority stems from the unique ability of fractional integrals and derivatives to account for the inherent hereditary and memory characteristics present in diverse processes and materials. By harnessing these fractional operators, models can more accurately depict the nuanced behaviors observed in nature, thereby enhancing our understanding and predictive capabilities across a wide range of disciplines and applications. Many fractional derivatives, including Caputo derivative, Atangana-Baleanu derivative, Coimbra derivative, and Riemann-Liouville (R-L) derivative, are frequently used to examine FDEs and fractional order stochastic differential equations (SDEs). In a similar vein, the Hilfer fractional derivative (HFD), which was just recently used to do so, was developed by Hilfer [21], which is a generalized version of R-L and Caputo derivatives. In actuality, fractional derivative and integrals indicate greater accuracy than integral models and also depict broader physical applications in seepage, flow in porous media, nanotechnology, fluid dynamics and traffic models [6,7,12,22,24,28,31].
SDEs are the natural extension of deterministic systems. SDEs with impulses arise from many mathematical models of physical phenomena in different scientific fields for example, technology, physics, biology, economics, etc. They are important from the viewpoint of applications since they incorporate randomness into the mathematical description of the phenomena and provide a more accurate description of it. Certainly, in various fields like economics, bioengineering, chemistry, medicine, and biology, we often encounter situations where things change suddenly at specific points in time [5,23,29,32]. These abrupt changes can be explained by what we call "impulsive effects." These impulsive effects are like sudden pushes that happen at certain moments and have a big impact on the system, being studied. These pushes play a crucial role in understanding and modeling how things change in the aforementioned diverse fields. For the mathematical models of such phenomena, finding their solution is a challenging task. As a result, Boundani et al. [8,9] presented some specific conditions that help us to determine whether certain mathematical equations, involving randomness, can have solutions. These equations involve functional differential equations and a type of random behavior, called fractional Brownian motion.
In [20], Hernandez and O'Regan introduced non-instantaneous (NI) impulses. Many researchers have utilized these impulses and studied the corresponding dynamical systems [3,4,27,36,39]. To better understand NI impulses, we can think about human blood sugar levels. When they have too much or too little, glucose they get insulin medication through the bloodstream, in fact it doesn't work instantly but takes some time to be absorbed [37]. This gradual effect is like NI, where the impact lasts for a while in many real situations. Sudden changes don't explain things well. For instance, in the treatment of diseases with medication, we need to describe how things change over time more smoothly. That's where NI impulsive differential equations come in handy. They help us to model these gradual changes, like how drugs affect the body in pharmacotherapy.
Among the qualitative behaviors of different physical systems, different types of stabilities are the essential ones. One of these types of stabilities is Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability [11,16,26,30,33].
In the literature, most of the results related to fractional stochastic differential equations (FSDEs) are given over infinite dimensional spaces [1,2,13,18,19,25,32,35,38], and very few have looked at similar results in finite spaces. There is no prior work on the specific topic of non-integers order impulses in finite-dimensional equations to the problem of fractional neutral SDEs including both noises. In FSDEs incorporating both retarded and advanced arguments, a significant characteristic emerges: The rate of change of the system at the present moment is influenced not only by its past history but also by its anticipated future states. This feature underscores the intricate interplay between past, present, and future dynamics, where the system's behavior is shaped by a combination of its memory effects and anticipatory responses.
In the current manuscript, we investigate the following ψ-Hilfer fractional stochastic equation (HFSE):
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε),Dγ,βψ(ε)Γ(ε))+∫ε0g(s,Γ(s),Dγ,βψ(ε)Γ(ε))dB(s)+∫ε0λ(s,Γ(s),Dγ,βψ(ε)Γ(ε))dBH(s),ε ∈(sk,εk+1]⊂J′:=(0,b],k=0,1,2,…,m,Γ(ε)=hk(ε,Γ(ε)),ε∈(εk,sk],k=1,2,…,m,I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h], | (1.1) |
where Dγ,βψ(ε) is the ψ– Hilfer FD of order 0<γ<1 and of type 0<β≤1. Let J:=[0,b], b>0. The state vector Γ∈Rn, A∈Rn×n and nonlinear functions h : J×Rn⟶Rn, Δ:J×Rn⟶Rn, g:J×Rn⟶Rn×n, λ:J×Rn⟶Rn×n, and hk:J×Rn⟶Rn are measurable and bounded functions. Also, Γ0 is F0 measurable Rn-valued stochastic variable and B is an n-dimensional Wiener process.
Based on the value of H, the following kinds of the fractional Brownian motion (fBm) process exist:
(1) if H=12, then the process is a Brownian motion or a Wiener process exists;
(2) if H>12, then the increment of the process is positively correlated;
(3) if H<12, then the increment of the process is negatively correlated.
The contributions of this paper are described as below:
● Nonlinear ψ-HFSE is considered in Rn.
● The existence and uniqueness results are established by using the standard Banach contraction principle.
● The weaker sufficient conditions are derived by using the generalized Schaefer FPT for the system with measure of non-compactness (MNC).
● UHR stability results are derived for ψ-HFSE with NI impulse.
● An example is provided for the theoretical results.
This paper is structured as follows: In Section 2, we present a number of lemmas and some fundamental definitions for fractional calculus. Section 3 derives the solution representation of ψ-Hilfer fractional SDEs with NI impulses. To demonstrate the key results, the generalized Schaefer's and contraction mapping principles are used in Section 4. In Section 5, UHR stability of a ψ-HFSE is discussed. Example is demonstrated for the validity of theoretical results in Section 6.
Notations:
● (Ω,F,P) represents the complete probability space along a probability measure P on Ω.
● B(ε) and BH(ε) denote, respectively, the n-dimensional Brownian motion and fBm with Hurst index 12<H<1.
● {Fε|ε∈J} represents the filtration generated by {B(ε):0≤s≤ε}.
● L2(Ω,Fε,P,Rn) : = L2(Ω,Rn) is the space of all Fε-measurable square integrable random variables with values in Rn.
Let Jk = (εk,εk+1], k=1,2,…,m be such that impulse times satisfy 0 = ε0 = s0<ε1<s1<ε2<⋯<εm≤sm<εm+1 = b. Let C(J,L2(Ω,Rn)) denote Cn(J) and be the Banach space of all continuous maps from J into L2(Ω,Rn) of Fε-adapted square integrable functions Γ(ε) and for its norm supE||Γ(ε)||2<∞.
Define the space
Y=PCvn(J)=PCvn(J,L2(Ω,Rn))={Γ:J→L2(Ω,Rn),Γ/Jk∈Cn(Jk,L2(Ω,Rn)), |
and there exist Γ(ε−k) and Γ(ε+k) with Γ(εk)=Γ(ε−k), k=1,…,m, endowed with the norm
||Γ||2Y=maxk=0,1,…,msupε∈Jk{E||(ε−εk)(1−v)Γ(ε)||}}. |
Clearly, Y is a Banach space.
Lemma 2.1. [39] Let p≥2 and f∈Lp(J,Rn×n) such that E|∫b0f(s)dB(s)|p<∞, then
E|∫b0f(s)dB(s)|p≤(p(p−1)2)p2bp−22E∫b0|f(s)|pds. |
Lemma 2.2. [10] Let φ:J→L02 satisfy ∫b0||φ(s)||2L02ds<∞, then we get
E||∫ε0φ(s)dBH(s)||2≤2Hε2H−1∫ε0E||φ(s)||2L02ds. |
Definition 2.1. [17] The generalized ψ-Hilfer FD of order 0<γ<1 and of type 0≤β≤1 is represented by
Dγ,βψ(t)f(t)=Iβ(n−γ)ψ(t)(1ψ′(t).ddt)mI1−β(n−γ)ψ(t)f(t). |
Definition 2.2. [10] Let z be a bounded linear operator. The two parameter Mittage-Leffler (M-L) function is defined by
Mγ,β(z)=∞∑r=0zrΓ(rγ+β),γ,β>0,z∈C. |
One of the interesting properties of the M-L function, related with their Laplace integral, is given by
∫∞0e−sεεβ−1Mγ,β(±aεγ)dε=sγ−β(sγI∓a). |
That is
L{εβ−1Mγ,β(±aεγ)}(s)=sγ−β(sγI∓a). |
Lemma 2.3. [17] For γ∈(n−1,n], β∈[0,1], the following Laplace formula for the ψ-Hilfer derivative is valid:
Lψ{0Dγ,βψ(t)f(t)}=sγLψ{f(t)}−m−1∑n=0sm(1−v)+γβ−n−1(0I(1−v)(m−β)−nψ(t)f)(0). |
Corollary 2.1. [17] If f is a function whose classical Laplace transform is F(s), then the generalized Laplace transform of the function f∘ψ=f(ψ(t)) is also F(s):
L{F(s)}=F(s)⇒L{f(ψ(ε))}=F(s). |
Example 2.1. [17]
(a)Lψ{(ψ(ε)μ)}=Γ(μ+1)sμ+1,fors>0.(b)Lψ{ea(ψ(ε))}=1s−a,fors>a.(c)Lψ{Mμ(A(ψ(ε))μ)}=sμ−1sμ−A.(d)Lψ{(ψ(ε))μ−1Mμ,μ(A(ψ(ε))μ)}=1sμ−A,forRe(μ)>0and |Asμ|<1. |
Example 2.2. Assume that Re(μ)>0 and |Asμ|<1. If Mγμ,v denotes the Prabhakar function, then we have
Lψ{(ψ(ε))v−1Mγμ,v(A(ψ(ε))μ)}=L{ψ(ε)v−1Mγμ,v(A(ψ(ε)μ))}=sμγ−v(sμ−A)γ. |
Consider the linear deterministic system, which is represented in the following form:
Dγ,βψ(ε)[Γ(ε)−h(ε,Γ(ε))]=AΓ(ε)+Δ(ε,Γ(ε)),I1−v0+Γ(ε)/ε=0=Γ0,v=γ+β−γβ. |
By the Laplace transformation, we get
sγˆΓ(s)−ˆh(s)−s−β(1−γ)(Γ(0)−h(ε,0))=AˆΓ(s)+ˆΔ(s),(sγI−A)(ˆΓ(s))=s−β(1−γ)(Γ(0)−h(ε,0))+ˆh(s)+ˆΔ(s),ˆΓ(s)=s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+1(sγI−A)ˆh(s)+1(sγI−A)ˆΔ(s), |
where I is the identity matrix.
Γ(s)=Lψ−1s−β(1−γ)(sγI−A)[Γ(0)−h(ε,0)]+Lψ−11(sγI−A)ˆh(s)+Lψ−11(sγI−A)ˆΔ(s). |
Substituting the LψT of the M-L function, one can obtain that
Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds. |
Therefore, the solution of (1.1) is given as follows:
Γ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(ε)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(ε)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(ε)dBH)ds,εϵ(sk,εk+1],Γ(ε)=ϕ(ε),ε∈[b,b+h]. |
Definition 3.1. [40] The set S is called a quasi-equicontinuous in T if, for ε > 0, there exists a δ > 0, such that if Γ∈S,K∈N,τ1,τ2∈TK⋂T, and |τ2−τ1|<δ, then |Γ(τ2)−Γ(τ1)|<ε.
Lemma 3.1. [34] The set S⊂PC(J,Rn) is relatively compact if
(i) S is uniformly bounded, i.e., ||Γ||PCk for each Γ∈S and some k>0;
(ii) S is quasi-equicontinous in T.
Definition 3.2. [14] An operator T : Z→Z is said to be χ-condensing of any bounded set B of Z with χ-condensing(B) > 0, χ(T(B))<χ(B), where
χ(B)=inf{k>0,B is covered by a finite number of sets of diameter ≤k} |
is Kuratowskii MNC of a bounded set B of Z.
Now, we state the generalized Schaefer's type FPT with χ-condensing operators.
Theorem 3.1. [15] Let T : Z→Z be an operator and Z be a separable Banach space satisfying
(A1) T is χ-condensing and continuous.
(A2) The set S = {Γ∈Z:Γ=δT(Γ) for some 0<δ<1} is bounded, then T has a fixed point.
For convenience, define the following:
M1=supξ∈J||Mγ,v(A(ψ(ε))γ)||2;M2=supξ∈J||Mγ,γ(A(b−ψ(ε))γ)||2. |
To derive the existence result, we imposed the following assumptions:
(H1) The functions Δ,h,g,λ, and hk k=1,2,…,m are Lipschitz continuous.
(1) E||h(ε,u1)−h(ε,u2)||2 ≤Mh||u1−u2||2Y;
(2) E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2 ≤Mf1||u1−u2||2Y+Mf2||v1−v2||2Y;
(3) E||g((ε,u1,v1))−g((ε,u2,v2))||2 ≤Mg1||u1−u2||2Y+Mg2||v1−v2||2Y;
(4) E||λ(ε,u1,v1)−λ(ε,u2,v2)||2 ≤Mλ1||u1−u2||2Y+Mλ2||v1−v2||2Y;
(5) E|hk(ε,u1)−hk(ε,v1)||2 ≤Mhk||u1−v1||2Y,
and hk∈C((εk,sk],L2(Ω,Rn)), where Mh,Mf,Mg,Mλ, and Mhk are positive constants, u1,u2,v1,v2∈Rn, and ε∈Tk.
(H2) There exist lh, mh,nh∈Y with l∗h=supξ∈Jlf(ε), m∗h=supξ∈Jmh(ε), and n∗h=supξ∈J nh(ε) such that
E||h(ε,u1,v1)||2≤lh(ε)+mh(ε)||u1||2+nh(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H3) There exist lf, mf,nf∈Y with l∗f=supξ∈Jlf(ε), m∗f=supξ∈Jmf(ε), and n∗f=supξ∈Jnf(ε) such that
E||Δ(ε,u1,v1)||2≤lf(ε)+mf(ε)||u1||2+nf(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H4) There exist lg, mg∈Y with l∗g=supξ∈Jlg(ε), m∗g=supξ∈Jmg(ε), and n∗g=supξ∈Jng(ε) such that
E||g(ε,u1,v1)||2≤lg(ε)+mg(ε)||u1||2+ng(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H5) There exist lλ, mh,nh∈Y with l∗λ=supξ∈Jlλ(ε), m∗λ=supξ∈Jmλ(ε), and n∗λ=supξ∈Jnλ(ε) such that
E||λ(ε,u1,u2||2≤lλ(ε)+mλ(ε)||u1||2+nλ(ε)||v1||2 for ε∈T,u1,v1∈Rn. |
(H6) There exist Mhk>0, for all u∈Rn, such that
E||hk(ε,u)||2≤Mhk(1+||u||2Y). |
To prove the existence and uniqueness of solution first, we need to transform the problem (1.1) into a fixed point problem and define an operator H : Y→Y by
HΓ(ε)={Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ(η)),Dγ,βψ(ε)Γ(β)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γ(s))ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γ(η)),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γ(η))),Dγ,βψ(ε)Γ(β)dBH)ds, εϵ(sk,εk+1],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Let x:[0−r,b+h]→R be a function defined by
x(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],0,ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
For each z∈C([0,b],R) with z(0)=0, we denote by u the function defined by
u(ε)={Γ(ε)=ϕ(ε),ifε∈[0−r,0],z(ε),ifε∈(0,b],Γ(ε)=φ(ε),ifε∈[b,b+h]. |
Let us set Γ(ε)=z(ε)+x(ε) such that yε=zε+xε for each ε∈(0,b], where
Γ(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γη),Dγ,βψ(ε)ΓβdBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,Γs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,Γs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,Γη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,Γ((η,γη)),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
z(ε)={Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1]. |
Let Φ:Y→Y be an operator given by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. |
To show that the operator H has a fixed point, for this it is sufficient to show that the operator Φ has a fixed point and this fixed point will correspond to a solution of problem (1.1).
Theorem 4.1. Assume that the Hypothesis (H1) holds, then the solution (1.1) has a unique solution of the problem (1.1), provided
L0=max{L1,Lk,L∗k}<1,k=1,2,…,m, | (4.1) |
where
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)],Lk=Mhk,L∗k=4[bv−1M1Mhk+M2(b)2γγ2{(Mh+Mf1+bMg1+2Hb2HMλ1)+(Mf2+bMg2+2Hb2HMλ2)×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}]. |
Proof. Consider the operator Φ : Y→Y defined by
Φz(ε)={0,ε∈[0−r,0],Γ(0),ε=0,ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(s)dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds,εϵ(0,ε1],hk(ε,Γ(ε)),εϵ(εk,sk],k=1,2,3,…,m,(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs)ds,Dγ,βψ(ε)Γ(s)+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη),Dγ,βψ(ε)Γ(η)dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,zη+xη),Dγ,βψ(ε)Γ(η)dBH)ds, εϵ(sk,εk+1],0,ε∈[b,b+h]. | (4.2) |
As Δ, h, g, λ, hk are all continuous, we have to prove that Φ is a contraction.
Case 1. For z, y∈Y and for ε∈[0,ε1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤3{(M2ψ(ε)2γγ2Mh||z(ϵ)−y(ε)||2+M2ψ(ε)2γγ2Mf1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ2Mg1||z(ϵ)−y(ε)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2ψ(ε)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2ψ(ε)2γ+1γ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
This implies
||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+2Hb2HMλ1)×||z(ϵ)−y(ε)||2Y+3M2ψ(ε)2γγ2(Mf2+ψ(ε1)Mg2+2Hb2HMλ2)×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2],||(Φz)(ε)−(Φy)(ε)||2Y≤3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]||z(ε)−y(ε)||2. |
Thus we take
L1=3M2ψ(ε)2γγ2[(Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2)]. |
So, we get
||(Φz)(ε)−(Φy)(ε)||2Y≤L1||z(ε)−y(ε)||2Y. |
Case 2. For ε∈(εk,sk], k=1,2,…,m, we have
E||(Φz)(ε)−(Φy)(ε)||2Y≤E||hk(ε,z(ε))−hk(ε,y(ε))||2,||(Φz)(ε)−(Φy)(ε)||2Y≤Mhk||z(ε)−y(ε)||2Y. |
Take Lk:=Mhk and therefore,
||(Φz)(ε)−(Φy)(ε)||2Y≤Lk||z(ε)−y(ε)||2Y. |
Case 3. For z,y∈Y and for ε∈(sk,εk+1], we have
E||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)−sk)v−1M1Mhk||z(ε)−y(ε)||2+(M2(ψ(ε)−sk)2γγ2Mh||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mf1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ2Mg1||z(ϵ)−y(ε)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ1||z(ϵ)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2Mf2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ2Mg2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2+M2(ψ(ε)−sk)2γγ22Hψ(ε)2H−1Mλ2||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}.||(Φz)(ε)−(Φy)(ε)||2≤4{(ψ(ε)k+1−sk)v−1M1Mhk+(M2(ψ(ε)−sk)2γγ2×[Mh+Mf1+(ψ(εk+1)−sk)Mg1+2Hψ(ε)2HMλ1]×||z(ε)−y(ε)||2)+(M2(ψ(ε)−sk)2γγ2×[Mf2+(ψ(εk+1)−sk)Mg2+2Hψ(ε)2HMλ2]×||Dγ,βψ(ε)z(s)−Dγ,βψ(ε)y(s)||2)}. |
Thus,
||(Φz)(ε)−(Φy)(ε)||2≤4{bv−1M1Mhk+M2(b)2γγ2{Mh+Mf1+bMg1+2Hb2HMλ1+(Mf2+bMg2+2Hb2HMλ2)}×||A||+Mh+Mf1+bMg1+2Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2)}||z(ε)−y(ε)||2:=L∗k||z(ε)−y(ε)||2Y. |
From the above three cases, we obtain that ||(Φz)(ε)−(Φy)(ε)||2 ≤ L0||z(ε)−y(ε)||2Y as per (4.1), Φ is contraction, and, thus, (1.1) has a unique fixed point z, which is a solution to problem (1.1).
Remark 4.1. Banach contraction principle provides not only the existence results, but also uniqueness is assured. Also, the nonlinear functions could satisfy only Lipschitz conditions to prove existence and uniqueness results, even though conditions are stronger.
Remark 4.2. It is to be noted that the assumption L0<1 in Theorem 4.1 shows a restrictive smallness on Lipschitz constants for the nonlinear functions h, g, Δ, and λ when compared with the periods of time, while the impulses are active or vice-versa. In order to relax such a kind of smallness, the generalized Schaefer's FPT is introduced.
Theorem 4.2. Assume that (H2)−(H5) hold, then the nonlinear operator Φ:Y→Y has a fixed point, which is a solution of problem (1.1)
Proof. Since Φ is well defined, we will present the proof by the following four steps.
First, we prove that Φ is completely continuous (CC), that is, T is continuous, maps bounded sets into bounded sets, and maps bounded sets into quasi-equicontinuous sets.
Step 1. To prove Φ is continuous.
Since h, g, Δ,λ, and hK are all continuous, then it is clear that the operator Φ is continuous on J.
Step 2. To prove Φ maps bounded sets in Y.
In fact, it is sufficient to show that for any r>0, there exists an η>0 such that for each z∈Br={z∈Y:||z||2Y≤z}.
Case 1. For ε∈[0,ε1],z∈Y
||(Φz)(ε)||2Y≤4{ψ(ε1)ν−1M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2||h(ε,zs+xs),Dγ,βψ(ε)Γ(s)||+M2ψ(ε1)2γγ2||Δ(ε,zs+xs,Dγ,βψ(ε)Γ(s))||+M2ψ(ε1)2γ+1γ2||g(ε,zη+xη,Dγ,βψ(ε)Γ(s))||+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2||λ(ε,zη+xη,Dγ,βψ(ε)Γ(s))||}. |
Using (H2)−(H4) and Lemmas 2.1 and 2.2, one can enumerate
||(Φz)(ε)||2Y≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(lh(ε)+mh(ε)||zs+xs||2Y)+M2ψ(ε1)2γγ2(lf(ε)+mf(ε)||zs+xs||2Y+nf(ε)||Dγ,βψ(ε)Γ(s)||2Y)+M2ψ(ε1)2γ+1γ2(lg(ε)+mg(ε)||zη−xη||2Y+ng||Dγ,βψ(ε)Γ(s)||2)+2Hψ(ε)2H−1M2ψ(ε1)2γ+1γ2(lλ(ε)+mλ(ε)||zη+xη||2Y+||Dγ,βψ(ε)Γ(s)||2)}≤4{M1||Γ0−h(ε,0)||2Y+M2ψ(ε1)2γγ2(l∗h)+M2ψ(ε1)2γγ2(l∗f)+M2ψ(ε1)2γ+1γ2(l∗g)+M22Hψ(ε1)2Hγ2(l∗λ)}+4{M2ψ(ε1)2γγ2(m∗h)+M2ψ(ε1)2γγ2(m∗f)+M2ψ(ε1)2γ+1γ2(m∗g)+M22Hψ(ε1)2Hγ2(m∗λ)}||z||+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(l∗h+l∗f+ψ(ε)l∗g+2Hψ(ε)2Hl∗λ)}+4{M1||Γ0−h(ε,0)||2+M2ψ(ε1)2γγ2(m∗h+m∗f+ψ(ε)m∗g+2Hψ(ε)2Hm∗λ)+(l∗h+l∗f+ψ(ε)l∗g+ψ(ε)l∗λ+(m∗h+m∗f+ψ(ε)m∗g+ψ(ε)m∗λ)1−(n∗f+ψ(ε)n∗g+ψ(ε)m∗λ)}z:=η0. |
Case 2. For ε∈(εk,sk], k = 1, 2, …, m,
||(Φz)(ε)||2≤E||hk(ε,zs+xs)||2≤Mhk(1+||z||2)≤ψ(ε)1−vMhk(1+||z||2)≤maxψ(ε)1−vMhk(1+z):=ηk, k=1,2,3…,m. |
Case 3. For ε∈(sk,εk+1], k=1,2,…,m, Γ∈Y, we have
E||(Φz)(ε)||2≤4{E||(ψ(ε)k+1−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,zs+xs)ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,zs+xs,Dγ,βψ(ε)Γ(s))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,zη+xη,Dγ,βψ(ε)Γ(s))dB(η))ds||2+E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,zη+xη,Dγ,βψ(ε)Γ(s))dBH)ds||2}. |
Thus
E||(ΦΓ)(ε)||2≤4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[l∗h+l∗f+(ψ(ε)k+1−sk)l∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{(ψ(ε)v−1M1Mhk(1+||Γ(sk)||2Y))+M2(ψ(ε)k+1−sk)2γγ2[m∗h+m∗f+(ψ(ε)k+1−sk)m∗g+2H(ψ(ε)k+1−sk)2Hl∗λ]}+4{M2ψ(ε1)2γγ2n∗f+M2ψ(ε1)2γ+1γ2n∗g+M2ψ(ε1)2γ+1γ2n∗λ}||Dγ,βψ(ε)Γ(s)||2≤4{bv−1M1Mhk+M2b2γγ2[l∗h+l∗f+bl∗g+2Hb2Hl∗λ]}+4{bv−1M1Mhk+M2b2γγ2[m∗h+m∗f+bm∗g+2Hb2Hm∗λ]+[l∗h+l∗f+bl∗g+bl∗λ+(m∗h+m∗f+bm∗g+bm∗λ)1−4(n∗f)+bn∗g+bm∗λ]}z:=ηb. |
Let η = {η0,ηk,ηb}, k=1,2,…,m, then {ψ1−v(Φz)(ε):z∈B} is a bounded set in Y, i.e., ||Φz||2Y ≤η.
Step 3. Φ is a quasi-equicontinous set in Y.
Case 1. Let τ1, τ2 ∈[0,ε1] with 0≤τ1≤τ2≤ε1. One could establish the following estimate:
||(Φz)(τ2)−(Φz)(τ1)||2=sup{E||τ1−v2(ΦΓ)(τ2)−τ1−v1(ΦΓ)(τ1)||2}≤8{E||Mγ,v(Aτγ2)||Γ0−h(ε,0)||−Mγ,v(Aτγ1)||Γ0−h(ε,0)||||2+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗h+m∗hE||zs+xs||2+n∗h||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗f+m∗fE||zs+xs||2+n∗f||Dγ,βψ(ε)Γ(s)||2)ds+τ2∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗g+m∗gE||zη+xη||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+(τ2−τ1)∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2(l∗g+m∗gE||zs+xs||2+n∗g||Dγ,βψ(ε)Γ(s)||2)ds+2Hτ2H−12∫τ20||τ1−v2(τ2−s)γ−1Mγ,γ(A(τ2−s)γ)−τ1−v1(τ1−s)γ−1Mγ,γ(A(τ1−s)γ)||2(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds+2H(τ2−τ1)2H−1∫τ20τ2(1−v)2(τ2−s)2γ−2||Mγ,γ(A(τ2−s)γ)||2×(l∗λ+m∗λE||zs+xs||2+n∗λ||Dγ,βψ(ε)Γ(s)||2)ds}. |
We conclude that as τ2−τ1→0 with ε sufficiently small, the right hand side of the above inequality tends to zero independently of z∈Br. Furthermore, the similar results are true for εk<τ1<τ2≤sk and sk<τ1<τ2≤εk+1 for k=1,2,…,m. It proves the equicontinuous of Φ on Y. Thus, for τ1,τ2∈[0,b]⋂(εk,εk+1], k=1,2,…,m, whenever B is a bounded set of Y as in Step 2, let z∈Br, then
||(Φz)(τ1)−(Φy)(τ2)||2Y≤M(r)(τ2−τ1). |
Thus, Φ is quasi-equicontinuous, then Φ(z) is relatively compact by Lemma 3.1, which implies that Φ(z) is CC.
Step 4. Φ has a Prior bound.
It remains to estimate that the set ∏(Φ)={z∈Y:z=ΘΦz,0<Θ<1} is bounded.
Let z∈Π(Φ), then z=ΘΦ(z) for some Θ∈(0,1), by following the proof of Step 2 that ||z||Y≤η. This proves that the set Π(Φ) is bounded. Hence, by Theorem 3.1, Φ has a fixed point, which is the required solution on J.
Here, we derive the UHR stability for (1.1). Let ω>0, ϕ≥0, and ζ∈PC(J,Rn) be nondecreasing. Consider the following inequalities.
E||Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]−A˜Γ(ε)−Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))−∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)−∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)||≤ωζ(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,E||Γ(ε)−hk(ε,Γ(ε))||2≤ωϕ,ε∈(εk,sk],k=1,2,…,m,E||I1−v0+Γ(ε)−Γ0||2≤ωϕ,Γ(ε)=ϕ(ε),ε∈[0−r,0],Γ(ε)=φ(ε),ε∈[b,b+h]. |
Define a vector space as χ:
χ=PC(J,Rn)∩C((sk,tk+1],Rn). |
Definition 5.1. System (1.1) is UHR stable with respect to (ζ,ϕ) if there exists C(M,L,P,ζ)>0 such that for each solution ˜Γ∈χ of the inequality (5.1), there exists solution Γ∈PC(J,Rn) of (1.1) with
E||˜Γ(ε)−Γ(ε)||2≤C(M,L,p,ζ)ω(ζ(ε)+ϕ),ε∈J. |
Remark 5.1. A function ˜Γ∈χ is a solution of (5.1) ⇔ there is Q∈⋂Ki=0 ((sk,εk+1],Rn] and q∈⋂Ki=0((εk,sk],Rn) such that:
(1) E||Q(ε)||2≤ωζ(ε),ε∈⋂Ki=0(sk,εk+1];E||q(ε)||2≤ωϕ,ε∈⋂Ki=0(tk,sk];
(2) Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s) +∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,
(3) ˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m.
By Remark 5.1, we have
Dγ,βψ(ε)[˜˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)˜Γ(s)))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)˜Γ(s)))dBH(s)+Q(ε),ε ∈(sk,εk+1],k=0,1,2,…,m,˜Γ(ε)=hk(ε,˜Γ(ε))+q(ε),ε∈(εk,sk],k=0,1,2,…,m,I1−v0+˜Γ(ε)/ε=0=Γ0. |
Lemma 5.1. Let β∈[0,1], γ∈(0,1). If a function ˜Γ∈χ is a solution of (5.1) then we have:
(i)E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds,ε∈[0,ε1]. |
(ii)E||(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤b2γγ2M2ω∫εskζ(s)ds, ε∈(sk,εk+1],k=1,2,…,m. |
By Remark 5.1, we have:
Case 1. For ε∈[0,ε1], we have
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε). |
Thus
˜Γ(ε)=ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds+∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
From above, we obtain
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ω∫ε0ζ(s)ds. |
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we get
Dγ,βψ(ε)[˜Γ(ε)−h(ε,˜Γ(ε))]=A˜Γ(ε)+Δ(ε,˜Γ(ε),Dγ,βψ(ε)Γ(s))+∫ε0g(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dB(s)+∫ε0λ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))dBH(s)+Q(ε),then,˜Γ(ε)=(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,γ(sk))+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds,+∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds. |
Thus
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,˜Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2≤E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ε∫ε0ζ(s)ds. |
In order to prove stability, we assume the following assumptions:
(H7) There exist positive constants Mk(k=1,2,…,m) such that
E||hk(ε,Γ(ε))−hk(ε,z(ε))||2≤m∑k=1MkE||Γ(ε)−z(ε)||2Y∀ε∈(εk,sk]. |
(H8) Let ζ∈C(J,Rn) be a nondecreasing function if there exists cζ>0 such that ∫ε0ζ(s)ds<cζζ(ε), ∀ ε∈J.
Lemma 5.2. Let P0=P∪0 where p=1,2,…,m, and the following inequality holds
Γ(ε)≤a(ε)+∫ε0b(s)Γ(s)ds+Σ0<εk<εαkΓ(εˉk),ε≥0, |
where Γ,a,b∈PC(R+,R+), a is nondecreasing and b(ε)>0, αk>0, k∈P. For ε∈R+,
Γ(ε)≤a(ε)(1+α)Ke(∫ε0b(s)ds),ε∈(εK,εK+1],K∈P0, |
where α=supK∈P{αK} and ε0=0.
Theorem 5.1. If the assumptions (H1),(H7), and (H8) are satisfied, then (1.1) is UHR stable with respect to (ζ,ϕ).
Proof. Let ˜Γ∈χ be a solution of inequality (5.1) and Γ be the unique solution of (1.1).
Case 1. For ε∈[0,ε1], we have:
E||˜Γ(ε)−ψ(ε)v−1Mγ,v(A(ψ(ε)γ)[Γ0−h(ε,0)]−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)0(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤ψ2γ(ε)γ2M2ε∫ε0ψ(s)ds≤ψ2γ(ε)γ2M2ωcζζ(ε)≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε), |
where cp=b2γγ2M2.
Case 2. For ε∈(εk,sk], we have
E||˜Γ(ε)−hk(ε,˜Γ(ε))||2≤ωϕ. |
Case 3. For ε∈(sk,εk+1], we have
E||˜Γ(ε)−(ψ(ε)−sk)v−1Mγ,v(A(sk)γ)hk(sk,Γ(sk))−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)h(s,˜Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Δ(s,˜Γ(s),Dγ,βψ(ε)Γ(s))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0g(η,˜Γ(η),Dγ,βψ(ε)Γ(s))dB(η))ds−∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)(∫s0λ((η,˜Γ(η),Dγ,βψ(ε)Γ(s))dBH)ds||2=E||∫ψ(ε)sk(ψ(ε)−s)γ−1Mγ,γ(A(ψ(ε)−s)γ)Q(s)ds||2≤(ψ(ε)−sk)2γγ2M2ω∫ε0ζ(s)ds≤b2γγ2M2ωcζζ(ε)≤cpcζζ(ε). |
Hence, for ε∈[0,ε1], we have:
E||Γ(ε)−˜Γ(ε)||2≤ψ(ε)2γγ2M2[ωcζζ(ε)+((Mh+Mf1+ψ(ε1)Mg1+Hψ(ε1)2HMλ1)+(Mf2+ψ(ε1)Mg2+2Hψ(ε1)2HMλ2)×||A||+Mh+Mf1+ψ(ε)Mg1+2Hψ(ε1)2HMλ11−(Mf2+ψ(ε)Mg2+2Hψ(ε1)2HMλ2))||Γ(s)−˜Γ(s)||2]≤b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+2Hb2HMλ2))||Γ(s)−˜Γ(s)||2]. | (5.1) |
For ε∈(εk,sk], we get
E||Γ(ε)−˜Γ(ε)||2=E||Γ(ε)−hk(sk,˜Γ(sk))||2=E||Γ(ε)−hk(sk,Γ(sk))+hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2≤2{E||Γ(ε)−hk(sk,Γ(sk))||2+E||hk(sk,Γ(sk))−hk(sk,˜Γ(sk))||2}≤2{ωϕ+Σki=0Mk||Γ(ε)−˜Γ(ε)||2}. | (5.2) |
For ε∈(sk,εk+1], k = 1, 2, …, m,
E||Γ(ε)−˜Γ(ε)||2≤5b2γγ2M2[ωcζζ(ε)+((Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2))||Γ(s)−˜Γ(s)||2].+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2. | (5.3) |
Combining (5.2)–(5.4), one can get an inequality of the form given in Lemma 5.2. For ε∈J, since ε∈(εk,εk+1], K∈P0, we have
E||Γ(ε)−˜Γ(ε)||2≤5{cpωcζζ(ε)+bv−1M1Σki=1Mk||Γ(ε)−˜Γ(ε)||2+cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]||Γ(s)−˜Γ(s)||2+5bv−1M1Σki=1Mk||Γ(s)−~Γ(s)||2}+2ωϕ≤5cpωcζ(ζ(ε)+ϕ)(1+M)ke∫ε0Lds, |
where
M=sup{bv−1M1Mk},L=cp[(Mh+Mf1+bMg1+Hb2HMλ1)+(Mf2+bMg2+Hb2HMλ2)×||A||+Mh+Mf1+bMg1+Hb2HMλ11−(Mf2+bMg2+Hb2HMλ2)]. |
Thus,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ω(ζ(ε)+ϕ),∀ε∈J, |
where C(M,L,p,ζ) is a constant depending on M,L,p,ζ. Hence, (1.1) is UHR stable w.r.t (ζ,ϕ).
Consider the following nonlinear ψ-HFSE with NI impulses driven by both noises. This type of fractional SDE can be applied in pharmacotherapy.
D12,34ψ(ε)Γ1(ε)=Γ2(ε)+15(Γ1(ε)1+Γ21(ε)+Γ22(ε))+15(Γ1(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ1(ε)e−ψ(ε)3β1(ε),Dγ,βψ(ε)Γ(s)+Γ1(ε)e−2ψ(ε)5βH1(ε),Dγ,βψ(ε)Γ(s), |
D12,34ψ(ε)Γ2(ε)=Γ1(ε)+15(Γ2(ε)1+Γ21(ε)+Γ22(ε))+15(Γ2(ε)1+Γ21(ε)+Γ22(ε),Dγ,βψ(ε)Γ(s)) |
+Γ2(ε)e−ψ(ε)3β2(ε),Dγ,βψ(ε)Γ(s)+Γ2(ε)e−2ψ(ε)3βH2(ε),Dγ,βψ(ε)Γ(s), |
ε∈(sk,εk+1],k=0,1,…,m, |
Γ(ε)=14Γ(ε,εk),ε(0.9,sk),k=1,2,…,m, |
Γ(0)=Γ0,ψ(ε)=sin(ε), |
where Γ∈R2, Γ∈12, β=34, 0<ε0<s0<ε1<⋯<sm=1 are prefixed numbers, J=[0,1]. Here
A=(0110),Δ(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
h(ε,Γ(ε))=(Γ1(ε)5(1+Γ21(ε)+Γ22(ε))00Γ2(ε)5(1+Γ21(ε)+Γ22(ε))), |
g(ε,Γ(ε))=(Γ1(ε)e−ψ(ε)300Γ2(ε)e−ψ(ε)3),λ(ε,Γ(ε))=(Γ1(ε)e−2ψ(ε)500εΓ2(ε)e−ψ(ε)5). |
Calculate the M-L function by using [12]. We have
Mγ,ν(Aψ(ε)γ)=(S1S2−S3S4), |
where
S1=S4=∞∑j=0(−1)jb2jγΓ(1+2jγ)=−0.3377, |
S2=−S3=∞∑j=0(−1)jb(2j+1)γΓ(1+(2j+1)γ)=−1.666. |
Also calculate
Mγ,ν(A(b−s)γ)=(P1P2−P3P4), |
where
P1=P4=∞∑j=0(−1)j(b−s)2jγΓ(2jγ+γ)=−0.7477, |
P2=−P3=∞∑j=0(−1)j(b−s)(2j+1)γΓ[(2j+1)γ]=−0.4203. |
Therefore, we need to check the hypotheses of nonlinear functions:
E||h(ε,u1)−h(ε,u2)||2≤130||u1−u2||2, |
E||Δ(ε,u1,v1)−Δ(ε,u2,v2)||2≤125||u1−u2||2+135||v1−v2||2, |
E||g(ε,u1,v1)−g(ε,u2,v2)||2≤19e−2||u1−u2||2+110e−3||v1−v2||2, |
E||λ(ε,u1,v1−λ(ε,u2,v2)||2≤125e−4ψ(ε)||u1−u2||2+120e−5ψ(ε)||v1−v2||2, |
E||hk(ε,u)−hk(ε,v||2≤116||u−v||2,k=1,2,…,m. |
We get M1=0.0862, M2=0.3824, Mhk=0.065, and γ=0.5. Hence we have L=max{L0,Lk,Lk∗}=0.52<1. Also,
E||Γ(ε)−˜Γ(ε)||2≤5C(M,L,p,ζ)ε(ζ(ε)+ϕ),∀ε∈J,≤0.218. |
In this example, all the conditions stated in Theorems 4.1 and 5.1 are satisfied, so the example has a unique solution and is also UHR stable.
With the help of Schaefer's FPT and the Banach contraction principles, we obtained the existence and uniqueness results for HSFEs with retarded and advanced arguments, selected the non-instantaneous impulses with both multiplicative and fractional noises, and obtained the UHR stability for HSFEs. UHR stability gives bounds between the exact and approximation solution, which is why this theory is very important in the numerical analysis as well as in approximation theory. We are hoping that our findings will have a great importance in the mentioned theories. Finally, a case study is provided to demonstrate the efficacy of the suggested outcomes. In the future, we can use the findings to investigate the controllability of HSFEs.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Anhui Province Natural Science Research Foundation (2023AH051810).
The authors declare no conflicts of interest.
[1] |
S. Abbas, M. Benchohra, Uniqueness and Ulam stabilities results for partial fractianal diffrential equation with not instantaneious impulses, Appl. Math. Comput., 257 (2015), 190–198. https://doi.org/10.1016/j.amc.2014.06.073 doi: 10.1016/j.amc.2014.06.073
![]() |
[2] |
R. Agrawal, S. Hristova, D. O'Regan, p-Moment exponential stability of Caputo fractional diffrential equations with noninstantaneous random impulses, J. Appl. Math. Comput., 55 (2017), 149–174. https://doi.org/10.1007/s12190-016-1030-y doi: 10.1007/s12190-016-1030-y
![]() |
[3] |
R. Agrawal, S. Hristova, D. O'Regan, Noninstantaneous impulses in Caputo fractional diffrential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097–3119. https://doi.org/10.1016/j.jfranklin.2017.02.002 doi: 10.1016/j.jfranklin.2017.02.002
![]() |
[4] |
R. Agrawal, D. O'Regan, S. Hristova, Monotone iterative technique for the initial value problem for diffrential equations with non-instantaneous impulses, Appl. Math. Comput., 298 (2017), 45–56. https://doi.org/10.1016/j.amc.2016.10.009 doi: 10.1016/j.amc.2016.10.009
![]() |
[5] |
G. P. Balakrishnan, R. Chinnathambi, F. A. Rihan, A fractional-order control model for diabetes with restraining and time-delay, J. Appl. Math. Comput., 69 (2023), 3403–3420. https://doi.org/10.1007/s12190-023-01885-5 doi: 10.1007/s12190-023-01885-5
![]() |
[6] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5 |
[7] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[8] |
A. Boundaoni, T. Caraballo, A. Ouahab, Impulse neutral functional diffrential equations driven by a fractional Brownian motion with unbounded delay, Appl. Anal., 95 (2016), 2039–2062. http://dx.doi.org/10.1080/00036811.2015.1086756 doi: 10.1080/00036811.2015.1086756
![]() |
[9] |
A. Boundaoni, T. Caraballo, A. Ouahab, Stochastic diffrential equation with non-instantaneous impulses driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2521–2541. https://doi.org/10.3934/DCDSB.2017084 doi: 10.3934/DCDSB.2017084
![]() |
[10] |
T. Caraballo, M. J. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evalution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671–3684. https://doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
![]() |
[11] |
T. Caraballo, L. Mchiri, M. Rhaima, Ulam-Hyers-Rassias stability of neutral stochastic functional differential equations, Stochastics, 94 (2022), 959–971. https://doi.org/10.1080/17442508.2022.2028788 doi: 10.1080/17442508.2022.2028788
![]() |
[12] |
A. A. Chikrii, I. I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sence of Riemann-Liouville, Caputo and Miller-Rose, J. Autom. Inform. Sci., 40 (2008), 1–11. https://doi.org/10.1615/JAutomatInfScien.v40.i6.10 doi: 10.1615/JAutomatInfScien.v40.i6.10
![]() |
[13] |
R. Dayal, M. Malik, S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional diffrential equation of order q∈(1,2), Stochastic, 93 (2021), 780–802. https://doi.org/10.1080/17442508.2020.1801685 doi: 10.1080/17442508.2020.1801685
![]() |
[14] | K. Deimling, Nonlinear functional analysis, Heidelberg: Springer Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[15] |
B. C. Dhage, A random version of Schaefer's fixed point theorm with applications to functional random integral equations, Tamkang J. Math., 35 (2004), 197–206. https://doi.org/10.5556/j.tkjm.35.2004.199 doi: 10.5556/j.tkjm.35.2004.199
![]() |
[16] | D. Dragicevi'c, Hyers-Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2011), 129. Hyers-Ulam stability for a class of perturbed Hll's equation |
[17] |
H. M. Fahad, M. Rehman, A. Fernandez, On Laplace transform with resoect to functions and thier applications to fractional differential equations, Math. Methods Appl. Sci., 46 (2023), 8304–8323. https://doi.org/10.1002/mma.7772 doi: 10.1002/mma.7772
![]() |
[18] |
M. Feckan, J. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93–101. https://doi.org/10.2478/msds-2014-0004 doi: 10.2478/msds-2014-0004
![]() |
[19] |
G. R. Gautam, J. Dabas, Mild solution for class of neutral fractional fractional diffrential equations with not instantaneous impulses, Appl. Math. Comput., 259 (2015), 480–489. https://doi.org/10.1016/j.amc.2015.02.069 doi: 10.1016/j.amc.2015.02.069
![]() |
[20] | E. Hernandez, D. O'Regan, On a new class of abstract impulsive diffrential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. |
[21] | R. Hilfer, Application of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779 |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional diffrential equations, Elsevier, 2006. |
[23] | V. Lakshmikanthan, D. D. Bainov, P. S. Simeonov, Theory of impulsive diffrential equation, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906 |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional diffrential equations, John Wiley, 1993. |
[25] | D. N. Pandey, S. Das, N. sukavanam, Existance of solution for a second-order neutral diffrential equations with state dependent delay and non-instantaneouss impulses, Int. J. Nonlinear Sci., 18 (2014), 145–155. |
[26] |
D. Papa, G. pugna, Hyers-Ulam stability of Euler's diffrential equation, Results Math., 69 (2016), 317–325. https://doi.org/10.1007/s00025-015-0465-z doi: 10.1007/s00025-015-0465-z
![]() |
[27] |
M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract diffrential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. https://doi.org/10.1016/j.amc.2012.12.084 doi: 10.1016/j.amc.2012.12.084
![]() |
[28] | l. Podlubny, Fractional diffrential equations, Elsevier, 1999. |
[29] |
F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528
![]() |
[30] |
M. Rhaima, Ulam-Hyers stability for an impulsive Caputo-Hadamard fractional neutral stochastic differential equations with infinite delay, Math. Comput. Simulation, 210 (2023), 281–295. http://dx.doi.org/10.1016/j.matcom.2023.03.020 doi: 10.1016/j.matcom.2023.03.020
![]() |
[31] | S. G. Samko, A. A. Kilbas, O. l. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[32] | A. M Samoilenko, N. A. Perestyuk, Impulse diffrential equations, World Scientific, 1995. https://doi.org/10.1142/2892 |
[33] |
T. Sathiyaraj, J. R. Wang, P. Balasubramaniam, Ulam's stability of Hilfer fractional stochastic diffrential systems, Eur. Phys. J. Plus, 134 (2019), 605. https://doi.org/10.1140/epjp/i2019-12952-y doi: 10.1140/epjp/i2019-12952-y
![]() |
[34] |
J. Shen, X. Liu, Global existence results for impulsive differential equations, J. Math. Anal. Appl., 314 (2006), 546–557. https://doi.org/10.1016/j.jmaa.2005.04.009 doi: 10.1016/j.jmaa.2005.04.009
![]() |
[35] |
A. Sreenivasulu, B. V. A. Rao, Stability and controllability for Volterra integro-dynamical matrix Sylvester impulsive system on time scales, J. Appl. Math. Comput., 68 (2022), 3505–3720. https://doi.org/10.1007/s12190-021-01688-6 doi: 10.1007/s12190-021-01688-6
![]() |
[36] | J. R. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345–361. |
[37] | J. R. Wang, M. Feckan, Y. Zhou, Random noninstantaneous impulsive models for studying periodic evolution processes in pharmacotherapy, In: Mathematical modeling and applications in nonlinear dynamics, Springer, 14 (2016), 87–107. https://doi.org/10.1007/978-3-319-26630-5_4 |
[38] |
J. R. Wang, Z. Lin, A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868–880. https://doi.org/10.1002/mma.3113 doi: 10.1002/mma.3113
![]() |
[39] |
X. Zhan, X. Huang, Z. Li, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775–781. https://doi.org/10.1016/j.nahs.2010.05.007 doi: 10.1016/j.nahs.2010.05.007
![]() |
[40] |
S. Zhang J. Sun, On existence and uniqueness of random impulsive differential equations, J. Syst. Sci. Complex., 29 (2016), 300–314. https://doi.org/10.1007/s11424-015-4018-z doi: 10.1007/s11424-015-4018-z
![]() |
1. | Hamza Khalil, Akbar Zada, Sana Ben Moussa, Ioan-Lucian Popa, Afef Kallekh, Qualitative Analysis of Impulsive Stochastic Hilfer Fractional Differential Equation, 2024, 23, 1575-5460, 10.1007/s12346-024-01149-y | |
2. | Hamza Khalil, Akbar Zada, Mohamed Rhaima, Ioan-Lucian Popa, Existence and Stability of Neutral Stochastic Impulsive and Delayed Integro-Differential System via Resolvent Operator, 2024, 8, 2504-3110, 659, 10.3390/fractalfract8110659 | |
3. | Wei Zhang, Jinbo Ni, Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in $$L^p$$ Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01190-x |