In this article, with the help of Laplace transform, the existence of solution was established in a finite dimensional setting for nonlinear $ \psi $-Hilfer fractional stochastic equation with both retarded and advanced arguments driven by multiplicative and fractional noises, with Hurst index $ H \in (\frac{1}{2}, 1) $. At first, we obtained the existence and uniqueness results by using the Banach fixed point theorem (FPT). Second, the existence result was also obtained by applying Schaefer's fixed point theorem with less conservative conditions. Furthermore, we investigated the Hyers Ulam Rasisas stability for the aforementioned system. At the end, an example was illustrated to validate the obtained theoretical results.
Citation: Yanli Ma, Hamza Khalil, Akbar Zada, Ioan-Lucian Popa. Existence theory and stability analysis of neutral $ \psi $–Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses[J]. AIMS Mathematics, 2024, 9(4): 8148-8173. doi: 10.3934/math.2024396
In this article, with the help of Laplace transform, the existence of solution was established in a finite dimensional setting for nonlinear $ \psi $-Hilfer fractional stochastic equation with both retarded and advanced arguments driven by multiplicative and fractional noises, with Hurst index $ H \in (\frac{1}{2}, 1) $. At first, we obtained the existence and uniqueness results by using the Banach fixed point theorem (FPT). Second, the existence result was also obtained by applying Schaefer's fixed point theorem with less conservative conditions. Furthermore, we investigated the Hyers Ulam Rasisas stability for the aforementioned system. At the end, an example was illustrated to validate the obtained theoretical results.
[1] | S. Abbas, M. Benchohra, Uniqueness and Ulam stabilities results for partial fractianal diffrential equation with not instantaneious impulses, Appl. Math. Comput., 257 (2015), 190–198. https://doi.org/10.1016/j.amc.2014.06.073 doi: 10.1016/j.amc.2014.06.073 |
[2] | R. Agrawal, S. Hristova, D. O'Regan, p-Moment exponential stability of Caputo fractional diffrential equations with noninstantaneous random impulses, J. Appl. Math. Comput., 55 (2017), 149–174. https://doi.org/10.1007/s12190-016-1030-y doi: 10.1007/s12190-016-1030-y |
[3] | R. Agrawal, S. Hristova, D. O'Regan, Noninstantaneous impulses in Caputo fractional diffrential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097–3119. https://doi.org/10.1016/j.jfranklin.2017.02.002 doi: 10.1016/j.jfranklin.2017.02.002 |
[4] | R. Agrawal, D. O'Regan, S. Hristova, Monotone iterative technique for the initial value problem for diffrential equations with non-instantaneous impulses, Appl. Math. Comput., 298 (2017), 45–56. https://doi.org/10.1016/j.amc.2016.10.009 doi: 10.1016/j.amc.2016.10.009 |
[5] | G. P. Balakrishnan, R. Chinnathambi, F. A. Rihan, A fractional-order control model for diabetes with restraining and time-delay, J. Appl. Math. Comput., 69 (2023), 3403–3420. https://doi.org/10.1007/s12190-023-01885-5 doi: 10.1007/s12190-023-01885-5 |
[6] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5 |
[7] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6 |
[8] | A. Boundaoni, T. Caraballo, A. Ouahab, Impulse neutral functional diffrential equations driven by a fractional Brownian motion with unbounded delay, Appl. Anal., 95 (2016), 2039–2062. http://dx.doi.org/10.1080/00036811.2015.1086756 doi: 10.1080/00036811.2015.1086756 |
[9] | A. Boundaoni, T. Caraballo, A. Ouahab, Stochastic diffrential equation with non-instantaneous impulses driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2521–2541. https://doi.org/10.3934/DCDSB.2017084 doi: 10.3934/DCDSB.2017084 |
[10] | T. Caraballo, M. J. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evalution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671–3684. https://doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047 |
[11] | T. Caraballo, L. Mchiri, M. Rhaima, Ulam-Hyers-Rassias stability of neutral stochastic functional differential equations, Stochastics, 94 (2022), 959–971. https://doi.org/10.1080/17442508.2022.2028788 doi: 10.1080/17442508.2022.2028788 |
[12] | A. A. Chikrii, I. I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sence of Riemann-Liouville, Caputo and Miller-Rose, J. Autom. Inform. Sci., 40 (2008), 1–11. https://doi.org/10.1615/JAutomatInfScien.v40.i6.10 doi: 10.1615/JAutomatInfScien.v40.i6.10 |
[13] | R. Dayal, M. Malik, S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional diffrential equation of order $q \in (1, 2)$, Stochastic, 93 (2021), 780–802. https://doi.org/10.1080/17442508.2020.1801685 doi: 10.1080/17442508.2020.1801685 |
[14] | K. Deimling, Nonlinear functional analysis, Heidelberg: Springer Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[15] | B. C. Dhage, A random version of Schaefer's fixed point theorm with applications to functional random integral equations, Tamkang J. Math., 35 (2004), 197–206. https://doi.org/10.5556/j.tkjm.35.2004.199 doi: 10.5556/j.tkjm.35.2004.199 |
[16] | D. Dragicevi'c, Hyers-Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2011), 129. Hyers-Ulam stability for a class of perturbed Hll's equation |
[17] | H. M. Fahad, M. Rehman, A. Fernandez, On Laplace transform with resoect to functions and thier applications to fractional differential equations, Math. Methods Appl. Sci., 46 (2023), 8304–8323. https://doi.org/10.1002/mma.7772 doi: 10.1002/mma.7772 |
[18] | M. Feckan, J. Wang, Y. Zhou, Periodic solutions for nonlinear evolution equations with non-instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93–101. https://doi.org/10.2478/msds-2014-0004 doi: 10.2478/msds-2014-0004 |
[19] | G. R. Gautam, J. Dabas, Mild solution for class of neutral fractional fractional diffrential equations with not instantaneous impulses, Appl. Math. Comput., 259 (2015), 480–489. https://doi.org/10.1016/j.amc.2015.02.069 doi: 10.1016/j.amc.2015.02.069 |
[20] | E. Hernandez, D. O'Regan, On a new class of abstract impulsive diffrential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. |
[21] | R. Hilfer, Application of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779 |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional diffrential equations, Elsevier, 2006. |
[23] | V. Lakshmikanthan, D. D. Bainov, P. S. Simeonov, Theory of impulsive diffrential equation, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906 |
[24] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional diffrential equations, John Wiley, 1993. |
[25] | D. N. Pandey, S. Das, N. sukavanam, Existance of solution for a second-order neutral diffrential equations with state dependent delay and non-instantaneouss impulses, Int. J. Nonlinear Sci., 18 (2014), 145–155. |
[26] | D. Papa, G. pugna, Hyers-Ulam stability of Euler's diffrential equation, Results Math., 69 (2016), 317–325. https://doi.org/10.1007/s00025-015-0465-z doi: 10.1007/s00025-015-0465-z |
[27] | M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semi-linear abstract diffrential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. https://doi.org/10.1016/j.amc.2012.12.084 doi: 10.1016/j.amc.2012.12.084 |
[28] | l. Podlubny, Fractional diffrential equations, Elsevier, 1999. |
[29] | F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528 |
[30] | M. Rhaima, Ulam-Hyers stability for an impulsive Caputo-Hadamard fractional neutral stochastic differential equations with infinite delay, Math. Comput. Simulation, 210 (2023), 281–295. http://dx.doi.org/10.1016/j.matcom.2023.03.020 doi: 10.1016/j.matcom.2023.03.020 |
[31] | S. G. Samko, A. A. Kilbas, O. l. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[32] | A. M Samoilenko, N. A. Perestyuk, Impulse diffrential equations, World Scientific, 1995. https://doi.org/10.1142/2892 |
[33] | T. Sathiyaraj, J. R. Wang, P. Balasubramaniam, Ulam's stability of Hilfer fractional stochastic diffrential systems, Eur. Phys. J. Plus, 134 (2019), 605. https://doi.org/10.1140/epjp/i2019-12952-y doi: 10.1140/epjp/i2019-12952-y |
[34] | J. Shen, X. Liu, Global existence results for impulsive differential equations, J. Math. Anal. Appl., 314 (2006), 546–557. https://doi.org/10.1016/j.jmaa.2005.04.009 doi: 10.1016/j.jmaa.2005.04.009 |
[35] | A. Sreenivasulu, B. V. A. Rao, Stability and controllability for Volterra integro-dynamical matrix Sylvester impulsive system on time scales, J. Appl. Math. Comput., 68 (2022), 3505–3720. https://doi.org/10.1007/s12190-021-01688-6 doi: 10.1007/s12190-021-01688-6 |
[36] | J. R. Wang, M. Feckan, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345–361. |
[37] | J. R. Wang, M. Feckan, Y. Zhou, Random noninstantaneous impulsive models for studying periodic evolution processes in pharmacotherapy, In: Mathematical modeling and applications in nonlinear dynamics, Springer, 14 (2016), 87–107. https://doi.org/10.1007/978-3-319-26630-5_4 |
[38] | J. R. Wang, Z. Lin, A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868–880. https://doi.org/10.1002/mma.3113 doi: 10.1002/mma.3113 |
[39] | X. Zhan, X. Huang, Z. Li, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775–781. https://doi.org/10.1016/j.nahs.2010.05.007 doi: 10.1016/j.nahs.2010.05.007 |
[40] | S. Zhang J. Sun, On existence and uniqueness of random impulsive differential equations, J. Syst. Sci. Complex., 29 (2016), 300–314. https://doi.org/10.1007/s11424-015-4018-z doi: 10.1007/s11424-015-4018-z |