This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.
Citation: Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini. An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform[J]. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426
[1] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[2] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[3] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[4] | Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394 |
[5] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[6] | Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay. AIMS Mathematics, 2024, 9(3): 7372-7395. doi: 10.3934/math.2024357 |
[7] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
[8] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[9] | Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839 |
[10] | Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175 |
This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.
The following abbreviations are used in this manuscript:
BVPs | Boundary Value Problems |
HHFDEs | Hilfer-Hadamard Fractional-order Differential Equations |
HHFIEs | Hilfer-Hadamard Fractional-order Integrodifferential Equations |
HFIs | Hadamard Fractional Integrals |
HHFDs | Hilfer-Hadamard Fractional Derivatives |
CFDs | Caputo Fractional Derivatives |
HFDs | Hilfer Fractional Derivatives |
HFDEs | Hilfer Fractional Differential Equations |
HFDs | Hadamard Fractional Derivatives (HFDs) |
CHFDs | Caputo-Hadamard Fractional Derivatives (CHFDs) |
This study presents and examines a new nonlinear sequential Hilfer-Hadamard fractional-order integrodifferential equations (HHFIEs) with nonlocal coupled multipoint and Hadamard fractional integrodifferential boundary conditions. The formulation of the problem is as follows:
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ)),(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ)), | (1.1) |
and it is enhanced by nonlocal coupled multipoint and Hadamard fractional integrodifferential boundary conditions:
{S(1)=0, S(T)=∑mj=1ηjZ(ξj)+∑ni=1θiHIϕiZ(ζi)+∑rk=1λHkDωk1Z(μk),Z(1)=0, Z(T)=∑au=1PuS(ψu)+∑bv=1QvHIδvS(σv)+∑cw=1MHwDϑw1S(πw). | (1.2) |
Here α1,α2∈(1,2], β1,β2∈[0,1], λ1,λ2∈R+, T>1, ηj,θi,λk,Pu,Qv,Mw∈R, ξj,ζi,μk,ψu,σv,πw∈(1,T), (j=1,2,...,m, i=1,2,...,n, k=1,2,...,r, u=1,2,...,a, v=1,2,...,b, w=1,2,...,c), HHDαi,βj1+ denotes the Hilfer-Hadamard fractional derivative (HHFD) operator of order αi,βj;i=1,2.j=1,2. HIχ is the Hadamard fractional integral (HFI) of order χ∈{ϕi,δv>0} i=1,2,...,n, v=1,2,...,b, HDψ1 is the Hadamard fractional derivative (HFD) of order ψ∈{ωk,ϑw} k=1,2,...,r, w=1,2,...,c, F,G:[1,T]×R4→R are continuous functions. It's important to highlight and that this study makes a significant contribution to the existing literature by addressing a distinct setup involving sequential HHFIEs along with coupled multipoint and Hadamard fractional integrodifferential boundary conditions. The methodology employed in this study involves using the fixed-point approach to establish both existence and uniqueness results for the problems (1.1) and (1.2). The process involves converting the given problem into an equivalent fixed-point problem, followed by the application of Leray-Schauder alternative and Banach's fixed-point theorem to establish existence and uniqueness results, respectively. Additionally, we investigate the Ulam-Hyers stability of the solution for the proposed system. The findings of this study are innovative and contribute to the existing literature on boundary value problems (BVPs) concerning coupled systems of sequential HHFIEs. In recent decades, fractional calculus has gained considerable attention and become a prominent area of study in mathematical analysis. This growth is largely attributed to the extensive use of fractional calculus techniques in developing innovative mathematical models to represent various phenomena in fields such as economics, mechanics, engineering, science, and others. References [1,2,3,4] offer examples and comprehensive discussions on this subject.
In the upcoming section, we will provide an overview of relevant scholarly articles pertaining to the discussed problem. Among various fractional derivatives introduced, the Riemann-Liouville and Caputo fractional derivatives (CFDs) have garnered significant attention due to their practical applications. The Hilfer fractional derivative, introduced by Hilfer in [5], incorporates the Riemann-Liouville and CFDs as special cases for certain parameter values. Additional insights into this derivative can be found in [6,7,8,9,10,11,12,13]. References [14,15,16,17,18] offer valuable insights into Hilfer-type initial and BVPs. A recent study [19] explores the Ulam-Hyers stability and existence of a fully coupled system featuring integro-multistrip-multipoint boundary conditions and nonlinear sequential Hilfer fractional differential equations (HFDEs). Furthermore, [20] delves into a hybrid generalized HFDE BVP.
In 1892, Hadamard introduced the HFD, defined by a logarithmic function with an arbitrary exponent in its kernel [21]. Subsequent studies, such as those in [22,23,24,25,26], have explored variations such as HHFDs and Caputo-Hadamard fractional derivatives (CHFDs). Notably, for specific values of β-β=0 and β=1, respectively—HFDs and CHFDs emerge as particular instances of the HHFD.
Stability analysis has been a prominent field of study for fractional differential equations in the last several decades and has drawn a lot of interest from scholars. Numerous stability models, including Lyapunov, exponential, and Mittag-Leffler stability, have been thoroughly examined in the literature. We suggest reviewing publications [27,28,29,30,31] for historical perspective on Ulam-Hyers stability and current improvements.
The problem of existence and Ulam stability of solutions for the following Hilfer-Hadamard fractional differential equations (HHFDEs) [32] is stated as follows:
{(HDα,β1x)(t)=f(t,u(t)), for t∈J:=[1,T],(HI1−γ1x)(t)|t=1=φ, | (1.3) |
where 0<α<1, 0≤β≤1, γ=α+β−αβ, T>1, φ∈R, and f:J×R→R is a given function. HI1−γ1 denotes the left-sided mixed Hadamard integral of order 1−γ, and HDα,β1 is the HHFD of order α and type β, introduced by Hilfer. In [33], existence results were established for an HHFDE with nonlocal integro-multipoint boundary conditions:
{HHDα,β1x(t)=f(t,x(t)), t∈[1,T],x(1)=0, m∑i=1θix(ξi)=λHIδx(η), | (1.4) |
where α∈(1,2], β∈[0,1], θi,λ∈R, η,ξi∈(1,T) (i=1,2,...,m), HIδ is the Hadamard fractional integral (HFI) of order δ>0, and f:[1,T]×R→R is a continuous function. Problem (1.4) represents a non-coupled system, in contrast to problems (1.1)-(1.2), which is a coupled system. The systems (1.1)-(1.2) presents nonlocal coupled Hadamard fractional integrodifferential and multipoint boundary conditions, whereas the problem (1.4) involves discrete boundary conditions with HFIs. The authors of [34] established existence results for nonlocal mixed Hilfer-Hadamard fractional BVPs:
{HHDα,β1x(t)=f(t,x(t)), t∈[1,T],x(1)=0, x(T)=m∑j=1ηjx(ξj)+n∑i=1ζiHIϕix(θi)+r∑k=1λkHDωk1x(μk), | (1.5) |
where α∈(1,2], β∈[0,1], ηi,ζi,λk∈R, ξi,θi,μk∈(1,T), (j=1,2,...,m),(i=1,2,...,n),(k=1,2,...,r), HIϕi is the HFI of order ϕi>0, HDμk1 is the HFD of order μk>0, and f:[1,T]×R→R is a continuous function. Equation (1.5) does not represent a coupled system, unlike Eqs (1.1) and (1.2), which does. In the latter, there are nonlocal coupled Hadamard fractional integrodifferential and multipoint boundary conditions. In contrast, Eq (1.5) involves multipoint boundary conditions comprising HFIs and HFDs. Furthermore, in [35], investigations were conducted on coupled HHFDEs within generalized Banach spaces. The authors of the aforementioned study [36] successfully derived existence results for a coupled system of HHFDEs with nonlocal coupled boundary conditions:
{HHDα,β1u(t)=f(t,u(t),v(t)), 1<α≤2, ϖ∈[1,T],HHDγ,δ1v(t)=g(t,u(t),v(t)), 1<γ≤2, ϖ∈[1,T],u(1)=0,HDς1u(T)=m∑i=1∫T1HDϱi1u(s)dHi(s)+n∑i=1∫T1HDσi1v(s)dKi(s),v(1)=0,HDϑ1v(T)=p∑i=1∫T1HDηi1u(s)dPi(s)+q∑i=1∫T1HDθi1v(s)dQi(s), | (1.6) |
where α,γ∈(1,2], β,δ∈[0,1], T>1, HHDα,β, HHDγ,δ1 denotes the HHFD operator of order α,β,γ,δ. HDχ1+ is the HFD operator of order χ∈{ς,ϑ,ϱi,ηi,σi,θi}, (i=1,2,...,m),(i=1,2,...,n),(i=1,2,...,p),(i=1,2,...,q), f,g:[1,T]×R×R→R are continuous functions. In the boundary conditions, Riemann-Stieltjes integrals with Hi,Ki,Pi,Qi, (i=1,2,...,m),(i=1,2,...,n),(i=1,2,...,p),(i=1,2,...,q), functions of bounded variation. Problem (1.6) involves a coupled system of HHFDEs, while problems (1.1)-(1.2) deals with a coupled system of sequential HHFIEs. In problems (1.1)-(1.2), there is nonlocal coupled multipoint and Hadamard fractional integrodifferential boundary conditions, whereas in problem (1.6), Stieltjes-integral boundary conditions are incorporated, involving HFDs. In problems (1.1)-(1.2), the nonlinearity depends on the unknown function and its fractional integrals at lower orders are included. Conversely, in problem (1.6), the nonlinearity depends on the unknown function, but it does not involve fractional integrals at lower orders. The researchers in [37] performed an examination of a coupled system of HHFDEs with nonlocal coupled HFI boundary conditions:
{HHDα1,β11+u(t)=ϱ1(t,u(t),v(t)), 1<α1≤2, ϖ∈E:=[1,T],HHDα2,β21+v(t)=ϱ2(t,u(t),v(t)), 2<α2≤3, ϖ∈E:=[1,T],u(1)=0,u(T)=λ1HIδ11+v(η1),v(1)=0,v(η2)=0,v(T)=λ2HIδ21+u(η3), 1<η1,η2,η3<T, | (1.7) |
where α1∈(1,2], α2∈(2,3], β1,β2∈[0,1], T>1, δ1,δ2>0, λ1,λ2∈R, HHDαi,βj1+ denotes the HHFD operator of order αi,βj;i=1,2.j=1,2. HIχ1+ is the HFI operator of order χ∈{δ1,δ2}, and ϱ1,ϱ2:E×R×R→R are continuous functions. In Eq (1.7), we encounter a coupled system of HHFDEs, whereas Eqs (1.1) and (1.2) addresses a coupled system of sequential HHFIEs. In the latter, there are nonlocal coupled Hadamard fractional integrodifferential and multipoint boundary conditions, whereas Eq (1.7) involves multipoint and HFI boundary conditions. In Eq (1.7), solutions are obtained for the coupled system of HHFDEs, while in Eqs (1.1) and (1.2), solutions are derived for the coupled system of sequential HHFIEs. In Eqs (1.1) and (1.2), the nonlinearity depends on the unknown function and its fractional integrals at lower orders are included. Conversely, in Eq (1.7), the nonlinearity depends on the unknown function but does not involve fractional integrals at lower orders. Furthermore, in [38], a two-point BVP for a system of nonlinear sequential HHFDEs was investigated:
{(HHDα1,β11+λ1HHDα1−1,β11)u(t)=f(t,u(t),v(t)), t∈[1,e],(HHDα2,β21+λ2HHDα2−1,β21)v(t)=g(t,u(t),v(t)), t∈[1,e],u(1)=0, u(e)=A1, v(1)=0, v(e)=A2, | (1.8) |
where α1,α2∈(1,2], β1,β2∈[0,1], λ1,λ2,A1,A2∈R+, f,g:[1,e]×R×R→R are continuous functions. Equation (1.8) features a two-point boundary condition, while problems (1.1)-(1.2) includes multipoint and Hadamard fractional integrodifferential boundary conditions. In Eqs (1.1) and (1.2), the nonlinearity involves the unknown function and its fractional integrals at lower orders. Conversely, in Eq (1.8), the nonlinearity relies on the unknown function but does not incorporate fractional integrals at lower orders.
The document is organized as follows in the following sections: The fundamental ideas of fractional calculus relevant to this research are introduced in Section 2. An auxiliary lemma addressing the linear versions of problems (1.1) and (1.2) is provided in Section 3. The primary findings are presented in Section 4 along with illustrative examples. Finally, Section 5 provides a few recommendations.
Definition 2.1. The HFI of order p>0 for a continuous function F:[a,∞)→R is given by
HIpa+F(ϖ)=1Γ(p)∫ϖa(logϖς)p−1F(ς)ςdς, | (2.1) |
where log(⋅)=loge(⋅).
Definition 2.2. The HFD of order p>0 for a function F:[a,∞)→R is defined by
HDpa+F(ϖ)=δn(HIn−pa+F)(ϖ), n=[p]+1, | (2.2) |
where δn=ϖndndωn and [p] denotes the integer part of the real number p.
Lemma 2.3. If p,q>0 and 0<a<b<∞ then
(1)(HIpa+(logϖa)q−1)(x)=Γ(q)Γ(q+p)(logxa)q+p−1; |
(2)(HDpa+(logϖa)q−1)(x)=Γ(q)Γ(q−p)(logxa)q−p−1. |
In particular, for q=1, we have (HDpa+)(1)=1Γ(1−p)(logxa)−p≠0,0<p<1.
Definition 2.4. For n−1<p<n and 0≤q≤1, the HHFD of order p and q for F∈L′(a,b) is defined as
(HHDp,qa+)(F(ϖ))=(HIq(n−p)a+δnHI(n−p)(1−q)a+F)(ϖ)=(HIq(n−p)a+δnHI(n−γ)a+F)(ϖ)=(HIq(n−p)a+δnHDγa+F)(ϖ), γ=p+nq−pq, |
where HI(⋅)a+ and HD(⋅)a+ are given and defined by (2.1) and (2.2), respectively.
Theorem 2.5. If F∈L1(a,b),0<a<b<∞, and (HIn−γa+F)(ϖ)∈ACnδ[a,b], then
HIpa+(HHDp,qa+F)(ϖ)=HIγa+(HHDγa+F)(ϖ)=F(ϖ)−n−1∑j=o(δ(n−j−1)(HIpa+F))(a)Γ(γ−j)(logϖa)γ−j−1, |
where p>0,0≤q≤1 and γ=p+nq−pq,n=[p]+1. Observe that Γ(γ−j) exists for all j=1,2,⋯,n−1 and γ∈[p,n].
We'll utilize established fixed point theorems in Banach spaces to demonstrate the existence and uniqueness of solutions for Hilfer-Hadamard fractional differential systems.
Lemma 2.6. Let H1,H2∈C([1,T],R) such that
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=H1(ϖ), 1<α1≤2, ϖ∈[1,T],(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=H2(ϖ), 1<α2≤2, ϖ∈[1,T], | (2.3) |
enhanced by the boundary conditions (1.2) if, and only if,
S(ϖ)=1Δ[λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς{(logT)γ2−1}+λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1H1(ς)ςdς, | (2.4) |
and
Z(ϖ)=1Δ[λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς{(logT)γ1−1}+λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς×{a∑u=1Pu(logψu)γ1−1−b∑v=1QvHIδv1+(logσv)γ1−1−c∑w=1MwHDϑw1+(logπw)γ1−1}]−λ2∫ϖ1Z(ς)ςdς+1Γ(α2)∫ϖ1(logϖς)α2−1H2(ς)ςdς, | (2.5) |
{Δ=A1B2−A2B1,A1={(logT)γ1−1},B2={(logT)γ2−1},A2={∑au=1Pu(logψu)γ1−1−∑bv=1QvHIδv1+(logσv)γ1−1−∑cw=1MwHDϑw1+(logπw)γ1−1},B1={∑mj=1ηi(logξi)γ2−1+∑ni=1θiHIϕi1+(logζi)γ2−1+∑rk=1λkHDωk1+(logμk)γ2−1}. | (2.6) |
Proof. From the first equation of (2.3), we have
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=H1(ϖ),(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=H2(ϖ). | (2.7) |
Taking both sides of the HFI of order α1,α2 (2.7), we obtain
{HHIα11+(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=HHIα11+H1(ϖ),HHIα21+(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=HHIα21+H2(ϖ). | (2.8) |
Equation (2.8) can be written as follows:
S(ϖ)=c0(logϖ)γ1−1+c1(logϖ)γ2−2−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1H1(ς)ςdς, | (2.9) |
and
Z(ϖ)=d0(logϖ)γ2−1+d1(logϖ)γ2−2−λ2∫ϖ1Z(ς)ςdς+1Γ(α2)∫ϖ1(logϖς)α2−1H2(ς)ςdς, | (2.10) |
where c0,d0,c1, and d1 are arbitrary constants. Boundary conditions (1.2) combined with (2.9) and (2.10) produce
S(1)=c0(log1)γ1−1+c1(logϖ)2−γ1−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1H1(ς)ςdς=0, | (2.11) |
Z(1)=d0(log1)γ2−1+d1(logϖ)2−γ2−λ2∫ϖ1Z(ς)ςdς+1Γ(α2)∫ϖ1(logϖς)α2−1H2(ς)ςdς=0, | (2.12) |
from which we have c1=0 and d1=0. Equations (2.11) and (2.12) can be written as
S(ϖ)=c0(logϖ)γ1−1−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1H1(ς)ςdς, | (2.13) |
Z(ϖ)=d0(logϖ)γ2−1−λ2∫ϖ1Z(ς)ςdς+1Γ(α2)∫ϖ1(logϖς)α2−1H2(ς)ςdς, | (2.14) |
from which we have
c0=1Δ[λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς{(logT)γ2−1}+λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}], | (2.15) |
d0=1Δ[λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς{(logT)γ1−1}+λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς{a∑u=1Pu(logψu)γ1−1−b∑v=1QvHIδv1+(logσv)γ1−1−c∑w=1MwHDϑw1+(logπw)γ1−1}]. | (2.16) |
Substitute the values of c0,c1,d0, and d1 in (2.9) and (2.10), and we get solutions (2.4) and (2.5). The converse follows by direct computation. This completes the proof.
Let us introduce the Banach space E=T([1,T],R) endowed with the norm defined by ||S||:=supϖ∈[1,T]|S(ϖ)|. Thus, the product space (E×E,||⋅||E×E) equipped with the norm ||S,Z||E×E=||S||+||Z|| for (S×Z)∈E×E is also a Banach space.
In view of Lemma 2.6, we define as operator Υ:E×E→E×E by
Υ(S,Z)(ϖ)=(Υ1(S,Z)(ϖ),Υ2(S,Z)(ϖ)), | (3.1) |
where
Υ1(S,Z)(ϖ)=1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς}{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1H1(ς)ςdς, | (3.2) |
and
Υ2(S,Z)(ϖ)=1Δ[λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς{(logT)γ1−1}+λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς×{a∑u=1Pu(logψu)γ1−1−b∑v=1QvHIδv1+(logσv)γ1−1−c∑w=1MwHDϑw1+(logπw)γ1−1}]−λ2∫ϖ1Z(ς)ςdς+1Γ(α2)∫ϖ1(logϖς)α2−1H2(ς)ςdς. | (3.3) |
We need the following hypothesis in the sequel:
Ω1=1Δ[{λ1(logT)+(logT)α1Γ(α1+1)}{(logT)γ2−1}+{a∑u=1Puλ1(logψu)−b∑v=1QvHIδv1+λ1(logσv)−c∑w=1MwHDϑw1+λ1(logπw)+a∑u=1Pu(logψu)α1Γ(α1+1)+b∑v=1QvHIδv1+(logσv)α1Γ(α1+1)+c∑w=1MwHDϑw1+(πw)α1Γ(α1+1)}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1(logT)+(logT)α1Γ(α1+1), | (3.4) |
Ω2=1Δ[{−λ2m∑j=1ηj(logξj)−λ2n∑i=1θiHIϕi1+(logζi)−λ2r∑k=1λkHDωk1+(logμk)+m∑j=1ηj(logξj)α2Γ(α2+1)+n∑i=1θiHIϕi1+(logζi)α2Γ(α2+1)+r∑k=1λkHDωk1+(logμk)α2Γ(α2+1)}{(logT)γ2−1}+{λ2(logT)−(logT)α2Γ(α2+1)}{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}], | (3.5) |
ˉΩ1=1Δ[{−a∑u=1Puλ1(logψu)−b∑v=1QvHIδv1+λ1(logσv)−c∑w=1MwHDϑw1+λ1(logπw)+a∑u=1Pu(logψu)α1Γ(α1+1)+b∑v=1QvHIδv1+(logσv)α1Γ(α1+1)+c∑w=1MwHDϑw1+(logπw)α1Γ(α1+1)}{(logT)γ1−1}+λ1(logT)−(logT)α1Γ(α1+1)×{a∑u=1Pu(logψu)γ1−1−b∑v=1QvHIδv1+(logσv)γ1−1−c∑w=1MwHDϑw1+(logπw)γ1−1}], | (3.6) |
ˉΩ2=1Δ[{λ2(logT)−(logT)α2Γ(α2+1)}{(logT)γ1−1}+−λ2m∑j=1ηj(logξj)−λ2n∑i=1θiHIϕi1+(logζi)−λ2r∑k=1λkHDωk1+(logμk)+m∑j=1ηj(logξj)α2Γ(α2)+n∑i=1θiHIϕi1+(logζi)α2Γ(α2+1)+r∑k=1λkHDωk1+(logμk)α2Γ(α2+1)×{a∑u=1Pu(logψu)γ1−1−b∑v=1QvHIδv1+(logσv)γ1−1−c∑w=1MwHDϑw1+(logπw)γ1−1}]−λ2(logT)+(logT)Γ(α2), | (3.7) |
and
{Ψ0=(Ω1+¯Ω1)M0+(Ω2+¯Ω2)N0,Ψ1=(Ω1+¯Ω1)(M1+M3Γ(p1+1))+(Ω2+¯Ω2)(N1+N3Γ(q1+1)),Ψ2=(Ω1+¯Ω1)(M2+M4Γ(p2+1))+(Ω2+¯Ω2)(N2+N4Γ(q2+1)). | (3.8) |
We give now the assumptions we will use in this section.
(H1) Assume that there exist real constants Mi,Ni≥0(i=1,2) and M0>0,N0 such that, for all ϖ∈[1,T],Si∈R,i=1,2,3,4,
|F(ϖ,S1,S2,S3,S4)|≤M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|,|G(ϖ,S1,S2,S3,S4)|≤N0+N1|S1|+N2|S2|+N3|S3|+N4|S4|,∀ ϖ∈[1,T]. |
(H2) There exists positive constant L,L1, such that, for all ϖ∈[1,T],Si,Zi∈R,i=1,2.
|F(ϖ,S1,S2,S3,S4)−F(ϖ,Z1,Z2,Z3,Z4)|≤L(|S1−Z1|+|S2−Z2|+|S3−Z3|+|S4−Z4|),|G(ϖ,S1,S2,S3,S4)−G(ϖ,Z1,Z2,Z3,Z4)|≤L1(|S1−Z1|+|S2−Z2|+|S3−Z3|+|S4−Z4|). |
The first theorem uses the Leray-Schauder alternative to establish the existence of a result.
Lemma 4.1. [1] Let θ(Ξ)={S∈E:S=κΞ(S) for some 0<κ<1}, where Ξ:E→E is a completely continuous operator. Then, either the set θ(Ξ) is unbounded or there exists at least one fixed for the operator Ξ.
Theorem 4.2. Suppose condition (H1) is satisfied. Additionally, assume that
max{Ψ1,Ψ2}<1. | (4.1) |
Under these conditions, there exists at least one solution to the problems (1.1) and (1.2) on E.
Proof. First, let's establish that the operator Υ:E×E→E×E, as defined in (3.1), is completely continuous. The continuity of the operator Υ (in terms of Υ1 and Υ2) is evident from the continuity of F and G.
Next, we aim to demonstrate that the operator Υ is uniformly bounded. To achieve this, consider a bounded set Br⊂E×E. Then, we can find positive constants N1 and N2 satisfying
{|F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))|≤N1,|N(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))|≤N2,∀(S,Z)∈Br. | (4.2) |
Consequently, we obtain
||Υ1(S,Z)(ϖ)||=1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1|N2|(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1|N2|(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1|N2|(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1|N1|(ς)ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1|N1|(ς)ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1|N1|(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1|N1|(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1|N2|(ς)ςdς}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1|N1|(ς)ςdς |
≤N1{1Δ[λ1(logT)+(logT)α1Γ(α1+1)]{(logT)γ2−1}+{a∑u=1Puλ1(logψu)−b∑v=1QvHIδv1+λ1(logσv)−c∑w=1MwHDϑw1+λ1(logπw)+a∑u=1Pu(logψu)α1Γ(α1+1)+b∑v=1QvHIδv1+(logσv)α1Γ(α1+1)+c∑w=1MwHDϑw1+(πw)α1Γ(α1+1)}+{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}−λ1(logT)+(logT)α1Γ(α1+1)}+N2{1Δ[{−λ2m∑j=1ηj(logξj)−λ2n∑i=1θiHIϕi1+(logζi)−λ2r∑k=1λkHDωk1+(logμk)+m∑j=1ηj(logξj)α2Γ(α2+1)+n∑i=1θiHIϕi1+(logζi)α2Γ(α2+1)+r∑k=1λkHDωk1+(logμk)α2Γ(α2+1)}{(logT)γ2−1}+{λ2(logT)−(logT)α2Γ(α2+1)}]}. | (4.3) |
This observation, in light of the notation (3.4) and (3.5), yields
||Υ1(S,Z)||≤Ω1N1+Ω2N2. | (4.4) |
Similarly, employing the notation (3.6) and (3.7), we obtain
||Υ2(S,Z)||≤ˉΩ1N1+ˉΩ2N2. | (4.5) |
Then, it follows from (4.4) and (4.5) that
||Υ(S,Z)||≤(Ω1+ˉΩ1)N1+(Ω2+ˉΩ2)N2. | (4.6) |
This demonstrates that the operator Υ is uniformly bounded.
To establish the equicontinuity of Υ, let ϖ1,ϖ2∈E with ϖ1<ϖ2. Then, we find that
|Υ1(S,Z)(ϖ2)−Υ1(S,Z)(ϖ1)|={1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1H2(ς)ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1H2(ς)ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1H2(ς)ςdς−1Γ(α1)∫T1(logTς)α1−1H1(ς)ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1H1(ς)ςdς |
+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1H1(ς)ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1H1(ς)ςdς−1Γ(α2)∫T1(logTς)α2−1H2(ς)ςdς}{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]+λ1[(logϖ2)γ2−1−(logϖ1)γ1−1]∫ϖ11S(ς)ςdς+∫ϖ2ϖ1S(ς)ςdς+1Γ(α1)∫ϖ11(logϖ2ς)α1−1−(logϖ1ς)α1−1H1(ς)ςdς+∫ϖ2ϖ1(logϖ2ς)α1−1dςς},→0 as ϖ2→ϖ1, | (4.7) |
independent of (S,Z)∈Br. Likewise, it can be shown that |Υ1(S,Z)(ϖ2)−Υ1(S,Z)(ϖ1)|→0 as ϖ2→ϖ1 is independent of (S,Z)∈Br. Consequently, the equicontinuity of Υ1 and Υ2 implies the equicontinuity of the operator Υ. Therefore, by Arzela-Ascoli's theorem, the operator Υ is compact. Finally, we establish the boundedness of the set Θ(Υ)={S,Z∈E×E:S,Z=κΥ(S,Z);0≤κ≤1}. Let (S,Z)∈Θ(Υ). Then, (S,Z)=κΥ(S,Z), which implies that S(ϖ)=κΥ1(S,Z)(ϖ),Z(ϖ)=κΥ2(S,Z)(ϖ) for any ϖ∈E, and so |S(ϖ)|=|Υ1(S,Z)(ϖ)|,Z(ϖ)=|Υ2(S,Z)(ϖ)| ∀ ϖ∈[0,1]. Using some inequality proved at the beginning of the proof, we find
||Υ1(S,Z)(ϖ)||=1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1N0+N1|S1|+N2|S2|+N3|S3|+N4|S4|ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1N0+N1|S1|+N2|S2|+N3|S3|+N4|S4|ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1N0+N1|S1|+N2|S2|+N3|S3|+N4|S4|ςdς−1Γ(α1)∫T1(logTς)α1−1M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|ςdς}{(logT)γ2−1} |
+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|ςdς−1Γ(α2)∫T1(logTς)α2−1N0+N1|S1|+N2|S2|+N3|S3|+N4|S4|ςdς}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1M0+M1|S1|+M2|S2|+M3|S3|+M4|S4|ςdς≤Ω1{M0+M1|S1|+M2|S2|+M3Γ(p1+1)|S1|+M4Γ(p2+1)|S1|}+Ω2{N0+N1|Z1|+N2|Z2|+N3Γ(q1+1)|Z1|+N4Γ(q2+1)|Z1|}, | (4.8) |
which implies that
||S||=supϖ∈[1,T]|S(ϖ)|≤Ω1{M0+M1||S1||+M2||S2||+M3Γ(p1+1)||S1||+M4Γ(p2+1)||S1||}+Ω2{N0+N1||S1||+N2||S2||+N3Γ(q1+1)||S1||+N4Γ(q2+1)||S1||}. | (4.9) |
Similarly, one can find that
||Z||=supϖ∈[1,T]|Z(ϖ)|≤¯Ω1{M0+M1||S1||+M2||S2||+M3Γ(p1+1)||S1||+M4Γ(p2+1)||S1||}+¯Ω2{N0+N1||S1||+N2||S2||+N3Γ(q1+1)||S1||+N4Γ(q2+1)||S1||}. | (4.10) |
From (4.9) and (4.10), we obtained
||S||+||Z||≤(Ω1+¯Ω1)M0+(Ω2+¯Ω2)N0+||S||{(Ω1+¯Ω1)(M1+M3Γ(p1+1))+(Ω2+¯Ω2)(N1+N3Γ(q2+1))}+||Z||{(Ω1+¯Ω1)(M2+M4Γ(p1+1))+(Ω2+¯Ω2)(N2+N4Γ(q2+1))},=Ψ0+Ψ1||S||+Ψ2||Z||≤Ψ0+max{Ψ1,Ψ2}||(S,Z)||E, | (4.11) |
where Ψi i=0,1,2 are given by (3.8). By (4.1), we deduce that
||(S,Z)||E=Ψ01−max{Ψ1,Ψ2}. | (4.12) |
As a result, Θ(Υ) is bounded. Consequently, the conclusion of Lemma 2.6 applies, implying that the operator Υ has at least one fixed point, which indeed serves as a solution to the problems (1.1) and (1.2).
Now, we introduce the constants
F0=supϖ∈[0,1]|F(ϖ,0,0,0,0)|, G0=supϖ∈[0,1]|G(ϖ,0,0,0,0)|, | (4.13) |
{ρ1=max{1+1Γ(p1+1),1+1Γ(p2+1)},ρ2=max{1+1Γ(q1+1),1+1Γ(q2+1)},D1=z0ρ1Ω1+k0ρ2Ω2,D2=z0ρ1¯Ω1+k0ρ2¯Ω2,G1=F0Ω1+G0Ω2,G2=F0¯Ω1+G0¯Ω2, | (4.14) |
where Ω1,Ω2,¯Ω1,¯Ω2 are given by (3.4)–(3.7).
The subsequent result will establish the existence of a unique solution to the problems (1.1) and (1.2) through the application of a fixed point theorem attributed to Banach.
Theorem 4.3. If the assumption (H2) is satisfied and that
D1+D2<1, | (4.15) |
where Ωi and ˉΩi, (i = 1, 2) are given in (3.4)–(3.7), then the problems (1.1) and (1.2) have a unique solution on E.
Proof. By using condition (4.15), we define the positive number
R≥G1+G21−(D1+D2), | (4.16) |
where G1,G2,D1,D2 are given by (4.12). We will prove that A(BR)⊂BR, where BR={(S,Z)∈E×E:||(S,Z)≤R}. For (S,Z)∈BR and ϖ∈[0,1], we obtain
|F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))|≤|F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))−F(ϖ,0,0,0,0)|+|F(ϖ,0,0,0,0)|≤z0(|S(ϖ)|+|Z(ϖ)|+|Ip1S(ϖ)|+|Ip2Z(ϖ)|)+F0≤z0(||S||+||Z||+1Γ(p1+1)||S||+1Γ(p2+1)||Z||)+F0≤z0max{1+1Γ(p1+1),1+1Γ(p2+1)}||S,Z||E+F0≤z0max{1+1Γ(p1+1),1+1Γ(p2+1)}R+F0≤z0ρ1R+F0, |
and
|G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))|≤|G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))−G(ϖ,0,0,0,0)|+|G(ϖ,0,0,0,0)|≤k0(|S(ϖ)|+|Z(ϖ)|+|Iq1S(ϖ)|+|Iq2Z(ϖ)|)+G0≤k0(||S||+||Z||+1Γ(q1+1)||S||+1Γ(q2+1)||Z||)+G0≤k0max{1+1Γ(q1+1),1+1Γ(q2+1)}||S,Z||E+G0≤k0max{1+1Γ(q1+1),1+1Γ(q2+1)}R+G0≤k0ρ2R+G0. |
Then we deduce that
|Υ1(S,Z)(ϖ)|≤(z0ρ1R+F0)Ω1+(k0ρ2R+G0)Ω2=(z0ρ1Ω1+k1ρ2Ω2)R+F0Ω1+G0Ω2=D1R+G1, | (4.17) |
and
|Υ2(S,Z)(ϖ)|≤(k0ρ1R+F0)¯Ω1+(k0ρ2R+G0)¯Ω2=(z0ρ1¯Ω1+k1ρ2¯Ω2)R+F0¯Ω1+G0¯Ω2=D2R+G2. | (4.18) |
Therefore, by (4.17), (4.18), and the definition of R, we conclude that
||Υ(S,Z)||E=||Υ1(S,Z)||+||Υ2(S,Z)||≤(D1+D2)R+G1+G2=R,∀(S,Z)∈BR, | (4.19) |
which gives us Υ(BR)⊂BR.
We will prove next that Υ is a contraction operator. By using (H2), for (Si,Zi)∈BR,i=1,2, and for any ϖ∈[0,1], we find:
Letting K1=supϖ∈[1,T]|F(ϖ,0,0)|<∞ and K2=supϖ∈[1,T]|G(ϖ,0,0)|<∞, it follows by the assumption (H1) that
|F(ϖ,S,Z)|≤L1(||S||+||Z||)+K1≤L1(||S||+||Z||)+K1, |
and
|G(ϖ,S,Z)|≤L2(||S||+||Z||)+K2. |
To begin, we show that ΥBρ⊂Bρ, where Bρ={(S,Z)∈E×E:||(S,Z)≤ρ}, with
ρ≥(Ω1+ˉΩ1)K1+(Ω2+ˉΩ2)K21−((Ω1+ˉΩ1)L1+(Ω2+ˉΩ2)L2). | (4.20) |
For (S,Z)∈Bρ, we have
||Υ1(S,Z)||=supϖ∈[1,T]|Υ1(S,Z)(ϖ)|≤1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1|G(ς,S(ς),Z(ς))|ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1|G(ς,S(ς),Z(ς))|ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1|G(ς,S(ς),Z(ς))|ςdς−1Γ(α1)∫T1(logTς)α1−1|F(ς,S(ς),Z(ς))|ςdς}{(logT)γ2−1} |
+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1|F(ς,S(ς),Z(ς))|ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1|F(ς,S(ς),Z(ς))|ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1|F(ς,S(ς),Z(ς))|ςdς−1Γ(α2)∫T1(logTς)α2−1|G(ς,S(ς),Z(ς))|ςdς}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1|F(ς,S(ς),Z(ς))|ςdς, |
which yields
||Υ1(S,Z)||≤(L1ρ+K1){1Δ[λ1(logT)+(logT)α1Γ(α1+1)]{(logT)γ2−1}+{a∑u=1Puλ1(logψu)−b∑v=1QvHIδv1+λ1(logσv)−c∑w=1MwHDϑw1+λ1(logπw)+a∑u=1Pu(logψu)α1Γ(α1+1)+b∑v=1QvHIδv1+(logσv)α1Γ(α1+1)+c∑w=1MwHDϑw1+(πw)α1Γ(α1+1)}+{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}−λ1(logT)+(logT)α1Γ(α1+1)}+{1Δ[{−λ2m∑j=1ηj(logξj)−λ2n∑i=1θiHIϕi1+(logζi)−λ2r∑k=1λkHDωk1+(logμk)+m∑j=1ηj(logξj)α2Γ(α2+1)+n∑i=1θiHIϕi1+(logζi)α2Γ(α2+1)+r∑k=1λkHDωk1+(logμk)α2Γ(α2+1)}{(logT)γ2−1}+{λ2(logT)−(logT)α2Γ(α2+1)}]}. |
Using the notation (3.4)-(3.5), we get
||Υ1(S,Z)||≤(L1Ω1+L2Ω2)+Ω1K1+Ω2K2. | (4.21) |
Likewise, we can find that
||Υ2(S,Z)||≤(L1ˉΩ1+L2ˉΩ2)+ˉΩ1K1+ˉΩ2K2. | (4.22) |
Then, it follows from (4.21)-(4.22) that
||Υ(S,Z)||=||Υ1(S,Z)||+||Υ2(S,Z)||≤ρ. |
Therefore, ΥBρ⊂Bρ as (S,Z)∈Bρ is an arbitrary element.
In order to verify that the operator Υ is a contraction, let Si,Zi∈Bρ,i=1,2. Then, we get
||Υ1(S1,Z1)−Υ1(S1,Z1)||≤1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1|G(ς,S1(ς),Z1(ς))−G(ς,S2(ς),Z2(ς))|ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1|G(ς,S1(ς),Z1(ς))−G(ς,S2(ς),Z2(ς))|ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1|G(ς,S1(ς),Z1(ς))−G(ς,S2(ς),Z2(ς))|ςdς−1Γ(α1)∫T1(logTς)α1−1|F(ς,S1(ς),Z1(ς))−F(ς,S2(ς),Z2(ς))|ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς |
−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1|F(ς,S1(ς),Z1(ς))−F(ς,S2(ς),Z2(ς))|ςdς+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1|F(ς,S1(ς),Z1(ς))−F(ς,S2(ς),Z2(ς))|ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1|F(ς,S1(ς),Z1(ς))−F(ς,S2(ς),Z2(ς))|ςdς−1Γ(α2)∫T1(logTς)α2−1|G(ς,S1(ς),Z1(ς))−G(ς,S2(ς),Z2(ς))|ςdς}{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1|F(ς,S1(ς),Z1(ς))−F(ς,S2(ς),Z2(ς))|ςdς, |
which, by (H2), yields
||Υ1(S1,Z1)−Υ1(S2,Z2)||≤(Ω1L1+Ω2L2)[||S1−S2||+||Z1−Z2||]. | (4.23) |
Similarly, we can observe that
||Υ2(S1,Z1)−Υ2(S2,Z2)||≤(ˉΩ1L1+ˉΩ2L2)[||S1−S2||+||Z1−Z2||]. | (4.24) |
Consequently, it follows from (4.23) and (4.24) that
||Υ(S1,Z1)−Υ(S2,Z2)||=||Υ1(S1,Z2)−Υ1(S1,Z2)||+||Υ2(S1,Z2)−Υ2(S1,Z2)||≤[(Ω1+ˉΩ1)L1+(Ω2+ˉΩ2)L2][||S1−S2||+||Z1−Z2||], | (4.25) |
and by condition (4.15), it follows that Υ is a contraction. Consequently, the operator Υ possesses a unique fixed point as a direct application of the Banach fixed point theorem. Thus, there exists a unique solution for the problems (1.1) and (1.2) on E.
This section is devoted to the investigation of Hyers-Ulam stability for our proposed system. Consider the following inequality:
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)−F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))≤ε1, ϖ∈[1,T],(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)−G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))≤ε2, ϖ∈[1,T], | (5.1) |
where ε1,ε2 are given two positive real numbers.
Definition 5.1. Problem (1.1) is Hyers-Ulam stable if there exist Ωi>0,i=1,2,3,4 such that for a given ε1,ε2>0 and for each solution (S,Z)∈C([1,T],×R2) of inequality (5.1), there exists a solution (S∗,Z∗)∈C([1,T],×R2) of problem (1.1) with
{|S(ϖ)−S∗(ϖ)|≤Ω1ε1+Ω2ε2, ϖ∈[1,T],|Z(ϖ)−Z∗(ϖ)|≤¯Ω1ε1+¯Ω2ε2, ϖ∈[1,T]. | (5.2) |
Remark 5.1. (S,Z) is a solution of inequality (5.1) if there exist functions Qi∈C([1,T],R),i=1,2, which depend upon S,Z, respectively, such that
i)|Q1(ϖ)|≤ε1, ii)|Q2(ϖ)|≤ε2, ϖ∈[1,T]. | (5.3) |
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))+Q1(ϖ), ϖ∈[1,T],(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))+Q2(ϖ), ϖ∈[1,T], | (5.4) |
Remark 5.2. If (S,Z), respectively, is a solution of inequality (5.1), then (S,Z) is a solution of the following inequality:
{|S(ϖ)−S∗(ϖ)|≤Ω1ε1+Ω2ε2, ϖ∈[1,T],|Z(ϖ)−Z∗(ϖ)|≤¯Ω1ε1+¯Ω2ε2, ϖ∈[1,T]. | (5.5) |
As from Remark 5.1, we have
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ))+Q1(ϖ), ϖ∈[1,T],(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ))+Q2(ϖ), ϖ∈[1,T]. | (5.6) |
With the help of Definition 5.1 and Remark 5.1, we verified Remark 5.2 in the following lines:
|S(ϖ)−S∗(ϖ)|≤|1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1|G(ς,S(ς),Z(ς))|ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1|G(ς,S(ς),Z(ς))|ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1|G(ς,S(ς),Z(ς))|ςdς−1Γ(α1)∫T1(logTς)α1−1|F(ς,S(ς),Z(ς))|ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1|F(ς,S(ς),Z(ς))|ςdς |
+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1|F(ς,S(ς),Z(ς))|ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1|F(ς,S(ς),Z(ς))|ςdς−1Γ(α2)∫T1(logTς)α2−1|G(ς,S(ς),Z(ς))|ςdς}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1|F(ς,S(ς),Z(ς))|ςdς|≤|1Δ[{λ1∫T1S(ς)ςdς−λ2m∑j=1ηj∫ξj1(Z)ςςdς−λ2n∑i=1θiHIϕi1+∫ζi1Z(ς)ςdς−λ2r∑k=1λkHDωk1+∫μk1Z(ς)ςdς+m∑j=1ηj1Γ(α2)∫ξj1(logξjς)α2−1|Q2(ς)|ςdς+n∑i=1θiHIϕi1+1Γ(α2)∫ζi1(logζiς)α2−1|Q2(ς)|ςdς+r∑k=1λkHDωk1+1Γ(α2)∫μk1(logμkς)α2−1|Q2(ς)|ςdς−1Γ(α1)∫T1(logTς)α1−1|Q1(ς)|ςdς}{(logT)γ2−1}+{λ2∫T1Z(ς)ςdς−a∑u=1Puλ1∫ψu1(S)ςςdς−b∑v=1QvHIδv1+λ1∫σv1(S)ςςdς−c∑w=1MwHDϑw1+λ1∫πw1(S)ςςdς+a∑u=1Pu1Γ(α1)∫ψu1(logψuς)α1−1|Q1(ς)|ςdς |
+b∑v=1QvHIδv1+1Γ(α1)∫σv1(logσvς)α1−1|Q1(ς)|ςdς+c∑w=1MwHDϑw1+1Γ(α1)∫πw1(logπwς)α1−1|Q1(ς)|ςdς−1Γ(α2)∫T1(logTς)α2−1|Q2(ς)|ςdς}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]−λ1∫ϖ1S(ς)ςdς+1Γ(α1)∫ϖ1(logϖς)α1−1|Q1(ς)|ςdς|≤ε1{1Δ[{λ1(logT)+(logT)α1Γ(α1+1)}{(logT)γ2−1}+{a∑u=1Puλ1(logψu)−b∑v=1QvHIδv1+λ1(logσv)−c∑w=1MwHDϑw1+λ1(logπw)+a∑u=1Pu(logψu)α1Γ(α1+1)+b∑v=1QvHIδv1+(logσv)α1Γ(α1+1)+c∑w=1MwHDϑw1+(πw)α1Γ(α1+1)}×{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}] |
−λ1(logT)+(logT)α1Γ(α1+1)}+ε2{1Δ[{−λ2m∑j=1ηj(logξj)−λ2n∑i=1θiHIϕi1+(logζi)−λ2r∑k=1λkHDωk1+(logμk)+m∑j=1ηj(logξj)α2Γ(α2+1)+n∑i=1θiHIϕi1+(logζi)α2Γ(α2+1)+r∑k=1λkHDωk1+(logμk)α2Γ(α2+1)}{(logT)γ2−1}+{λ2(logT)−(logT)α2Γ(α2+1)}{m∑j=1ηi(logξi)γ2−1+n∑i=1θiHIϕi1+(logζi)γ2−1+r∑k=1λkHDωk1+(logμk)γ2−1}]},|S(ϖ)−S∗(ϖ)|≤Ω1ε1+Ω2ε2. | (5.7) |
By the same method, we can obtain that
|Z(ϖ)−Z∗(ϖ)|≤¯Ω1ε1+¯Ω2ε2, | (5.8) |
where Ω1,Ω2,¯Ω1,¯Ω2 are given by (3.4)–(3.7). Hence, Remark 5.2 is verified, with the help of (5.7) and (5.8). Thus, the nonlinear sequential coupled system of HHFDEs is Hyers-Ulam stable and, consequently, the system (1.1) is Hyers-Ulam stable.
Consider the following Hilfer-Hadamard fractional BVP:
{(HHDα1,β11++λ1HHDα1−1,β11+)S(ϖ)=F(ϖ,S(ϖ),Z(ϖ),Ip1S(ϖ),Ip2Z(ϖ)),(HHDα2,β21++λ2HHDα2−1,β21+)Z(ϖ)=G(ϖ,S(ϖ),Z(ϖ),Iq1S(ϖ),Iq2Z(ϖ)),S(1)=0, S(T)=m∑j=1ηjZ(ξj)+n∑i=1θiHIϕi1Z(ζi)+r∑k=1λHkDωk1Z(μk),Z(1)=0, Z(T)=a∑u=1PuS(ψu)+b∑v=1QvHIδv1+S(σv)+c∑w=1MHwDϑw1+S(πw), | (6.1) |
with α1=5/4, α2=3/2, β1=1/2, β2=1/4, m=2, n=2, r=2, a=2, b=2, c=2, η1=1/5, η2=1/10, ξ1=4/3, ξ2=3/2, ϕ1=5/3, ϕ2=7/3, θ1=1/2, θ2=1/2, ζ1=7/3, ζ2=5/2, λ1=1, λ2=1, ω1=1/4, ω2=2/3, μ1=4, μ2=4/3, P1=1/18, P2=1/9, ψ1=4/3, ψ2=5/2, Q1=1/4, Q2=1/7, δ1=1/4, δ2=3/5, σ1=5/3, σ2=3/2, M1=2/3, M2=2/5, ϑ1=2/3, ϑ2=3/5, π1=5/2, π2=3/2. Using the given data, it is found that γ1=13/8,γ2=13/8, Δ=0.639100490745,A1=0.799441,A2=0.799441,B1=0.1184655,B2=0.1251315,Ω1=1.3283929,Ω2=0.718823345,¯Ω1=1.028734,¯Ω2=0.97432874,T=2,p1=11/5,p2=25/6,q1=11/5,q2=22/7.
Example 6.1. For illustrating Theorem 4.2, we take
{|F(ϖ,S1,S2,S3,S4)|≤ϖϖ2+1(cosϖ+18sin(S1+S2))−19(ϖ+1)S3+19arctanS4,|G(ϖ,S1,S2,S3,S4)|≤1(ϖ+2)2[7e−ϖ+13S1+4S2]−ϖ+35sin(S3+S4), | (6.2) |
for all ϖ∈[0,1],Si∈R,i=1,2,3,4.
We obtained the inequalities
{|F(ϖ,S1,S2,S3,S4)|=12+116|S1|+116|S2|+118|S3|+19|S4|,|G(ϖ,S1,S2,S3,S4)|=79+127|S1|+427|S2|+45|S3|+45|S4|, | (6.3) |
for all ϖ∈[0,1] and Si∈R,i=1,2,3,4. We also have M0=12,M1=116,M2=116,M3=118, M4=19,N0=79,N1=127, N2=427,N3=45,N4=45,
We find here Ψ1≈0.8228588 and Ψ2≈0.5948088559. We deduce that the condition max{Ψ1,Ψ2}=Ψ1<1 is satisfied. Then, by Theorem 4.2, we conclude that the problem (6.1) with the nonlinearities (6.2) has at least one solution ϖ∈[0,1].
Example 6.2. For illustrating Theorem 4.3, we take
{|F(ϖ,S1,S2,S3,S4)|≤ϖ+13+19(ϖ+2)(S1+|S2|1+|S2|)−1(1+ϖ)2cosS3+ϖ4arctanS4,|G(ϖ,S1,S2,S3,S4)|≤ϖ2+2ϖ3+2−17S1+18sinS2+15(ϖ+3)sinS3−e−2ϖ|S4|8(1+|S4|), | (6.4) |
for all ϖ∈[0,1],Si∈R,i=1,2,3,4.
We obtain here the following inequalities
{|F(ϖ,S1,S2,S3,S4)−F(ϖ,Z1,Z2,Z3,Z4)|≤(1/27|S1−Z1|+1/27|S2−Z2|+1/4|S3−Z3|+1/4|S4−Z4|),|G(ϖ,S1,S2,S3,S4)−G(ϖ,Z1,Z2,Z3,Z4)|≤(1/7|S1−Z1|+1/8|S2−Z2|+1/20|S3−Z3|+1/8|S4−Z4|), | (6.5) |
for all ϖ∈[0,1]. So, we have c0=1/4 and d0=1/20. In addition, we find ρ1≈1.4125480,ρ2≈1.13889158, D1≈0.510067622,D2≈0.43933889. Then, D1+D2≈0.9410020109<1, that is, the condition (4.15) is satisfied. Therefore, by Theorem 4.3, we conclude that problem (6.1) with the nonlinearities (6.4) has a unique solution ϖ∈[0,1].
We have presented criteria for the existence, uniqueness, and Ulam-Hyers stability of solutions to a coupled system of nonlinear sequential HHFIEs and nonlocal coupled Hadamard fractional integrodifferential and multipoint boundary conditions. We derive the expected results using a methodology that uses modern analytical tools. It is imperative to emphasize that the results offered in this specific context are novel and contribute to the corpus of existing literature on the topic. Furthermore, our results encompass cases where the system reduces to the boundary conditions of the form:
When ηj=Pu=0, then we get
{S(1)=0, S(T)=∑ni=1θiHIϕiZ(ζi)+∑rk=1λHkDωk1Z(μk),Z(1)=0, Z(T)=∑bv=1QvHIδvS(σv)+∑cw=1MHwDϑw1S(πw). |
If θi=Qv=0, we get:
{S(1)=0, S(T)=∑mj=1ηjZ(ξj)+∑rk=1λHkDωk1Z(μk),Z(1)=0, Z(T)=∑au=1PuS(ψu)+∑cw=1MHwDϑw1S(πw). |
When λk=Mw=0, the outcome is:
{S(1)=0, S(T)=∑mj=1ηjZ(ξj)+∑ni=1θiHIϕiZ(ζi),Z(1)=0, Z(T)=∑au=1PuS(ψu)+∑bv=1QvHIδvS(σv). |
In addition, if ηj=Pu=λk=Mw=0, we obtain:
{S(1)=0, S(T)=∑ni=1θiHIϕiZ(ζi),Z(1)=0, Z(T)=∑bv=1QvHIδvS(σv). |
When ηj=Pu=θi=Qv=0, the boundary condition is:
{S(1)=0, S(T)=∑rk=1λHkDωk1Z(μk),Z(1)=0, Z(T)=∑cw=1MHwDϑw1S(πw). |
If λk=Mw=θi=Qv=0, we obtain:
{S(1)=0, S(T)=∑mj=1ηjZ(ξj),Z(1)=0, Z(T)=∑au=1PuS(ψu). |
These cases represent new findings. Looking ahead, our future plans include extending this work to a coupled system of nonlinear sequential HHFIEs enhanced by the nonlocal coupled mixed integro-differential and discrete type boundary conditions. We also intend to investigate the multivalued analogue of the problem studied in this paper.
Subramanian Muthaiah: Developed the conceptualization and proposed the method, wrote–original draft, reviewed and edited the paper; Manigandan Murugesan: Developed the conceptualization and proposed the method, wrote–original draft, investigated, processed and provided examples; Muath Awadalla: Investigated, processed and provided examples, reviewed and edited the paper; Bundit Unyong: Developed the conceptualization and proposed the method, reviewed and edited the paper; Ria H Egami: Investigated, processed and provided examples, reviewed and edited the paper. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [GrantA113]. This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445). M.Manigandan gratefully acknowledges the Center for Computational Modeling, Chennai Institute of Technology, India, vide funding number CIT/CCM/2023/RP-018.
The authors declare no conflicts of interest.
[1] | G. W. Leibnitz, Letter from Hanover, Mathematische Schriften, 2 (1695), 301–302. |
[2] | S. G. Samko, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993. |
[3] | K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Newyork: John wiley and Sons, Inc., 1993. |
[4] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998. |
[5] | R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modelling and control applications, World Scientific Publishing Co. Pte. Ltd., 2010. |
[6] |
J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising. IEEE T. Image Process, 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
![]() |
[7] |
S. N. Rao, M. Khuddush, M. Singh, M. Z. Meetei, Infinite-time blowup and global solutions for a semilinear Klein Gordan equation with logarithmic nonlinearity, Appl. Math. Sci. Eng., 31 (2023), 2270134. https://doi.org/10.1080/27690911.2023.2270134 doi: 10.1080/27690911.2023.2270134
![]() |
[8] |
H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, S. Kwong, A hybrid compression framework for color attributes of static 3D point clouds. IEEE T. Circ. Syst. Vid. Technol., 32 (2022), 1564–1577. https://doi.org/10.1109/TCSVT.2021.3069838 doi: 10.1109/TCSVT.2021.3069838
![]() |
[9] |
T. Guo, H. Yuan, L. Wang, T. Wang, Rate-distortion optimized quantization for geometry-based point cloud compression, J. Electron Imaging, 32 (2023), 013047. https://doi.org/10.1117/1.JEI.32.1.013047 doi: 10.1117/1.JEI.32.1.013047
![]() |
[10] |
J. F. Goˊmez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hern\acute{a}ndez, D. Baleanu, R. F. Escobar-Jim\acute{e}nez, M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local Kernels, Entropy, 18 (2016), 402. https://doi.org/10.3390/e18080402 doi: 10.3390/e18080402
![]() |
[11] |
A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
![]() |
[12] |
A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
![]() |
[13] |
E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Mathematics, 8 (2023), 1713–1736. 1713-1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
![]() |
[14] |
A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
![]() |
[15] |
A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119–133. https://doi.org/10.1016/j.amc.2014.12.121 doi: 10.1016/j.amc.2014.12.121
![]() |
[16] | H. M. He, J. G. Peng, H. Y. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, U.P.B. Sci. Bull. Ser. A, 84 (2022), 25–36. |
[17] |
Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
![]() |
[18] |
X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An iterative threshold algorithm of log-sum regularization for sparse problem, IEEE T. Circ. Syst. Vid. Technol., 33 (2023), 4728–4740. https://doi.org/10.1109/TCSVT.2023.3247944 doi: 10.1109/TCSVT.2023.3247944
![]() |
[19] |
Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004 doi: 10.1016/j.amc.2006.05.004
![]() |
[20] |
M. Kurulay, Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Adv. Differ. Equ., 2012 (2012), 187. https://doi.org/10.1186/1687-1847-2012-187 doi: 10.1186/1687-1847-2012-187
![]() |
[21] |
R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. https://doi.org/10.3390/e23081086 doi: 10.3390/e23081086
![]() |
[22] |
A. A. Arafa, A. M. S. Hagag, Q-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory, Asian-Eur. J. Math., 12 (2019), 1950045. https://doi.org/10.1142/S1793557119500451 doi: 10.1142/S1793557119500451
![]() |
[23] |
J. J. H. He, An elementary introduction to the homotopy perturbation method, Comput. Math. Appl., 57 (2009), 410–412. https://doi.org/10.1016/j.camwa.2008.06.003 doi: 10.1016/j.camwa.2008.06.003
![]() |
[24] |
F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Opt. Control, 6 (2016), 75–83. https://doi.org/10.11121/ijocta.01.2016.00317 doi: 10.11121/ijocta.01.2016.00317
![]() |
[25] |
Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
![]() |
[26] |
M. Singh, Approximation of the time-fractional Klein-Gordon equation using the integral and projected differential transform methods, Int. J. Math. Eng. Manag. Sci., 8 (2023), 672–687. https://doi.org/10.33889/IJMEMS.2023.8.4.039 doi: 10.33889/IJMEMS.2023.8.4.039
![]() |
[27] |
N. H. Aljahdaly, R. P. Agarwal, R. Shah, T. Botmart, Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators, Mathematics, 9 (2021), 2326. https://doi.org/10.3390/math9182326 doi: 10.3390/math9182326
![]() |
[28] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[29] |
L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 66–76. https://doi.org/10.1016/j.amc.2013.11.004 doi: 10.1016/j.amc.2013.11.004
![]() |
[30] |
K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 7979365. https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365
![]() |
[31] |
P. Sunthrayuth, R. Shah, A. M. Zidan, S. Khan, J. Kafle, The analysis of fractional-order Navier-Stokes model arising in the unsteady flow of a viscous fluid via Shehu transform, J. Funct. Spaces, 2021 (2021), 1029196. https://doi.org/10.1155/2021/1029196 doi: 10.1155/2021/1029196
![]() |
[32] |
A. Sohail, K. Maqbool, R. Ellahi, Stability analysis for fractional-order partial differential equations by means of space spectral time Adams Bashforth Moulton method, Numer. Meth. Partial Differ. Equ., 34 (2018), 19–29. https://doi.org/10.1002/num.22171 doi: 10.1002/num.22171
![]() |
[33] |
F. Mirzaee, N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Method. Appl. Sci., 41 (2018), 4465–4479. https://doi.org/10.1002/mma.4907 doi: 10.1002/mma.4907
![]() |
[34] | M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, In: Handbook of mathematical fluid dynamics, 3 (2005), 161–244. https://doi.org/10.1016/S1874-5792(05)80006-0 |
[35] |
G. Adomian, Analytical solution of Navier-Stokes flow of a viscous compressible fluid, Found. Phys. Lett., 8 (1995), 389–400. https://doi.org/10.1007/BF02187819 doi: 10.1007/BF02187819
![]() |
[36] |
M. Krasnoschok, V. Pata, S. V. Siryk, N. Vasylyeva, A subdiffusive Navier-Stokes-Voigt system, Phys. D Nonlinear Phenom., 409 (2020), 132503. https://doi.org/10.1016/j.physd.2020.132503 doi: 10.1016/j.physd.2020.132503
![]() |
[37] |
M. I. Herreros, S. Lig\ddot{u}\acute{e}rzana, Rigid body motion in viscous flows using the finite element method, Phys. Fluids, 32 (2020), 123311. https://doi.org/10.1063/5.0029242 doi: 10.1063/5.0029242
![]() |
[38] |
M. El-Shahed, A. Salem, On the generalized Navier-Stokes equations, Appl. Math. Comput., 156 (2004), 287–293. https://doi.org/10.1016/j.amc.2003.07.022 doi: 10.1016/j.amc.2003.07.022
![]() |
[39] |
Z. Z. Ganji, D. D. Ganji, A. D. Ganji, M. Rostamian, Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method, Numer. Method. Partial Differ. Equ., 26 (2010), 117–124. https://doi.org/10.1002/num.20420 doi: 10.1002/num.20420
![]() |
[40] |
D. Kumar, J. Singh, S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab. Univ. Basic Appl. Sci., 17 (2015), 14–19. https://doi.org/10.1016/j.jaubas.2014.01.001 doi: 10.1016/j.jaubas.2014.01.001
![]() |
[41] |
S. Maitama, Analytical solution of time-fractional Navier-Stokes equation by natural homotopy perturbation method, Prog. Fract. Differ. Appl., 4 (2018), 123–131. https://doi.org/10.18576/pfda/040206 doi: 10.18576/pfda/040206
![]() |
[42] |
G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3 (2014), 21–26. https://doi.org/10.1515/nleng-2012-0004 doi: 10.1515/nleng-2012-0004
![]() |
[43] |
Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations with Caputo operators and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
![]() |
[44] |
Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ., 2021 (2021), 91. https://doi.org/10.1186/s13662-021-03250-x doi: 10.1186/s13662-021-03250-x
![]() |
[45] |
B. K. Singh, P. Kumar, FRDTM for numerical simulatin of multi-dimensional Navier-Stokes equation, Ain Shams Eng. J., 9 (2018), 827–834. https://doi.org/10.1016/j.asej.2016.04.009 doi: 10.1016/j.asej.2016.04.009
![]() |
[46] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of fractional-order Navier-Stokes equations by a novel Approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[47] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006. |
[48] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[49] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[50] | Z. H. Khan, W. A. Khan, N-Transform-properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133. |
[51] | D. Loonker, P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 2 (2013), 1–7. |
[52] |
A. Khalouta, A. Kadem, A new numerical technique for solving fractional Bratu's initial value problems in the Caputo and Caputo-Fabrizio sense, J. Appl. Math. Comput. Mech., 19 (2020), 43–56. https://doi.org/10.17512/jamcm.2020.1.04 doi: 10.17512/jamcm.2020.1.04
![]() |
[53] |
V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
![]() |
[54] |
A. Ghorbani, Beyond Adomian's polynomials: He's polynomials, Chaos Soliton. Fract., 39 (2009), 1486–1492. https://doi.org/10.1016/j.chaos.2007.06.034 doi: 10.1016/j.chaos.2007.06.034
![]() |
1. | Sina Etemad, Ivanka Stamova, Sotiris K. Ntouyas, Jessada Tariboon, Quantum Laplace Transforms for the Ulam–Hyers Stability of Certain q-Difference Equations of the Caputo-like Type, 2024, 8, 2504-3110, 443, 10.3390/fractalfract8080443 | |
2. | Xiaojun Lv, Kaihong Zhao, Study of Stability and Simulation for Nonlinear (k, ψ)-Fractional Differential Coupled Laplacian Equations with Multi-Point Mixed (k, ψ)-Derivative and Symmetric Integral Boundary Conditions, 2025, 17, 2073-8994, 472, 10.3390/sym17030472 |