
This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.
Citation: Manoj Singh, Ahmed Hussein, Msmali, Mohammad Tamsir, Abdullah Ali H. Ahmadini. An analytical approach of multi-dimensional Navier-Stokes equation in the framework of natural transform[J]. AIMS Mathematics, 2024, 9(4): 8776-8802. doi: 10.3934/math.2024426
[1] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[2] | Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam . Comparative analysis of fractional dynamical systems with various operators. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714 |
[3] | Manal Alqhtani, Khaled M. Saad, Rasool Shah, Thongchai Botmart, Waleed M. Hamanah . Evaluation of fractional-order equal width equations with the exponential-decay kernel. AIMS Mathematics, 2022, 7(9): 17236-17251. doi: 10.3934/math.2022949 |
[4] | Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237 |
[5] | Naveed Iqbal, Saleh Alshammari, Thongchai Botmart . Evaluation of regularized long-wave equation via Caputo and Caputo-Fabrizio fractional derivatives. AIMS Mathematics, 2022, 7(11): 20401-20419. doi: 10.3934/math.20221118 |
[6] | Azzh Saad Alshehry, Naila Amir, Naveed Iqbal, Rasool Shah, Kamsing Nonlaopon . On the solution of nonlinear fractional-order shock wave equation via analytical method. AIMS Mathematics, 2022, 7(10): 19325-19343. doi: 10.3934/math.20221061 |
[7] | Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu . On the fractional model of Fokker-Planck equations with two different operator. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015 |
[8] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[9] | Yudhveer Singh, Devendra Kumar, Kanak Modi, Vinod Gill . A new approach to solve Cattaneo-Hristov diffusion model and fractional diffusion equations with Hilfer-Prabhakar derivative. AIMS Mathematics, 2020, 5(2): 843-855. doi: 10.3934/math.2020057 |
[10] | Yousef Jawarneh, Humaira Yasmin, M. Mossa Al-Sawalha, Rasool Shah, Asfandyar Khan . Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations. AIMS Mathematics, 2023, 8(11): 25845-25862. doi: 10.3934/math.20231318 |
This article introduces a new iterative transform method and homotopy perturbation transform method along with a natural transform to analyze the multi-dimensional Navier-Stokes equations. To solve the fractional-derivative, the Caputo-Fabrizio definition of the fractional derivative was employed. Four examples were considered to examine the efficacy and accuracy of the proposed methods. The efficiency and accuracy were also demonstrated by the solution comparison via graphs. The proposed methods' convergence and uniqueness are also discussed. The methods mentioned above are straightforward and support a high rate of convergence.
Fractional calculus (FC) is a discipline of mathematics concerned with the study of derivatives and integrals of non-integer orders. It was invented in September 1695 by L'Hospital. In a letter to L'-Hospital [1], who discussed the differentiation of product functions of order 12, which laid the groundwork for FC [2,3,4]. It provides a great tool for characterizing memory and inherited qualities of different materials and procedures [4,5,6]. FC has grown in interest in recent decades as a result of the intensive development of fractional calculus theory and its applications in diverse sectors of science and engineering due to its high precision and applicability, for example, fractional control theory, image processing, signal processing, bio-engineering, groundwater problems, heat conduction, and behavior of viscoelastic and visco-plastic materials, see [7,8,9]. In addition, the electrical RLC circuit's performance has been determined using the fractional model [10].
In the last few decades, numerical and analytical solutions of fractional partial differential equations (FPDEs) have drawn a lot of attention among researchers [11,12,13,14,15]. The qualitative behavior of these mathematical models is significantly influenced by the fractional derivatives that are employed in FPDEs. This has numerous applications in the fields of solid-state physics, plasma physics, mathematical biology, electrochemistry, diffusion processes, turbulent flow, and materials science [16,17,18].
However, solving PDEs is not an easy task. A lot of mathematicians have put their effort into formulating analytical and numerical methods to solve fractional partial differential equations. The widely recognized methods for the solution of (FPDEs) are the Adomian decomposition method [19], homotopy analysis method [20,21], q-homotopy analysis transform method [22], homotopy perturbation method [23], variation iteration method [24], differential transform method [25], projected differential transform method [26], meshless method [27], backlund transformation method [28], Haar wavelet method [29], G'/G expansion method [30], residual power series method [31], Adam Bashforth's moulton technique [32], operational matrix method [33].
The nonlinear partial differential Navier-Stokes (N-S) equation, which expresses viscous fluid motion, was first developed by Claude Louis and Gabriel Stokes in 1822 [34]. This equation describes the conservation of mass and conservation of momentum for Newtonian and is referred to as the Newton's second law for fluids. The N-S equation has wide applications in engineering science, for example, examining liquid flow, studying wind current around wings, climate estimation, and blood flow [35,36]. Furthermore, along with Maxwell's equations the (N-S) equation can be applied to study and model magnetohydrodynamics, plasma physics, geophysics, etc. Also, fluid-solid interaction problems have been modeled and investigated by the N-S equation [37].
The multi-dimensional Navier-Stokes equation (MDNSE) stands as a fundamental cornerstone in fluid dynamics, providing a comprehensive mathematical framework to describe the motion of fluid substances in multiple dimensions. Derived from the Navier-Stokes equation, which govern the conservation of momentum for incompressible fluids, the MDNSE extends these principles to encompass the complexities of fluid flow in more than one spatial dimension. The equation accounts for the conservation of mass and the interplay of viscous and inertial forces, offering a powerful tool to model and analyze fluid behavior in diverse physical scenarios. The application of the multi-dimensional Navier-Stokes equation spans a wide range of scientific and engineering disciplines, playing a crucial role in understanding fluid dynamics across various contexts. In the field of aerospace engineering, MDNSE is employed to simulate the airflow around aircraft, aiding in the design and optimization of aerodynamic profiles. In marine engineering, it finds application in predicting the behavior of water currents around ships and offshore structures. Additionally, MDNSE is instrumental in weather modeling, allowing meteorologists to simulate and analyze atmospheric conditions in multiple dimensions for more accurate weather predictions. In the realm of biomedical engineering, it contributes to the study of blood flow in arteries and the behavior of biological fluids. Overall, the multi-dimensional Navier-Stokes equation serves as a versatile and indispensable tool for gaining insights into the intricate dynamics of fluid motion in diverse scientific and engineering.
In literature, many researchers have used numerous techniques to analyze the N-S equation. First of all, the authors of [38] solved the fractional-order N-S equation by using the Laplace transform, Fourier sine transform, and Hankel transform. The authors of [39,40,41] investigated the time-fractional N-S equation by using the homotopy perturbation method. Biraider [42] used the Adomian decomposition method to find a numerical solution. Recently, many researchers have focused on examining the multi-dimensional time-fractional N-S equation, by combining a variety of techniques with different transforms, see [43,44,45,46].
Motivated by the mentioned work, in the present article the new iterative transform method (NITM) and homotopy perturbation transform method (HPTM) combined with natural transform are implemented to analyze the solution of the time-fractional multi-dimensional Navier-Stokes equation in the sense of Caputo-Fabrizio operator. The article is structured in the following way: In Section 2, some basic definitions and properties are explained. In Section 3, the interpretation of the NITM is explained for the solution of fractional PDEs. In Section 4, the above-mentioned method's convergence analysis is also presented. In Section 5, the outcome of the suggested method is illustrated by examples, and validated graphically. In Section 6, the HPTM is explicated. In Section 7, similar examples are presented to elucidate the HPTM.
Definition 1 ([47]). The Caputo fractional derivative of f(ℓ) is defined as
C0Dθℓf(ℓ)={1Γ(m−θ)∫ℓ0(ℓ−ζ)m−θ−1fm(ζ)dζ,m−1<θ<m,fm(ℓ),θ=m. | (2.1) |
where, m∈Z+,θ∈R+.
Definition 2 ([48]). The Caputo-Fabrizio fractional derivative of f(ℓ) is defined as
CF0Dθℓf(ℓ)=(2−θ)B(θ)2(1−θ)∫ℓ0exp(−θ(ℓ−ζ)1−θ)D(f(ζ))dζℓ≥0. | (2.2) |
where θ∈[0,1], and B(θ) is a normalization function and satisfies the condition B(0)=B(1)=1.
Definition 3 ([49]). The fractional integral of function f(ℓ) of order θ, is defined as
CF0Iθℓf(ℓ)=2(1−θ)(2−θ)B(θ)f(ℓ)+2θ(2−θ)B(θ)∫ℓ0f(ζ)dζ,ℓ≥0. | (2.3) |
From Eq (2.3), the following results hold:
2(1−θ)(2−θ)B(θ)+2θ(2−θ)B(θ)=1, |
which gives,
B(θ)=22−θ,0≤θ≤1. |
Thus, Losada and Nieto [49] redefined the Caputo-Fabrizio fractional derivative as
CF0Dθℓf(ℓ)=11−θ∫ℓ0exp(−θ(ℓ−ζ)1−θ)D(f(ζ))dζℓ≥0. | (2.4) |
Definition 4 ([50]). The natural transform of ℧(ℓ) is given by
N(℧(ℓ))=U(s,v)=∫∞−∞e−sℓ℧(vℓ)dℓ,s,v∈(−∞,∞). | (2.5) |
For ℓ∈(0,∞), the natural transform of ℧(ℓ) is given by
N(℧(ℓ)H(ℓ))=N+=U+(s,v)=∫∞0e−sℓ℧(vℓ)dℓs,v∈(0,∞), | (2.6) |
where H is the Heaviside function.
The inverse of natural transform of U(s,v) is defined as
N−1[U(s,v)]=℧(ℓ),∀ℓ>0. |
Definition 5 ([51]). The natural transform of the fractional Caputo differential operator C0Dθℓ℧(ℓ) is defined as
N[C0Dθℓ℧(ℓ)]=(1s)θ(N[℧(ℓ)]−(1s)℧(0)). | (2.7) |
Definition 6 ([52]). The natural transform of the fractional Caputo-Fabrizio differential operator CF0Dθℓ℧(ℓ) is defined as
N[CF0Dθℓ℧(ℓ)]=11−θ+θ(vs)(N[℧(ℓ)]−(1s)℧(0)). | (2.8) |
This section considers, NITM with the CF fractional derivative operator in order to evaluate the multi-dimensional (N-S) problem. This iterative method is a combination of the new iterative method introduced in [53] and the natural transform [50].
Consider the fractional PDE of the form
CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0, | (3.1) |
with respect to the initial condition
℧(φ,ϱ,0)=h(φ,ϱ). | (3.2) |
CF0Dθℓ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.
By employing the natural transform on both sides of Eq (3.1), we get
N[CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0], | (3.3) |
N[℧(φ,ϱ,ℓ)]=s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N{P(φ,ϱ,ℓ)−[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}. | (3.4) |
By using the inverse natural transform, Eq (3.4) can reduced to the form
℧(φ,ϱ,ℓ)=N−1{s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N{P(φ,ϱ,ℓ)−[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}}. | (3.5) |
The nonlinear operator N as in [53], can be decomposed as
N(℧(φ,ϱ,ℓ))=N(∞∑r=0℧r(φ,ϱ,ℓ))=N(℧0(φ,ϱ,ℓ))+∞∑r=1{N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))}. | (3.6) |
Now, define an mth-order approximate series
D(m)(φ,ϱ,ℓ)=m∑r=0℧r(φ,ϱ,ℓ)=℧0(φ,ϱ,ℓ)+℧1(φ,ϱ,ℓ)+℧2(φ,ϱ,ℓ)+–−+℧m(φ,ϱ,ℓ),m∈N. | (3.7) |
Consider the solution of Eq (3.1) in a series form as
℧(φ,ϱ,ℓ)=limm⟶∞D(m)(φ,ϱ,ℓ)=∞∑r=0℧r(φ,ϱ,ℓ). | (3.8) |
By substituting Eqs (3.6) and (3.7) into Eq (3.5), we get
∞∑r=0℧r(φ,ϱ,ℓ)=N−1{s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N[P(φ,ϱ,ℓ)−[R(℧0(φ,ϱ,ℓ))+N(℧0(φ,ϱ,ℓ))]]}−N−1{(1−θ+θ(vs))N[∞∑r=1{R(℧r(φ,ϱ,ℓ))+[N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))]}]}. | (3.9) |
From Eq (3.9), the following iterations are obtained.
℧0(φ,ϱ,ℓ)=N−1[s−1℧(φ,ϱ,0)+(1−θ+θ(vs))N[P(φ,ϱ,ℓ)]], | (3.10) |
℧1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[R(℧0(φ,ϱ,ℓ))+N(℧0(φ,ϱ,ℓ))]],⋮ | (3.11) |
ur+1(φ,ϱ,ℓ)=−N−1{(1−θ+θ(vs))N[∞∑r=1{R(℧r(φ,ϱ,ℓ))+[N(r∑i=0℧i(φ,ϱ,ℓ))−N(r−1∑i=0℧i(φ,ϱ,ℓ))]}]}. | (3.12) |
In this section, we demonstrate the uniqueness and convergence of the NITMCF.
Theorem 1. The solution derived with the aid of the NITMCF of Eq (3.1) is unique whenever 0<(℘1,℘2)[1−θ+θℓ]<1.
Proof. Let X=(C[J],∥.∥) be the Banach space for all continuous functions over the interval J=[0,T], with the norm ∥ϕ(ℓ)=maxℓ∈J|ϕ(ℓ)|.
Define the mapping F:X→X, where
℧Cr+1=℧C0−N−1[(1−θ+θvs)N{R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)}],r≥0. |
Now, assume that R(℧) and N(℧) satisfy the Lipschitz conditions with Lipschitz constants ℘1,℘2 and |R(℧)−R(ˉ℧)|<℘1|℧−ˉ℧|, |N(℧)−N(ˉ℧)|<℘2|℧−ˉ℧|, where ℧=℧(φ,ϱ,ℓ) and ˉ℧=℧(φ,ϱ,ℓ) are the values of two distinct functions.
∥F(℧)−F(ˉ℧)∥≤maxℓ∈J|N−1[(1−θ+θvs)N{R(℧(φ,ϱ,ℓ))−R(ˉ℧(φ,ϱ,ℓ))}+(1−θ+θvs)N{N(℧(φ,ϱ,ℓ))−N(ˉ℧(φ,ϱ,ℓ))}]|≤maxℓ∈J[℘1N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}+℘2N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤maxℓ∈J(℘1+℘2)[N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤(℘1+℘2)[N−1{(1−θ+θvs)N|℧(φ,ϱ,ℓ)−ˉ℧(φ,ϱ,ℓ)|}]≤(℘1+℘2)[1−θ+θℓ]∥℧−ˉ℧∥. |
F is contraction as 0<(℘1+℘2)[1−θ+θℓ]<1. Thus, the result of (3.1) is unique with the aid of the Banach fixed-point theorem.
Theorem 2. The solution derived from Eq (3.1) using the NITMCF converges if 0<℧<1 and ∥℧i∥<∞, where ℧=(℘1+℘2)[1−θ+θℓ].
Proof. Let ℧n=∑nr=0℧r(φ,ϱ,ℓ) be a partial sum of series. To prove that {℧n} is a Cauchy sequence in the Banach space X, we consider
∥(℧m−℧n∥=maxℓ∈J|m∑r=n+1℧r(φ,ϱ,ℓ)|,n=1,2,3,...≤maxℓ∈J|N−1[(1−θ+θvs)N{m∑r=n+1[R(℧r−1(φ,ϱ,ℓ))+N(℧r−1(φ,ϱ,ℓ))]}]|≤maxℓ∈J|N−1[(1−θ+θvs)N{R(℧m−1)−R(℧n−1)+N(℧m−1)−N(℧n−1)}]| |
≤℘1maxℓ∈J|N−1[(1−θ+θvs)N{R(℧m−1)−R(℧n−1)}]|+℘2maxℓ∈J|N−1[(1−θ+θvs)N{N(℧m−1)−N℧n−1)}]|=(℘1+℘2)[1−θ+θℓ]∥℧m−1−℧n−1∥. |
If m=n+1, then
∥℧n+1−℧n∥≤℘∥℧n−℧n−1∥≤℘2∥℧n−1−℧n−2∥≤...≤℘n∥℧1−℧0∥, |
where ℘=(℘1+℘2)[1−θ+θℓ]. In a similar way
∥℧m−℧n∥≤∥℧n+1−℧n∥≤∥℧n+2−℧n+1∥≤...∥℧m−℧m−1∥,≤(℘n+℘n+1+...+℘m−1)∥℧1−℧0∥,≤℘n(1−℘m−n1−℘)∥℧1∥. |
We see that, 1−℘m−n<1, as 0<℘<1. Thus,
∥℧m−℧n∥≤(℘n1−℘)maxℓ∈J∥℧1∥. |
Since ∥℧1∥<∞, ∥℧m−℧n∥→0 as n→∞. Hence, ℧m is a Cauchy sequence in X. So, the series ℧m is convergent.
In this section, we demonstrate the effectiveness of the NITM with the natural transformation for the Caputo-Fabrizio fractional derivative to solve the two-dimensional fractional N-S equation.
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (5.1) |
with initial conditions
{μ(φ,ϱ,0)=−sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). | (5.2) |
From Eqs (5.1) and (5.2), we set the following
{P1(φ,ϱ,ℓ)=q,R(μ(φ,ϱ,ℓ))=−ρ[∂2μ∂φ2+∂2μ∂ϱ2],N(μ(φ,ϱ,ℓ))=μ∂μ∂φ+ν∂μ∂ϱ,P2(φ,ϱ,ℓ)=−q,R(ν(φ,ϱ,ℓ))=−ρ[∂2ν∂φ2+∂2ν∂ϱ2],N(ν(φ,ϱ,ℓ))=μ∂ν∂φ+ν∂ν∂ϱ,μ0(φ,ϱ,0)=−sin(φ+ϱ),ν0(φ,ϱ,0)=sin(φ+ϱ). |
Using the iteration process outlined in Section 3, we have
μ0(φ,ϱ,ℓ)=N−1[s−1μ(φ,ϱ,0)+(1−θ+θ(vs))N[P1(φ,ϱ,ℓ)]],0<θ≤1=−sin(φ+ϱ)+q.[(1−θ)+θℓ],ν0(φ,ϱ,ℓ)=N−1[s−1ν(φ,ϱ,0)+(1−θ+θ(vs))N[P2(φ,ϱ,ℓ)]]=sin(φ+ϱ)−q.[(1−θ)+θℓ], | (5.3) |
μ1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R(μ0(φ,ϱ,ℓ))+N(μ0(φ,ϱ,ℓ))}]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ0∂φ2+∂2μ0∂ϱ2]+μ0∂μ0∂φ+ν0∂μ0∂ϱ)]=2ρsin(φ+ϱ)[(1−θ)+θℓ],ν1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N(R(ν0(φ,ϱ,ℓ))+N(ν0(φ,ϱ,ℓ)))]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν0∂φ2+∂2ν0∂ϱ2]+μ0∂ν0∂φ+ν0∂ν0∂ϱ)]=−2ρsin(φ+ϱ)[(1−θ)+θℓ], | (5.4) |
μ2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ1(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ1∂φ2+∂2μ1∂ϱ2]+(μ0+μ1)∂(μ0+μ1)∂φ+(ν0+ν1)∂(μ0+μ1)∂ϱ−μ0∂μ0∂φ−ν0∂μ0∂ϱ)]=−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],ν2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν1(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν1∂φ2+∂2ν1∂ϱ2]+(μ0+μ1)∂(ν0+ν1)∂φ+(ν0+ν1)∂(ν0+ν1)∂ϱ−μ0∂ν0∂φ−ν0∂ν0∂ϱ)]=(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.5) |
μ3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ2(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ2∂φ2+∂2μ2∂ϱ2]+(μ0+μ1+μ2)∂(μ0+μ1+μ2)∂φ+(ν0+ν1+ν2)∂(μ0+μ1+μ2)∂ϱ−(μ0+μ1)∂(μ0+μ1)∂φ−(ν0+ν1)∂(μ0+μ1)∂ϱ)]=(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (5.6) |
ν3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν2(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν2∂φ2+∂2ν2∂ϱ2]+(μ0+μ1+μ2)∂(ν0+ν1+ν2)∂φ+(ν0+ν1+ν2)∂(ν0+ν1+ν2)∂ϱ−(μ0+μ1)∂(ν0+ν1)∂φ−(ν0+ν1)∂(ν0+ν1)∂ϱ)]=−(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],⋮ | (5.7) |
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯.ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ]+2ρsin(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯, |
ν(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ]−2ρsin(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (5.1) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−e−2ρℓsin(φ+ϱ),ν(φ,ϱ,ℓ)=e−2ρℓsin(φ+ϱ). | (5.8) |
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (5.9) |
with the initial conditions
{μ(φ,ϱ,0)=−e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). | (5.10) |
From Eqs (5.9) and (5.10), we set the following:
{P1(φ,ϱ,ℓ)=q,R(μ(φ,ϱ,ℓ))=−ρ[∂2μ∂φ2+∂2μ∂ϱ2],N(μ(φ,ϱ,ℓ))=μ∂μ∂φ+ν∂μ∂ϱ,P2(φ,ϱ,ℓ)=−q,R(ν(φ,ϱ,ℓ))=−ρ[∂2ν∂φ2+∂2ν∂ϱ2],N(ν(φ,ϱ,ℓ))=μ∂ν∂φ+ν∂ν∂ϱ,μ0(φ,ϱ,0)=−e(φ+ϱ),ν0(φ,ϱ,0)=e(φ+ϱ). |
Using the iteration process outlined in Section 3, we have
μ0(φ,ϱ,ℓ)=N−1[s−1μ(φ,ϱ,0)+(1−θ+θ(vs))N[P1(φ,ϱ,ℓ)]],0<θ≤1=−e(φ+ϱ)+q.[(1−θ)+θℓ],ν0(φ,ϱ,ℓ)=N−1[s−1ν(φ,ϱ,0)+(1−θ+θ(vs))N[P2(φ,ϱ,ℓ)]]=e(φ+ϱ)−q.[(1−θ)+θℓ], | (5.11) |
μ1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R(μ0(φ,ϱ,ℓ))+N(μ0(φ,ϱ,ℓ))}]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ0∂φ2+∂2μ0∂ϱ2]+μ0∂μ0∂φ+ν0∂μ0∂ϱ)]=−2ρe(φ+ϱ)[(1−θ)+θℓ],ν1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N(R(ν0(φ,ϱ,ℓ))+N(ν0(φ,ϱ,ℓ)))]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν0∂φ2+∂2ν0∂ϱ2]+μ0∂ν0∂φ+ν0∂ν0∂ϱ)]=2ρe(φ+ϱ)[(1−θ)+θℓ],μ2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ1(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ1∂φ2+∂2μ1∂ϱ2]+(μ0+μ1)∂(μ0+μ1)∂φ+(ν0+ν1)∂(μ0+μ1)∂ϱ−μ0∂μ0∂φ−ν0∂μ0∂ϱ)]=−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.12) |
ν2(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν1(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν1∂φ2+∂2ν1∂ϱ2]+(μ0+μ1)∂(ν0+ν1)∂φ+(ν0+ν1)∂(ν0+ν1)∂ϱ−μ0∂ν0∂φ−ν0∂ν0∂ϱ)]=(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (5.13) |
μ3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(μ2(φ,ϱ,ℓ))+{N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ))−N(μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2μ2∂φ2+∂2μ2∂ϱ2]+(μ0+μ1+μ2)∂(μ0+μ1+μ2)∂φ+(ν0+ν1+ν2)∂(μ0+μ1+μ2)∂ϱ−(μ0+μ1)∂(μ0+μ1)∂φ−(ν0+ν1)∂(μ0+μ1)∂ϱ)]=−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],ν3(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N[(R(ν2(φ,ϱ,ℓ))+{N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ))−N(ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ))}]]=−N−1[(1−θ+θ(vs))N(−ρ[∂2ν2∂φ2+∂2ν2∂ϱ2]+(μ0+μ1+μ2)∂(ν0+ν1+ν2)∂φ+(ν0+ν1+ν2)∂(ν0+ν1+ν2)∂ϱ−(μ0+μ1)∂(ν0+ν1)∂φ−(ν0+ν1)∂(ν0+ν1)∂ϱ)]=(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],⋮ | (5.14) |
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ]−2ρe(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯, |
ν(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ]+2ρe(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (5.9) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−eφ+ϱ+2ρℓ,ν(φ,ϱ,ℓ)=eφ+ϱ+2ρℓ. | (5.15) |
Consider the following non-linear fractional PDEs
CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))−P(φ,ϱ,ℓ)=0,0<θ≤1, | (6.1) |
subject to the initial condition
℧(φ,ϱ,0)=℧0(φ,ϱ). | (6.2) |
CF0Dθℓ is the Caputo-Fabrizio fractional differential operator of order θ,R and N are linear and non-linear terms, and P is the source term.
By using the natural transform on both sides of Eq (6.1), we get
N[CF0Dθℓ℧(φ,ϱ,ℓ)+R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,))−P(φ,ϱ,ℓ)=0], | (6.3) |
N[℧(φ,ϱ,ℓ)]=ϖ(℧(φ,ϱ,s))−(1−θ+θ(vs))N{[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}, | (6.4) |
where
ϖ(℧(φ,ϱ,s))=s−1℧(φ,ϱ,0)+(1−θ+θ(vs))˜P(φ,ϱ,s). |
By applying the inverse natural transform, Eq (6.4) is reduced to the form
℧(φ,ϱ,ℓ)=ϖ(℧(φ,ϱ,ℓ))−N−1[(1−θ+θ(vs))N{[R(℧(φ,ϱ,ℓ))+N(℧(φ,ϱ,ℓ))]}], | (6.5) |
where ϖ(℧(φ,ϱ,ℓ)) represents the term arising from the source term. Now, applying the HPTM to find the solution of Eq (6.5), we get
℧(φ,ϱ,ℓ)=∞∑r=0zr℧r(φ,ϱ,ℓ), | (6.6) |
and the non-linear tern can be decomposed as
N(℧(φ,ϱ,ℓ))=∞∑r=0zrHr(φ,ϱ,ℓ). | (6.7) |
Cnsider some He's polynomials [54], given as
Hr(℧0,℧1,...,℧r)=1r!∂r∂zr[N(∞∑j=0zj℧j)],r=0,1,2,⋯. | (6.8) |
By substituting Eqs (6.6) and (6.7) into Eq (6.5), we get
∞∑r=0℧r(φ,ϱ,ℓ)zr=ϖ(℧(φ,ϱ,ℓ))−z.N−1[(1−θ+θ(vs))N{R∞∑r=0zr℧r(φ,ϱ,ℓ)+N∞∑r=0zrHr(φ,ϱ,ℓ)}]. | (6.9) |
Comparing the coefficients of like powers of z, the following approximations are obtained:
z0:℧0(φ,ϱ,ℓ)=ϖ(℧(φ,ϱ,ℓ)) | (6.10) |
z1:℧1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R[℧0(φ,ϱ,ℓ)]+H0(℧)}]⋮ | (6.11) |
zr+1:℧r+1(φ,ϱ,ℓ)=−N−1[(1−θ+θ(vs))N{R[℧r(φ,ϱ,ℓ)]+Hr(℧)}]. | (6.12) |
Consider the two-dimensional fractional N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (6.13) |
with initial conditions
{μ(φ,ϱ,0)=−sin(φ+ϱ),ν(φ,ϱ,0)=sin(φ+ϱ). | (6.14) |
Applying the natural transform and inversion in Eq (6.13), we obtain
μ(φ,ϱ,ℓ)=μ(φ,ϱ,0)+N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2μ∂φ2+∂2μ∂ϱ2)−(μ∂μ∂φ+ν∂μ∂ϱ)}],ν(φ,ϱ,ℓ)=ν(φ,ϱ,0)−N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2ν∂φ2+∂2ν∂ϱ2)−(μ∂ν∂φ+ν∂ν∂ϱ)}]. | (6.15) |
By implementing HPTM in Eq (6.15), we get
∞∑r=0zrμ(φ,ϱ,ℓ)=−sin(φ+ϱ)+N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2μ∂φ2+∂2μ∂ϱ2)−∞∑r=0zrHr(φ,ϱ)}],∞∑r=0zrν(φ,ϱ,ℓ)=sin(φ+ϱ)−N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2ν∂φ2+∂2ν∂ϱ2)−∞∑r=0zrIr(φ,ϱ)}]. | (6.16) |
where Hr(φ,ϱ)=μ∂μ∂φ+ν∂μ∂ϱ and Ir(φ,ϱ)=μ∂ν∂φ+ν∂ν∂ϱ, represent the nonlinear term.
From Eq (6.16), comparing the powers of z, we get
z0:μ0(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ],z0:ν0(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ], | (6.17) |
z1:μ1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ0∂φ2+∂2μ0∂ϱ2)−H0(φ,ϱ)}]=2ρsin(φ+ϱ)[(1−θ)+θℓ],z1:ν1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν0∂φ2+∂2ν0∂ϱ2)−I0(φ,ϱ)}]=−2ρsin(φ+ϱ)[(1−θ)+θℓ], | (6.18) |
where H0(φ,ϱ)=μ0∂μ0∂φ+ν0∂μ0∂ϱ and I0(φ,ϱ)=μ0∂ν0∂φ+ν0∂ν0∂ϱ.
z2:μ2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ1∂φ2+∂2μ1∂ϱ2)−H1(φ,ϱ)}]=−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],z2:ν2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν1∂φ2+∂2ν1∂ϱ2)−I1(φ,ϱ)}]=(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (6.19) |
where H1(φ,ϱ)=(μ0∂μ1∂φ+μ1∂μ0∂φ)+(ν0∂μ1∂ϱ+ν1∂μ0∂ϱ),
and I1(φ,ϱ)=(μ0∂ν1∂φ+μ1∂ν0∂φ)+(ν0∂ν1∂ϱ+ν1∂ν0∂ϱ).
z3:μ3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ2∂φ2+∂2μ2∂ϱ2)−H2(φ,ϱ)}]=(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],z3:ν3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν2∂φ2+∂2ν2∂ϱ2)−I2(φ,ϱ)}]=−(2ρ)3sin(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (6.20) |
where H2(φ,ϱ)=(μ0∂μ2∂φ+μ1∂μ1∂φ+μ2∂μ0∂φ)+(ν0∂μ2∂ϱ+ν1∂μ1∂ϱ+ν2∂μ0∂ϱ),
and I2(φ,ϱ)=(μ0∂ν2∂φ+μ1∂ν1∂φ+μ2∂ν0∂φ)+(ν0∂ν2∂ϱ+ν1∂ν1∂ϱ+ν2∂ν0∂ϱ).
⋮
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−sin(φ+ϱ)+q.[(1−θ)+θℓ]+2ρsin(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−⋯. |
ν(φ,ϱ,ℓ)=sin(φ+ϱ)−q.[(1−θ)+θℓ]−2ρsin(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2sin(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3sin(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+⋯. |
The exact solution of Eq (6.13) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−e−2ρℓsin(φ+ϱ),ν(φ,ϱ,ℓ)=e−2ρℓsin(φ+ϱ). | (6.21) |
Consider the two-dimensional fractional order N-S equation
CF0Dθℓ(μ)+μ∂μ∂φ+ν∂μ∂ϱ=ρ[∂2μ∂φ2+∂2μ∂ϱ2]+q,CF0Dθℓ(ν)+μ∂ν∂φ+ν∂ν∂ϱ=ρ[∂2ν∂φ2+∂2ν∂ϱ2]−q, | (6.22) |
with initial conditions
{μ(φ,ϱ,0)=−e(φ+ϱ),ν(φ,ϱ,0)=e(φ+ϱ). | (6.23) |
Applying the natural transform and inversion in Eq (6.22), we obtain
μ(φ,ϱ,ℓ)=μ(φ,ϱ,0)+N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2μ∂φ2+∂2μ∂ϱ2)−(μ∂μ∂φ+ν∂μ∂ϱ)}],ν(φ,ϱ,ℓ)=ν(φ,ϱ,0)−N−1[(1−θ+θ(vs))N[q]]+N−1[(1−θ+θ(vs))×N{ρ(∂2ν∂φ2+∂2ν∂ϱ2)−(μ∂ν∂φ+ν∂ν∂ϱ)}]. | (6.24) |
By implementing HPTM in Eq (6.24), we get
∞∑r=0zrμ(φ,ϱ,ℓ)=−e(φ+ϱ)+N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2μ∂φ2+∂2μ∂ϱ2)−∞∑r=0zrHr(φ,ϱ)}],∞∑r=0zrν(φ,ϱ,ℓ)=e(φ+ϱ)−N−1[(1−θ+θ(vs))N[q]]+z.N−1[(1−θ+θ(vs))×N{ρ∞∑r=0zr(∂2ν∂φ2+∂2ν∂ϱ2)−∞∑r=0zrIr(φ,ϱ)}]. | (6.25) |
where Hr(φ,ϱ)=μ∂μ∂φ+ν∂μ∂ϱ and Ir(φ,ϱ)=μ∂ν∂φ+ν∂ν∂ϱ represent the nonlinear terms.
From Eq (6.25), comparing the powers of z, we get
z0:μ0(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ],z0:ν0(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ], | (6.26) |
z1:μ1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ0∂φ2+∂2μ0∂ϱ2)−H0(φ,ϱ)}]=−2ρe(φ+ϱ)[(1−θ)+θℓ],z1:ν1(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν0∂φ2+∂2ν0∂ϱ2)−I0(φ,ϱ)}]=2ρe(φ+ϱ)[(1−θ)+θℓ]. | (6.27) |
where H0(φ,ϱ)=μ0∂μ0∂φ+ν0∂μ0∂ϱ and I0(φ,ϱ)=μ0∂ν0∂φ+ν0∂ν0∂ϱ.
z2:μ2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ1∂φ2+∂2μ1∂ϱ2)−H1(φ,ϱ)}]=−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!],z2:ν2(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν1∂φ2+∂2ν1∂ϱ2)−I1(φ,ϱ)}]=(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!], | (6.28) |
where H1(φ,ϱ)=(μ0∂μ1∂φ+μ1∂μ0∂φ)+(ν0∂μ1∂ϱ+ν1∂μ0∂ϱ),
and I1(φ,ϱ)=(μ0∂ν1∂φ+μ1∂ν0∂φ)+(ν0∂ν1∂ϱ+ν1∂ν0∂ϱ).
z3:μ3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2μ2∂φ2+∂2μ2∂ϱ2)−H2(φ,ϱ)}]=−(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!],z3:ν3(φ,ϱ,ℓ)=N−1[(1−θ+θ(vs))N{ρ(∂2ν2∂φ2+∂2ν2∂ϱ2)−I2(φ,ϱ)}]=(2ρ)3e(φ+ϱ)[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!], | (6.29) |
where H2(φ,ϱ)=(μ0∂μ2∂φ+μ1∂μ1∂φ+μ2∂μ0∂φ)+(ν0∂μ2∂ϱ+ν1∂μ1∂ϱ+ν2∂μ0∂ϱ),
and I2(φ,ϱ)=(μ0∂ν2∂φ+μ1∂ν1∂φ+μ2∂ν0∂φ)+(ν0∂ν2∂ϱ+ν1∂ν1∂ϱ+ν2∂ν0∂ϱ).
⋮
In a general way,
μ(φ,ϱ,ℓ)=∞∑r=0μr(φ,ϱ,ℓ)=μ0(φ,ϱ,ℓ)+μ1(φ,ϱ,ℓ)+μ2(φ,ϱ,ℓ)+⋯,ν(φ,ϱ,ℓ)=∞∑r=0νr(φ,ϱ,ℓ)=ν0(φ,ϱ,ℓ)+ν1(φ,ϱ,ℓ)+ν2(φ,ϱ,ℓ)+⋯. |
With the addition of all μ and ν,
μ(φ,ϱ,ℓ)=−e(φ+ϱ)+q.[(1−θ)+θℓ]−2ρe(φ+ϱ)[(1−θ)+θℓ]−(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]−(2ρ)3e(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]−... |
ν(φ,ϱ,ℓ)=e(φ+ϱ)−q.[(1−θ)+θℓ]+2ρe(φ+ϱ)[(1−θ)+θℓ]+(2ρ)2e(φ+ϱ)[(1−θ)2+2θ(1−θ)ℓ+θ2ℓ22!]+(2ρ)3e(φ+ϱ)×[(1−θ)3+3θ(1−θ)2ℓ+3θ2(1−θ)ℓ22!+θ3ℓ33!]+... |
The exact solution of Eq (6.22) at θ=1 and q=0 is given by
μ(φ,ϱ,ℓ)=−eφ+ϱ+2ρℓ,ν(φ,ϱ,ℓ)=eφ+ϱ+2ρℓ. | (6.30) |
Effective analytical techniques were used to analyze the solution of the time-fractional multi-dimensional N-S equation. The fractional derivatives are defined in the form of Caputo-Fabrizio, and are examined by the NITM and HPTM, along with NT. To verify that the suggested approaches are accurate and applicable, the graphical interpretation is illustrated for both fractional and integer orders for some examples.
Figures 1 and 2 demonstrate the behavior of the exact and analytical solutions of Example 1 for μ(φ,ϱ,ℓ) and ν(φ,ϱ,ℓ) at θ=1, and demonstrate that the NITM solution figures are identical and in close contact with the exact solution of the example.
The physical attributes of μ(φ,ϱ,ℓ) corresponding to the various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are plotted in Figures 3 and 4.
Similarly, the graphical solutions of ν(φ,ϱ,ℓ) for various fractional-orders θ=0.2,0.4,0.6,0.8 of Example 1 are examined in Figures 5 and 6. It is shown that the NITM solutions are in strong agreement with the exact solutions and show a high rate of convergence.
Figures 7 and 8 represent the analytical and exact solutions of Examples 2 and 4 for μ(φ,ϱ,ℓ) and ν(φ,ϱ,ℓ) at θ=1.
It can be seen that the NITM solution figures are identical and in close contact with the exact solution of the example. Furthermore, in Figures 9 and 10, Examples 2 and 4 are calculated by the NITM method, and the value of \mu(\varphi, \varrho, \ell) is examined corresponding to the various fractional orders \theta = 0.2, \; 0.4, \; 0.6, \; 0.8 by graphical interpretation.
Similarly, the graphical solution of \nu(\varphi, \varrho, \ell) for various fractional orders \theta = 0.2, \; 0.4, \; 0.6, \; 0.8 of Example 2 is analyzed in Figures 11 and 12.
It is observed that the outcome of the NITM method and its graphical interpretation demonstrate the accuracy and applicability of the suggested techniques, and it is noted that the fractional-order solution exhibits the same convergence trends as that of integer-order solutions.
This article presents the successful implementation of NITM and HPTM to evaluate the solution of the time-fractional multi-dimensional N-S equation analytically. The efficacy and accuracy of the proposed methods are examined with the support of four examples, and the outcomes show how effective, precise, and easy the methods are to use. The graphical interpretation of different values of the fractional-order \theta on the solution profile is displayed in Figures 2–6 and in Figures 9–12, which demonstrate some interesting dynamics of the model. The results obtained by these methods are in a series form, and close agreement with those solutions is given by [44,45]. It is noted that there is a high rate of convergence between the series solutions obtained towards the solutions of integer order. Furthermore, the suggested methods are simple to use, and they may be used to solve additional fractional PDEs that arise in applied research.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding their research work through project number ISP-2024.
There is no competing interest among the authors regarding the publication of the article.
[1] | G. W. Leibnitz, Letter from Hanover, Mathematische Schriften, 2 (1695), 301–302. |
[2] | S. G. Samko, Fractional integrals and derivatives: Theory and applications, USA: Gordon and Breach Science Publishers, 1993. |
[3] | K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Newyork: John wiley and Sons, Inc., 1993. |
[4] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 1998. |
[5] | R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: Modelling and control applications, World Scientific Publishing Co. Pte. Ltd., 2010. |
[6] |
J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising. IEEE T. Image Process, 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
![]() |
[7] |
S. N. Rao, M. Khuddush, M. Singh, M. Z. Meetei, Infinite-time blowup and global solutions for a semilinear Klein Gordan equation with logarithmic nonlinearity, Appl. Math. Sci. Eng., 31 (2023), 2270134. https://doi.org/10.1080/27690911.2023.2270134 doi: 10.1080/27690911.2023.2270134
![]() |
[8] |
H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, S. Kwong, A hybrid compression framework for color attributes of static 3D point clouds. IEEE T. Circ. Syst. Vid. Technol., 32 (2022), 1564–1577. https://doi.org/10.1109/TCSVT.2021.3069838 doi: 10.1109/TCSVT.2021.3069838
![]() |
[9] |
T. Guo, H. Yuan, L. Wang, T. Wang, Rate-distortion optimized quantization for geometry-based point cloud compression, J. Electron Imaging, 32 (2023), 013047. https://doi.org/10.1117/1.JEI.32.1.013047 doi: 10.1117/1.JEI.32.1.013047
![]() |
[10] |
J. F. G\acute{o}mez-Aguilar, V. F. Morales-Delgado, M. A. Taneco-Hern\acute{a}ndez, D. Baleanu, R. F. Escobar-Jim\acute{e}nez, M. M. Al Qurashi, Analytical solutions of the electrical RLC circuit via Liouville-Caputo operators with local and non-local Kernels, Entropy, 18 (2016), 402. https://doi.org/10.3390/e18080402 doi: 10.3390/e18080402
![]() |
[11] |
A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: Applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
![]() |
[12] |
A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
![]() |
[13] |
E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Mathematics, 8 (2023), 1713–1736. 1713-1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
![]() |
[14] |
A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
![]() |
[15] |
A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, A. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119–133. https://doi.org/10.1016/j.amc.2014.12.121 doi: 10.1016/j.amc.2014.12.121
![]() |
[16] | H. M. He, J. G. Peng, H. Y. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, U.P.B. Sci. Bull. Ser. A, 84 (2022), 25–36. |
[17] |
Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
![]() |
[18] |
X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An iterative threshold algorithm of log-sum regularization for sparse problem, IEEE T. Circ. Syst. Vid. Technol., 33 (2023), 4728–4740. https://doi.org/10.1109/TCSVT.2023.3247944 doi: 10.1109/TCSVT.2023.3247944
![]() |
[19] |
Q. Wang, Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method, Appl. Math. Comput., 182 (2006), 1048–1055. https://doi.org/10.1016/j.amc.2006.05.004 doi: 10.1016/j.amc.2006.05.004
![]() |
[20] |
M. Kurulay, Solving the fractional nonlinear Klein-Gordon equation by means of the homotopy analysis method, Adv. Differ. Equ., 2012 (2012), 187. https://doi.org/10.1186/1687-1847-2012-187 doi: 10.1186/1687-1847-2012-187
![]() |
[21] |
R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, K. Nonlaopon, An analytical technique, based on natural transform to solve fractional-order parabolic equations, Entropy, 23 (2021), 1086. https://doi.org/10.3390/e23081086 doi: 10.3390/e23081086
![]() |
[22] |
A. A. Arafa, A. M. S. Hagag, Q-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory, Asian-Eur. J. Math., 12 (2019), 1950045. https://doi.org/10.1142/S1793557119500451 doi: 10.1142/S1793557119500451
![]() |
[23] |
J. J. H. He, An elementary introduction to the homotopy perturbation method, Comput. Math. Appl., 57 (2009), 410–412. https://doi.org/10.1016/j.camwa.2008.06.003 doi: 10.1016/j.camwa.2008.06.003
![]() |
[24] |
F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Opt. Control, 6 (2016), 75–83. https://doi.org/10.11121/ijocta.01.2016.00317 doi: 10.11121/ijocta.01.2016.00317
![]() |
[25] |
Z. Odibat, S. Momani, V. S. Erturk, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2008), 467–477. https://doi.org/10.1016/j.amc.2007.07.068 doi: 10.1016/j.amc.2007.07.068
![]() |
[26] |
M. Singh, Approximation of the time-fractional Klein-Gordon equation using the integral and projected differential transform methods, Int. J. Math. Eng. Manag. Sci., 8 (2023), 672–687. https://doi.org/10.33889/IJMEMS.2023.8.4.039 doi: 10.33889/IJMEMS.2023.8.4.039
![]() |
[27] |
N. H. Aljahdaly, R. P. Agarwal, R. Shah, T. Botmart, Analysis of the time fractional-order coupled burgers equations with non-singular kernel operators, Mathematics, 9 (2021), 2326. https://doi.org/10.3390/math9182326 doi: 10.3390/math9182326
![]() |
[28] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation. Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[29] |
L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 66–76. https://doi.org/10.1016/j.amc.2013.11.004 doi: 10.1016/j.amc.2013.11.004
![]() |
[30] |
K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 7979365. https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365
![]() |
[31] |
P. Sunthrayuth, R. Shah, A. M. Zidan, S. Khan, J. Kafle, The analysis of fractional-order Navier-Stokes model arising in the unsteady flow of a viscous fluid via Shehu transform, J. Funct. Spaces, 2021 (2021), 1029196. https://doi.org/10.1155/2021/1029196 doi: 10.1155/2021/1029196
![]() |
[32] |
A. Sohail, K. Maqbool, R. Ellahi, Stability analysis for fractional-order partial differential equations by means of space spectral time Adams Bashforth Moulton method, Numer. Meth. Partial Differ. Equ., 34 (2018), 19–29. https://doi.org/10.1002/num.22171 doi: 10.1002/num.22171
![]() |
[33] |
F. Mirzaee, N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Method. Appl. Sci., 41 (2018), 4465–4479. https://doi.org/10.1002/mma.4907 doi: 10.1002/mma.4907
![]() |
[34] | M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, In: Handbook of mathematical fluid dynamics, 3 (2005), 161–244. https://doi.org/10.1016/S1874-5792(05)80006-0 |
[35] |
G. Adomian, Analytical solution of Navier-Stokes flow of a viscous compressible fluid, Found. Phys. Lett., 8 (1995), 389–400. https://doi.org/10.1007/BF02187819 doi: 10.1007/BF02187819
![]() |
[36] |
M. Krasnoschok, V. Pata, S. V. Siryk, N. Vasylyeva, A subdiffusive Navier-Stokes-Voigt system, Phys. D Nonlinear Phenom., 409 (2020), 132503. https://doi.org/10.1016/j.physd.2020.132503 doi: 10.1016/j.physd.2020.132503
![]() |
[37] |
M. I. Herreros, S. Lig\ddot{u}\acute{e}rzana, Rigid body motion in viscous flows using the finite element method, Phys. Fluids, 32 (2020), 123311. https://doi.org/10.1063/5.0029242 doi: 10.1063/5.0029242
![]() |
[38] |
M. El-Shahed, A. Salem, On the generalized Navier-Stokes equations, Appl. Math. Comput., 156 (2004), 287–293. https://doi.org/10.1016/j.amc.2003.07.022 doi: 10.1016/j.amc.2003.07.022
![]() |
[39] |
Z. Z. Ganji, D. D. Ganji, A. D. Ganji, M. Rostamian, Analytical solution of time-fractional Navier-Stokes equation in polar coordinate by homotopy perturbation method, Numer. Method. Partial Differ. Equ., 26 (2010), 117–124. https://doi.org/10.1002/num.20420 doi: 10.1002/num.20420
![]() |
[40] |
D. Kumar, J. Singh, S. Kumar, A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid, J. Assoc. Arab. Univ. Basic Appl. Sci., 17 (2015), 14–19. https://doi.org/10.1016/j.jaubas.2014.01.001 doi: 10.1016/j.jaubas.2014.01.001
![]() |
[41] |
S. Maitama, Analytical solution of time-fractional Navier-Stokes equation by natural homotopy perturbation method, Prog. Fract. Differ. Appl., 4 (2018), 123–131. https://doi.org/10.18576/pfda/040206 doi: 10.18576/pfda/040206
![]() |
[42] |
G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3 (2014), 21–26. https://doi.org/10.1515/nleng-2012-0004 doi: 10.1515/nleng-2012-0004
![]() |
[43] |
Hajira, H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier-Stokes equations with Caputo operators and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
![]() |
[44] |
Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ., 2021 (2021), 91. https://doi.org/10.1186/s13662-021-03250-x doi: 10.1186/s13662-021-03250-x
![]() |
[45] |
B. K. Singh, P. Kumar, FRDTM for numerical simulatin of multi-dimensional Navier-Stokes equation, Ain Shams Eng. J., 9 (2018), 827–834. https://doi.org/10.1016/j.asej.2016.04.009 doi: 10.1016/j.asej.2016.04.009
![]() |
[46] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of fractional-order Navier-Stokes equations by a novel Approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[47] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, 2006. |
[48] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[49] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[50] | Z. H. Khan, W. A. Khan, N-Transform-properties and applications, NUST J. Eng. Sci., 1 (2008), 127–133. |
[51] | D. Loonker, P. K. Banerji, Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 2 (2013), 1–7. |
[52] |
A. Khalouta, A. Kadem, A new numerical technique for solving fractional Bratu's initial value problems in the Caputo and Caputo-Fabrizio sense, J. Appl. Math. Comput. Mech., 19 (2020), 43–56. https://doi.org/10.17512/jamcm.2020.1.04 doi: 10.17512/jamcm.2020.1.04
![]() |
[53] |
V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
![]() |
[54] |
A. Ghorbani, Beyond Adomian's polynomials: He's polynomials, Chaos Soliton. Fract., 39 (2009), 1486–1492. https://doi.org/10.1016/j.chaos.2007.06.034 doi: 10.1016/j.chaos.2007.06.034
![]() |
1. | Hassan Eltayeb Gadain, Said Mesloub, Application of Triple- and Quadruple-Generalized Laplace Transform to (2+1)- and (3+1)-Dimensional Time-Fractional Navier–Stokes Equation, 2024, 13, 2075-1680, 780, 10.3390/axioms13110780 | |
2. | Manoj Singh, Fractional view analysis of coupled Whitham- Broer-Kaup and Jaulent-Miodek equations, 2024, 15, 20904479, 102830, 10.1016/j.asej.2024.102830 | |
3. | Manoj Singh, Mohammad Tamsir, Yasser Salah El Saman, Sarita Pundhir, Approximation of Two-Dimensional Time-Fractional Navier-Stokes Equations involving Atangana-Baleanu Derivative, 2024, 9, 2455-7749, 646, 10.33889/IJMEMS.2024.9.3.033 | |
4. | Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi, Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques, 2024, 22, 2391-5471, 10.1515/phys-2024-0056 | |
5. | Manoj Singh, Mukesh Pal Singh, Mohammad Tamsir, Mohammad Asif, Analysis of Fractional-Order Nonlinear Dynamical Systems by Using Different Techniques, 2025, 11, 2349-5103, 10.1007/s40819-025-01865-2 |