Research article

Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition

  • Received: 27 December 2023 Revised: 19 February 2024 Accepted: 20 February 2024 Published: 27 February 2024
  • MSC : 26E70, 34K40, 34N05, 37C25

  • This paper explored the existence and uniqueness of a neutral fractional impulsive dynamic equation over time scales that included nonlocal initial conditions and employed the Caputo-nabla derivative (C$ \nabla $D). The establishment of existence and uniqueness relies on the fine fixed point theorem. Furthermore, a comparison was conducted between the fractional order C$ \nabla $D and the Riemann-Liouville nabla derivative (RL$ \nabla $D) over time scales. Theoretical findings were substantiated through a numerical methodology, and an illustrative graph using MATLAB was presented for the provided example.

    Citation: Ahmed Morsy, C. Anusha, Kottakkaran Sooppy Nisar, C. Ravichandran. Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition[J]. AIMS Mathematics, 2024, 9(4): 8292-8310. doi: 10.3934/math.2024403

    Related Papers:

  • This paper explored the existence and uniqueness of a neutral fractional impulsive dynamic equation over time scales that included nonlocal initial conditions and employed the Caputo-nabla derivative (C$ \nabla $D). The establishment of existence and uniqueness relies on the fine fixed point theorem. Furthermore, a comparison was conducted between the fractional order C$ \nabla $D and the Riemann-Liouville nabla derivative (RL$ \nabla $D) over time scales. Theoretical findings were substantiated through a numerical methodology, and an illustrative graph using MATLAB was presented for the provided example.



    加载中


    [1] T. Linitda, K. Karthikeyan, P. R. Sekar, T. Sitthiwirattham, Analysis on controllability results for impulsive neutral Hilfer fractional differential equations with nonlocal conditions, Mathematics, 11 (2023), 1071. https://doi.org/10.3390/math11051071 doi: 10.3390/math11051071
    [2] K. Kaliraj, P. K. L. Priya, C. Ravichandran, An explication of finite-time stability for fractional delay model with neutral impulsive conditions, Qual. Theory Dyn. Syst., 21 (2022), 161. https://doi.org/10.1007/s12346-022-00694-8 doi: 10.1007/s12346-022-00694-8
    [3] B. Gogoi, U. K. Saha, B. Hazarika, Existence of solution of a nonlinear fractional dynamic equation with initial and boundary conditions on time scales, J. Anal., 32 (2023), 85–102. https://doi.org/10.1007/s41478-023-00597-0 doi: 10.1007/s41478-023-00597-0
    [4] K. Jothimani, C. Ravichandran, V. Kumar, M. Djemai, K. S. Nisar, Interpretation of trajectory control and optimization for the nondense fractional system, Int. J. Appl. Comput. Math., 8 (2022), 273. https://doi.org/10.1007/s40819-022-01478-z doi: 10.1007/s40819-022-01478-z
    [5] K. Jothimani, N. Valliammal, S. Alsaeed, K. S. Nisar, C. Ravichandran, Controllability results of Hilfer fractional derivative through integral contractors, Qual. Theory Dyn. Syst., 22 (2023), 137. https://doi.org/10.1007/s12346-023-00833-9 doi: 10.1007/s12346-023-00833-9
    [6] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [7] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U
    [8] K. Munusamy, C. Ravichandran, K. S. Nisar, R. Jagatheeshwari, N. Valliammal, Results on neutral integrodifferential system using Krasnoselskii-Schaefer theorem with initial conditions, AIP Conf. Proc., 2718 (2023), 040001. https://doi.org/10.1063/5.0137023 doi: 10.1063/5.0137023
    [9] P. Veeresha, D. G. Prakasha, C. Ravichandran, L. Akinyemi, K. S. Nisar, Numerical approach to generalized coupled fractional Ramani equations, Int. J. Mod. Phys. B, 36 (2022), 2250047. https://doi.org/10.1142/S0217979222500473 doi: 10.1142/S0217979222500473
    [10] A. Debbouche, J. J. Nieto, Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions, Electron. J. Differ. Equations, 89 (2015), 1–18.
    [11] V. E. Fedorov, A. Debbouche, A class of degenerate fractional evolution systems in banach spaces, Differ. Equations, 49 (2013), 1569–1576. https://doi.org/10.1134/S0012266113120112 doi: 10.1134/S0012266113120112
    [12] R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 doi: 10.1016/S0377-0427(01)00432-0
    [13] K. S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, Alex. Eng. J., 73 (2023), 377–384. https://doi.org/10.1016/j.aej.2023.04.050 doi: 10.1016/j.aej.2023.04.050
    [14] H. Vu, N. D. Phu, N. V. Hoa, A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107202. https://doi.org/10.1016/j.cnsns.2023.107202 doi: 10.1016/j.cnsns.2023.107202
    [15] J. Zuo, J. Yang, Approximation properties of residual neural networks for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107399. https://doi.org/10.1016/j.cnsns.2023.107399 doi: 10.1016/j.cnsns.2023.107399
    [16] A. Khatoon, A. Raheem, A. Afreen, Approximate solutions for neutral stochastic fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 125 (2023), 107414. https://doi.org/10.1016/j.cnsns.2023.107414 doi: 10.1016/j.cnsns.2023.107414
    [17] N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales, J. King Saud Univ. Sci., 28 (2016), 87–92. https://doi.org/10.1016/j.jksus.2015.08.001 doi: 10.1016/j.jksus.2015.08.001
    [18] M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with application, Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [19] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhauser, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [20] K. Zhao, Generalized UH-stability of a nonlinear fractional coupling $(\mathscr{P}_{1}, \mathscr{P}_{2})$-Laplacian system concerned with nonsingular Atangana-Baleanu fractional calculus, J. Inequal. Appl., 96 (2023), 96. https://doi.org/10.1186/s13660-023-03010-3 doi: 10.1186/s13660-023-03010-3
    [21] K. Zhao, Solvability, approximation and stability of periodic boundary value problem for a nonlinear Hadamard fractional differential equation with $\mathcal{P}$-Laplacian, Axioms, 12 (2023), 733. https://doi.org/10.3390/axioms12080733 doi: 10.3390/axioms12080733
    [22] K. Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, Adv. Contin. Discrete Models, 2024 (2024), 5. https://doi.org/10.1186/s13662-024-03801-y doi: 10.1186/s13662-024-03801-y
    [23] K. Zhao, Existence and uh-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z
    [24] V. Kumar, M. Malik, Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales, Nonauton. Dyn. Syst., 6 (2019), 65–80. https://doi.org/10.1515/msds-2019-0005 doi: 10.1515/msds-2019-0005
    [25] V. Kumar, M. Malik, Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales, J. King Saud Univ. Sci., 31 (2019), 1311–1317. https://doi.org/10.1016/j.jksus.2018.10.011 doi: 10.1016/j.jksus.2018.10.011
    [26] G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl., 59 (2010), 3750–3762. https://doi.org/10.1016/j.camwa.2010.03.072 doi: 10.1016/j.camwa.2010.03.072
    [27] J. Zhu, L. Wu, Fractional Cauchy problem with Caputo nabla derivative on time scales, Abstr. Appl. Anal., 2015 (2015), 486054. https://doi.org/10.1155/2015/486054 doi: 10.1155/2015/486054
    [28] J. Zhu, Y. Zhu, Fractional Cauchy problem with Riemann-Liouville fractional delta derivative on time scales, Abstr. Appl. Anal., 2013 (2013), 401596. https://doi.org/10.1155/2013/401596 doi: 10.1155/2013/401596
    [29] R. Knapik, Impulsive differential equations with non local conditions, Morehead Electron. J. Appl. Math., 2 (2003), 1–6.
    [30] K. Shah, B. Abdalla, T. Abdeljawad, R. Gul, Analysis of multipoint impulsive problem of fractional-order differential equations, Bound. Value Probl., 2023 (2023), 1. https://doi.org/10.1186/s13661-022-01688-w doi: 10.1186/s13661-022-01688-w
    [31] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses, Kragujevac J. Math., 47 (2023), 81–93.
    [32] Y. K. Chang, W. T. Li, Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions, Math. Comput. Modell., 43 (2006), 377–384. https://doi.org/10.1016/j.mcm.2005.12.015 doi: 10.1016/j.mcm.2005.12.015
    [33] M. Xia, L. Liu, J. Fang, Y. Zhang, Stability analysis for a class of stochastic differential equations with impulses, Mathematics, 11 (2023), 1541. https://doi.org/10.3390/math11061541 doi: 10.3390/math11061541
    [34] H. M Ahmed, Fractional neutral evolution equations with nonlocal conditions, Adv. Differ. Equations, 2013 (2013), 117. https://doi.org/10.1186/1687-1847-2013-117 doi: 10.1186/1687-1847-2013-117
    [35] H. Boularesy, A. Ardjouniz, Y. Laskri, Existence and uniqueness of solutions to fractional order nonlinear neutral differential equations, Appl. Math. E-Notes, 18 (2018), 25–33.
    [36] H. M. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 28 (2015), 667–680. https://doi.org/10.1007/s10959-013-0520-1 doi: 10.1007/s10959-013-0520-1
    [37] A. Chadha, D. N. Pandey, Existence and approximation of solution to neutral fractional differential equation with nonlocal conditions, Comput. Math. Appl., 69 (2015), 893–908. https://doi.org/10.1016/j.camwa.2015.02.003 doi: 10.1016/j.camwa.2015.02.003
    [38] A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299
    [39] G. Tan, Z. Wang, Reachable set estimation of delayed Markovian jump neural networks based on an improved reciprocally convex inequality, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 2737–2742. https://doi.org/10.1109/TNNLS.2020.3045599 doi: 10.1109/TNNLS.2020.3045599
    [40] G. Tan, Z. Wang, Stability analysis of recurrent neural networks with time-varying delay based on a flexible negative-determination quadratic function method, IEEE Trans. Neural Networks Learn. Syst., 2023. https://doi.org/10.1109/TNNLS.2023.3327318 doi: 10.1109/TNNLS.2023.3327318
    [41] J. Hu, G. Tan, L. Liu, A new result on H$\infty$ state estimation for delayed neural networks based on an extended reciprocally convex inequality, IEEE Trans. Circuits Syst., 2023. https://doi.org/10.1109/TCSII.2023.3323834 doi: 10.1109/TCSII.2023.3323834
    [42] S. Tikare, Nonlocal initial value problems for first order dynamic equations on time scale, Appl. Math. E-Notes, 21 (2021), 410–420.
    [43] B. Gogoi, B. Hazarika, U. K. Saha, Impulsive fractional dynamic equation with nonlocal initial condition on time scales, arXiv, 2022. https://doi.org/10.48550/arXiv.2207.01517
    [44] B. Gogoi, U. K. Saha, B. Hazarika, D. F. M. Torres, H. Ahmad, Nabla fractional derivative and fractional integral on time scales, Axioms, 10 (2021), 317. https://doi.org/10.3390/axioms10040317 doi: 10.3390/axioms10040317
    [45] M. Bragdi, A. Debbouche, D. Baleanu, Existence of solutions for fractional differential inclusions with separated boundary conditions in Banach space, Adv. Math. Phys., 2013 (2013), 426061. https://doi.org/10.1155/2013/426061 doi: 10.1155/2013/426061
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(672) PDF downloads(72) Cited by(5)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog