The outcomes of a nonlinear fractional neutral dynamic equation with initial conditions on time scales are examined in this work using the Riemann-Liouville nabla ($ \nabla $) derivative. The existence, uniqueness, and stability results for the solution are examined by using standard fixed point techniques. For the result illustration, an example is given along with the graph using MATLAB.
Citation: Kottakkaran Sooppy Nisar, C. Anusha, C. Ravichandran. A non-linear fractional neutral dynamic equations: existence and stability results on time scales[J]. AIMS Mathematics, 2024, 9(1): 1911-1925. doi: 10.3934/math.2024094
The outcomes of a nonlinear fractional neutral dynamic equation with initial conditions on time scales are examined in this work using the Riemann-Liouville nabla ($ \nabla $) derivative. The existence, uniqueness, and stability results for the solution are examined by using standard fixed point techniques. For the result illustration, an example is given along with the graph using MATLAB.
[1] | S. Hilger, Analysis on measure chains: a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[2] | P. Veeresha, D. G. Prakasha, C. Ravichandran, L. Akinyemi, K. S. Nisar, Numerical approach to generalized coupled fractional Ramani equations, Int. J. Mod. Phys. B, 36 (2022), 2250047. https://doi.org/10.1142/S0217979222500473 doi: 10.1142/S0217979222500473 |
[3] | E. F. D. Goufo, C. Ravichandran, G. A. Birajdar, Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Model. Anal., 26 (2021), 591–611. https://doi.org/10.3846/mma.2021.13678 doi: 10.3846/mma.2021.13678 |
[4] | K. Jothimani, C. Ravichandran, V. Kumar, M. Djemai, K. S. Nisar, Interpretation of trajectory control and optimization for the nondense fractional system, Int. J. Appl. Comput. Math., 8 (2022), 273. https://doi.org/10.1007/s40819-022-01478-z doi: 10.1007/s40819-022-01478-z |
[5] | C. Huang, B. Liu, C. Qian, J. Cao, Stability on positive pseudo almost periodic solutions of HPDCNNs incorporating $D$ operator, Math. Comput. Simul., 190 (2021), 1150–1163. https://doi.org/10.1016/j.matcom.2021.06.027 doi: 10.1016/j.matcom.2021.06.027 |
[6] | X. Zhao, C. Huang, B. Liu, J. Cao, Stability analysis of delay patch-constructed Nicholson's blowflies system, Math. Comput. Simul., 2023. https://doi.org/10.1016/j.matcom.2023.09.012 doi: 10.1016/j.matcom.2023.09.012 |
[7] | M. Benchora, F. Ouaar, Existence results for nonlinear fractional differential equations with integral boundary conditions, Bull. Math. Anal. Appl., 2 (2010), 7–15. |
[8] | N. Benkhettou, A. Hammoudi, D. F. M. Torres, Existence and uniqueness of solution for a fractional Riemann-Liouville initial value problem on time scales, J. King Saud Univ.-Sci., 28 (2016), 87–92. https://doi.org/10.1016/j.jksus.2015.08.001 doi: 10.1016/j.jksus.2015.08.001 |
[9] | S. K. Paul, L. N. Mishra, V. N. Mishra, D. Baleanu, An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator, AIMS Math., 8 (2023), 17448–17469. https://doi.org/10.3934/math.2023891 doi: 10.3934/math.2023891 |
[10] | A. Hioual, A. Ouannas, G. Grassi, T. E. Oussaeif, Nonlinear nabla variable-order fractional discrete systems: asymptotic stability and application to neural networks, J. Comput. Appl. Math., 423 (2023), 114939. https://doi.org/10.1016/j.cam.2022.114939 doi: 10.1016/j.cam.2022.114939 |
[11] | N. K. Mahdi, A. R. Khudair, Stability of nonlinear $q$-fractional dynamical systems on time scale, Partial Differ. Equ. Appl. Math., 7 (2023), 100496. https://doi.org/10.1016/j.padiff.2023.100496 doi: 10.1016/j.padiff.2023.100496 |
[12] | V. Kumar, M. Malik, Controllability results of fractional integro-differential equation with non-instantaneous impulses on time scales, IMA J. Math. Control Inf., 38 (2021), 211–231. https://doi.org/10.1093/imamci/dnaa008 doi: 10.1093/imamci/dnaa008 |
[13] | Z. Tian, Analysis and research on chaotic dynamics behaviour of wind power time series at different time scales, J. Ambient Intell. Human. Comput., 14 (2023), 897–921. https://doi.org/10.1007/s12652-021-03343-1 doi: 10.1007/s12652-021-03343-1 |
[14] | R. P. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math., 141 (2002), 1–26. https://doi.org/10.1016/S0377-0427(01)00432-0 doi: 10.1016/S0377-0427(01)00432-0 |
[15] | V. Kumar, M. Malik, Existence, stability and controllability results of fractional dynamic system on time scales with application to population dynamics, Int. J. Nonlinear Sci. Numer. Simul., 22 (2020), 741–766. https://doi.org/10.1515/ijnsns-2019-0199 doi: 10.1515/ijnsns-2019-0199 |
[16] | J. Zhu, L. Wu, Fractional Cauchy problem with Caputo nabla derivative on time scales, Abstr. Appl. Anal., 2015 (2015), 486054. https://doi.org/10.1155/2015/486054 doi: 10.1155/2015/486054 |
[17] | Z. Zhu, Y. Zhu, Fractional Cauchy problem with Riemann-Liouville fractional delta derivative on time scales, Abstr. Appl. Anal., 2013 (2013), 401596. https://doi.org/10.1155/2013/401596 doi: 10.1155/2013/401596 |
[18] | H. Boularesy, A. Ardjouniz, Y. Laskri, Existence and uniqueness of solutions to fractional order nonlinear neutral differential equations, Appl. Math., 18 (2018), 25–33. |
[19] | K. Kaliraj, P. K. Lakshmi Priya, C. Ravichandran, An explication of finite-time stability for fractional delay model with neutral impulsive conditions, Qual. Theory Dyn. Syst., 21 (2022), 161. https://doi.org/10.1007/s12346-022-00694-8 doi: 10.1007/s12346-022-00694-8 |
[20] | K. Munusamy, C. Ravichandran, K. S. Nisar, R. Jagatheeshwari, N. Valliammal, Results on neutral integrodifferential system using Krasnoselskii-Schaefer theorem with initial conditions, AIP Conf. Proc., 2718 (2023), 040001. https://doi.org/10.1063/5.0137023 doi: 10.1063/5.0137023 |
[21] | V. Vijayaraj, C. Ravichandran, P. Sawangtong, K. S. Nisar, Existence results of Atangana-Baleanu fractional integro-differential inclusions of Sobolev type, Alex. Eng. J., 66 (2023), 249–255. https://doi.org/10.1016/j.aej.2022.11.037 doi: 10.1016/j.aej.2022.11.037 |
[22] | B. Bendouma, A. B. Cherif, A. Hammoudi, Existence of solutions for nonlocal nabla conformable fractional thermistor problem on time scales, Mem. Differ. Equ. Math. Phys., 88 (2023), 73–87. |
[23] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505. https://doi.org/10.1016/0022-247X(91)90164-U doi: 10.1016/0022-247X(91)90164-U |
[24] | B. Gogoi, B. Hazarika, U. K. Saha, Impulsive fractional dynamic equation with nonlocal initial condition on time scales, arXiv, 2022. https://doi.org/10.48550/arXiv.2207.01517 |
[25] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser Boston, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[26] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[27] | Y. K. Chang, W. T. Li, Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions, Math. Comput. Model., 43 (2006), 377–384. https://doi.org/10.1016/j.mcm.2005.12.015 doi: 10.1016/j.mcm.2005.12.015 |
[28] | B. Gogoi, U. K. Saha, B. Hazarika, Existence of solution of a nonlinear fractional dynamic equation with initial and boundary conditions on time scales, J. Anal., 2023. https://doi.org/10.1007/s41478-023-00597-0 doi: 10.1007/s41478-023-00597-0 |
[29] | B. Gogoi, U. K. Saha, B. Hazarika, D. F. M. Torres, H. Ahmad, Nabla fractional derivative and fractional integral on time scales, Axioms, 10 (2021), 317. https://doi.org/10.3390/axioms10040317 doi: 10.3390/axioms10040317 |
[30] | G. S. Guseinov, Integration on time scale, J. Math. Anal. Appl., 285 (2003), 107–127. https://doi.org/10.1016/S0022-247X(03)00361-5 doi: 10.1016/S0022-247X(03)00361-5 |
[31] | G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Comput. Math. Appl., 59 (2010), 3750–3762. https://doi.org/10.1016/j.camwa.2010.03.072 doi: 10.1016/j.camwa.2010.03.072 |
[32] | M. Feng, X. Zhang, X. Li, W. Ge, Necessary and sufficient conditions for the existence of positive solution for singular boundary value problems on time scales, Adv. Differ. Equ., 2009 (2009), 737461. https://doi.org/10.1155/2009/737461 doi: 10.1155/2009/737461 |
[33] | M. J. S. Sahir, Coordination of classical and dynamic inequalities complying on time scales, Eur. J. Math. Anal., 3 (2023), 12. https://doi.org/10.28924/ada/ma.3.12 doi: 10.28924/ada/ma.3.12 |
[34] | A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2022), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299 |
[35] | V. Kumar, M. Malik, Existence and stability results of nonlinear fractional differential equations with nonlinear integral boundary condition on time scales, Appl. Appl. Math., 15 (2020), 129–145. |
[36] | A. Chadha, D. N. Pandey, Existence and approximation of solution to neutral fractional differential equation with nonlocal conditions, Comput. Math. Appl., 69 (2015), 893–908, https://doi.org/10.1016/j.camwa.2015.02.003 doi: 10.1016/j.camwa.2015.02.003 |
[37] | H. M. Ahmed, Fractional neutral evolution equations with nonlocal conditions, Adv. Differ. Equ., 2013 (2013), 117. https://doi.org/10.1186/1687-1847-2013-117 doi: 10.1186/1687-1847-2013-117 |
[38] | H. M. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 28 (2015), 667–680. https://doi.org/10.1007/s10959-013-0520-1 doi: 10.1007/s10959-013-0520-1 |
[39] | V. Vijayaraj, C. Ravichandran, T. Botmart, K. S Nisar, K. Jothimani, Existence and data dependence results for neutral fractional order integro-differential equations, AIMS Math., 8 (2022), 1055–1071. https://doi.org/10.3934/math.2023052 doi: 10.3934/math.2023052 |