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1. Introduction

Fractional calculus emerges from the conventional concepts of calculus, namely integral and
derivative operators, similarly to how fractional exponents develop from integer exponents [1]. Many
people are aware that integer-order derivatives and integrals have distinct interpretations related to
physical properties and geometric characteristics. On the other hand, when dealing with fractional-
order integration and differentiation, which encompass a swiftly expanding domain in both theory and
practical applications to real-life issues, contradict this notion [2]. It has been used in many scientific
and engineering fields recently, including the study of fluid flow, rheology, diffusive transport, electrical
networks, electromagnetic theory and probability, as well as research on viscoelastic materials [3, 4].
Due to their frequent occurrence in fields including physics, chemistry and engineering, fractional
differential equations (FDEs) have attracted attention from numerous studies. Various techniques have
been devised to address FDEs, including the widely used Laplace transform approach, the iterative
method, the Fourier transform technique, and the operational method [5, 6]. However, most of these
techniques are limited to certain classes of FDEs, especially linear ones with constant coefficients.
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Linear fractional differential equations with variable coefficients based on the Reimann-Liouville
fractional derivative have been solved using the decomposition approach [7–9]. In recent years,
academics have paid a lot of attention to the study of fractional differential equations. This is because
fractional differential equations are used in many different engineering and scientific fields, such as
fluid dynamics, fractal theory, diffusion in porous media, fractional biological neurons, traffic flow,
polymer rheology, neural network modelling, viscoelastic panels in supersonic gas flow, real systems
characterised by power laws, electrodynamics of complex media, sandwich system identification and
the nonlinear oscillation of the earth [10, 11].

A set that does not contain any closed subset that is empty within the set of real numbers is
referred to as time scale [12, 13]. The introduction of time scale is to serve, unite and improve
differential equations theory, as well as various other designated systems of differences. In 1990, Hilger
proposed the implementation of time scales as a means to integrate and expand the theory of differential
equations, discrete equations and other systems of differential equations defined on a closed subset of
the real line that is not empty, and he demonstrated it. Initial value problems involving differentials
are characterized by their exclusive existence and one of a kind nature in time scale equations. The
combination of separate, closed intervals on time scale functions is an exceptional structure to examine
populace dynamics [14–17].

When max{n1, n2, ......, nk} = n, neutral differential equations (NDEs) arise. NDEs, compared to
retarded differential equations in that they depend on derivatives with delays, determine the function’s
past and present values [18]. In high speed computers, elastic networks are modelled by neutral type
differential equations [19]. Specifically, for the purpose of connecting switching circuits. Since neutral
differential equations are found in many branches of practical mathematics, they have received a lot of
attention recently. Many researchers have worked on developing neutral differential systems, noting
various fixed point techniques, mild solutions, and nonlocal circumstances [20, 21].

Conversely, the nonlocal problem for abstract evolution equations has been studied by several
writers. The question of whether an abstract Cauchy differential equation with nonlocal conditions
could have a solution in a Banach space was initially investigated by Byszewski. Since nonlocal
conditions are typically more accurate for physical estimations than the classical beginning condition,
nonlocal conditions in physical science may be connected with better effect in applications than the
classical initial condition [22–24]. Given that dynamic equations provide a cogent framework for
analysing both differential equations and finite difference equations, it can only be considered the
presence of dynamic equations along nonlocal initial conditions [25–27].

In [28], using fixed point techniques, the authors investigated on time scales: the existence of a
solution to a nonlinear fractional dynamic equation along initial and boundary conditions. In our
study, we analyse the existence and stability results of a nonlinear neutral fractional dynamic equation
utilising the time scale.

Dγ[h(α) − g(α, h)] = L(α, h(α),Dγ
h(α)), α ∈ T = [0,T]T, γ ∈ (0, 1), (1.1)

h(α) = Ψ(α), α ∈ [mo, 0]. (1.2)

Here, Dγ denotes the Riemann-Liouville fractional derivative of order 0 < γ < 1 & [0,T] ∈ T.
Ψ : [mo, 0] → R are the continuous functions. The functions g(α, h) and L(α, h) are continuous in h,
and in h and i respectively. α ∈ T = [0,T]T where T is a time scale interval s.t.,

T = α ∈ T : 0 ≤ α ≤ T ,T ∈ R.
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2. Preliminaries

In the real numbers R, a closed subset is called a time scale T. A backward jump operator is a
function ρ = sup{α ∈ T : ρ(α) < α}, for ρ(α) < α, and α ∈ T is called a left scattered point of time
scale T and for α > inf T and ρ(α) = α, then α is called a left dense(ld) point of T.

Left dense(ld) continuous function does not appears in T for any ∇-derivative. Then, define an
operator kappa Tκ of T as: for Tκ =T \ {t}, else Tκ = T is a left scattered minimum say in time scale t.

Definition 2.1 ( [29]). If ∀ left dense points in T , there exists a continuous function, then a function
G : T → R is called an ld-continuous function, and in the right dense point the right sided limit
appears.

An ld continuous space function is the set of every function from T to R and is denoted by C(T ,R).

Remark 2.2. Let a space function C(T ,R) = X from a Banach space with the norm be defined as:

||g|| = sup
α∈T
|g(α)| (2.1)

for α ∈ T .

Definition 2.3 ( [30]). Consider g(α) as a ∇-integrable function to be defined on T . Then,∫ T

0
g(ϕ)∇ϕ =

∫ α

0
g(ϕ)∇ϕ +

∫ T

α

g(ϕ)∇ϕ.

Definition 2.4 (RL ∇-derivative). [31] An ld-continuous function g : Tkm → R. The RL fractional
∇-derivative of order γ(≥ 0) ∈ R is defined as

D
γ
0+g(α) = Dm0+T

m−γ
0+ g(α), α ∈ T .

Remark 2.5. From Definition 2.4 we also getDγ
0+g(α) = T m−γ

0+ Dm0+ , where m = [γ] + 1.

Definition 2.6 ( [24]). Assume D ⊂ C(T ,R) is a set. If D is simultaneously bounded and
equicontinuous, then it is relatively compact.

Definition 2.7 ( [24]). Assume a set B ⊆ A is bounded and G(B) in A is relatively compact. Then, a
mapping G : A → B is completely continuous.

Lemma 2.8 ( [32]). Consider T is a time scale s.t. ϕ1, ϕ2 ∈ T with ϕ1 ≤ ϕ2. For a non-decreasing
continuous function z : R→ R, we have∫ ϕ2

ϕ1

z(s)∇s ≤
∫ ϕ2

ϕ1

z(s)ds.

Lemma 2.9 ( [33]). Assume z : [a, b]T → R is an integrable function. We then have that

∇T ν1
a+
∇T ν2
a+

z = ∇T ν1+ν2
a+

z

holds.
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Lemma 2.10 (Krasnoselskii fixed point theorem). [34] Assume a Banach space S . Consider a closed,
bounded, convex and non-empty subsetW . Also,M,N are operators s.t.,

(a)Mu +Nv ∈ W whenever u, v ∈ W;
(b)M is continuous and compact;
(c) N is a contraction mapping. So, z ∈ W s.t. z =Mz +Nz.

Lemma 2.11 ( [35]). For α ∈ T ,

|Dγ
i(α) − L(α, i(α)ω(α))| ≤ ξ,

where ξ be a positive number, i.e., ξ > 0.

Definition 2.12 ( [35]). Equation (1.1) is known as Ulam-Hyers (UH) stable when ∃ constant
H(EL,Eg,γ)ξ > 0 s.t., for i of Lemma 2.11 and for ξ > 0, there appears a unique solution h of Eq (1.1)

|i(ϕ) − h(ϕ)| ≤ H(EL,Eg,γ)ξ, ϕ ∈ T .

Definition 2.13 ( [35]). Equation (1.1) is known as generalised UH stable when there appears constant
H(EL,Eg,γ)ξ = 0 s.t. for i of Lemma 2.11, there appears a unique solution h of Eq (1.1)

|i(ϕ) − h(ϕ)| ≤ H(EL,Eg,γ)(ξ), ϕ ∈ T .

3. Main results

For the results of Eq (1.1), we need some assumptions to obtain the main results and to provide the
examples of practical systems, for e.g., evolutionary computation.

(A1) For a continuous function g : T × R→R
There appears a constant L > 0 s.t. |g(α, h) − g(α, i)| ≤ L|h − i| for every α ∈ T ,h ∈ R.

(A2) For a continuous function L: T × R→R
(i) There appears a constantML > 0 s.t. |L(α, h)| ≤ ML(1 + |h|) for every α ∈ T ,h ∈ R.
(ii) There appears a constant EL > 0 s.t. |L(α, h)−L(α, i)| ≤ EL|h− i| for every α ∈ T , h ∈ R.

(A3) k1 < 1, where k1 < 1=
T γML

Γ(γ + 1)
.

(A4) For 0 < γ < 1, h ∈ X ∩ L∇(T ,R), and L(α, h(α),Dγh(α))∇α = L(α, h(α))ω(s)∇α for every
α ∈ T , h ∈ R.

(A5) Let there be a set C = {h = X : ||h|| ≤ υ} ⊆ X and an operator Ω : C → C, defined as

Ω(h)α = ψ(0) − g(0, ψ(α)) + g(α, h(α)ω(α)) +
1

Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s.

Theorem 3.1. An ld-continuous function L : T × R × R → R. If a function h ∈ C([mo, 0]), then h(α)
is said to be a solution of the Eq (1.1) if and only if

h(α) = ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α) +
1

Γ(γ)

∫ T

0
(T − s)γ−1L(s, h(s))ω(s)∇s,

for α ∈ [0,T ] and h(α) = ψ(α) for α ∈ [mo, 0].
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Proof. From Eq (1.1),

Dγ[h(α) − g(α, h(α))] = L[α, h(α),Dγ]h(α).

By (A4), putDγh(α) = ω(α). Then,

Dγ[h(α) − g(α, h(α))] = L(α, h(α))ω(α).

The Riemann-Liouville integral equation defines

Dγ
h(α) =

1
Γ(γ)

∫ α

0
(α − s)γ−1

h(s)∇s,

which implies

Dγ
h(α) = ∇Iγh∇(s).

Then, by Lemma 2.9 we have

∇IγDγ
h(α) = ∇I1

h
∇(α) = h(α) − c1, c1 ∈ R.

Hence,

h(α) = ∇IγL(α, h(α))ω(α) + c1

=
1

Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s + c1.

From the initial condition, and the condition that holds,

|g(α, h) − g(α, i)| ≤ L|h − i|, ∀α ∈ T , h ∈ R

which implies,

c1 = ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α).

Substituting the value of c1 in the above equation, we get,

h(α) = ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α)

+
1

Γ(γ)

∫ T

0
(T − s)γ−1L(s, h(s))ω(s)∇s.

Hence the solution. �

Theorem 3.2. Assume (A1)–(A5) holds and

L +
ELTγ

Γ(γ + 1)
< 1. (3.1)

Then Eq (1.1) contains a unique solution.
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Proof. For ς =
k1

1 − k1
, we consider

B = {h ∈ C(T ,R) : ||h||c∇ ≤ ς} ⊆ C(T ,R).

Define Ω : B→ B as

Ω(h)α = ψ(0) − g(0, ψ(α)) + g(α, h(α)ω(α))

+
1

Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s.

Here, Ω: B→ B is well defined. Then, α ∈ T and h ∈ B gives

|Ω(h)(α)| = |ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+

∣∣∣∣∣ 1
Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s

∣∣∣∣∣
≤ L +

ML(1 + ς)
Γ(γ)

∫ α

0
(α − s)γ−1∇s.

By using the Lemma 2.8, we have,

|Ω(h)(α)| ≤ L +
ML(1 + ς)

Γ(γ)

∫ α

0
(α − s)γ−1ds.

≤ L +
ML(1 + ς)T γ

Γ(γ)
.

Hence,

||Ωh||c ≤ ς.

∴ Ω: B → B is well defined. Also, we show that the operator Ω : B → B is contractive and, for
α ∈ T , we have

|(Ωh)(α) − (Ωi)(α)| ≤
[
|ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+

∣∣∣∣∣ 1
Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s

∣∣∣∣∣]
−

[
|ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+

∣∣∣∣∣ 1
Γ(γ)

∫ α

0
(α − s)γ−1L(s, i(s))ω(s)∇s

∣∣∣∣∣].
≤ |ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+
1

Γ(γ)

∫ α

0
(α − s)γ−1

∣∣∣L(s, h(s))ω(s) − L(s, i(s))ω(s)
∣∣∣∇s

≤ L||h − i|| +
ELTγ

Γ(γ + 1)
||h − i||

∫ α

0
(α − s)γ−1∇s.

AIMS Mathematics Volume 9, Issue 1, 1911–1925.



1917

By Lemma 2.8,

|(Ωh)(α) − (Ωi)(α)| ≤ L||h − i|| +
ELTγ

Γ(γ + 1)
||h − i||

∫ α

0
(α − s)γ−1ds.

Hence,

||(Ωh) − (Ωi)||c ≤ EF ||h − i||c

where

EF = L +
EL

Γ(γ + 1)

∫ α

0
(α − s)γ−1ds,

which implies

EF = L +
ELTγ

Γ(γ + 1)
< 1.

∴ Ω has an exact contraction mapping. Applying the Banach contraction theorem, Ω contains a unique
fixed point and is said to be a solution for Eq (1.1). �

Theorem 3.3. Assume (A1) and (A2) hold. Then Eq (1.1) contains at least one solution, with the
assumptions being satisfied when L + EL < 1.

Proof. To prove the result, we take two maps Ω1 and Ω2 such that

Ω1(h)α = ψ(0) − g(0, ψ(α)) + g(α, h(α)ω(α))

+
1

Γ(γ)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s,

Ω2(h)α = ψ(0) − g(0, ψ(α)) + g(α, h(α)ω(α))

+
1

Γ(γ + 1)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s.

Here Ω = Ω1 + Ω2 and the following methods are proved.

Step 1: Ω1 is a contraction mapping since

||(Ω1h)α − (Ω1i)α||c ≤ L +
ELTγ

Γ(γ + 1)
.

Step 2: For each h ∈ B, we know Ω = Ω1 + Ω2 where Ω : B→ B. Then, we have Ω1h + Ω2h ∈ B.

Step 3: Define an operator Ω2 : B→ B as

Ω2(h)α = ψ(0) − g(0, ψ(α)) + g(α, h(α)ω(α))

+
1

Γ(γ + 1)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s,
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|Ω2(h)(α)| = |ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+

∣∣∣∣∣ 1
Γ(γ + 1)

∫ α

0
(α − s)γ−1L(s, h(s))ω(s)∇s

∣∣∣∣∣
≤ L +

ML(1 + ς)
Γ(γ + 1)

∫ α

0
(α − s)γ−1∇s.

By using Lemma 2.8, we have,

|Ω2(h)(α)| ≤ L +
ML(1 + ς)
Γ(γ + 1)

∫ α

0
(α − s)γ−1ds

≤ L +
ML(1 + ς)T γ

Γ(γ + 1)
.

Hence,

||Ω2h||c ≤ ς.

∴ Ω2 :B→ B is well defined.

Step 4: To prove the operator Ω is continuous, consider a sequence hn then hn → hn in C(T ,R) for
any α ∈ T . Then we have

|(Ω2hn)(α) − (Ω2h)(α)| ≤ |ψ(0) − g(0, ψ(α))| + |g(α, h(α)ω(α))|

+
1

Γ(γ)

∫ α

0
(α − s)γ−1

∣∣∣L(s, hn(s))ω(s) − L(s, h(s))ω(s)
∣∣∣∇s.

Since functions L and g are continuous with respect to h, we have ||(Ω2hn) − (Ω2h)||c → 0 as n→ 0.
∴ Ω2 is continuous.

Step 5: Let ϑ1, ϑ2 ∈ T such that ϑ1 < ϑ2. Then we have

|(Ω2h)(ϑ2) − (Ω2h)(ϑ1)| ≤
∣∣∣∣∣ 1
Γ(γ)

∫ ϑ1

0

(
(ϑ2 − s)γ−1 − (ϑ1 − s)γ−1)L(s, h(s))ω(s)∇s

∣∣∣∣∣
+

∣∣∣∣∣ 1
Γ(γ)

∫ ϑ2

ϑ1

(
(ϑ2 − s)γ−1)L(s, h(s))ω(s)∇s

∣∣∣∣∣
≤
ML

Γ(γ)

∫ ϑ1

0

(
(ϑ2 − s)γ−1 − (ϑ1 − s)γ−1)∇s

+
ML

Γ(γ)

∫ ϑ2

ϑ1

(
(ϑ2 − s)γ−1∇s.

As (ϕ − s)γ−1 is continuous, |(Ω2h)(α2) − (Ω2h)(α1)| → 0 when ϑ1 → ϑ2. The proof is same for
α ≤ ϕ < T . Thus, the operator Ω2 is equicontinuous. From the followed steps and by the Arzela-
Ascoli Theorem, we find that Ω2(B) is compact and, from the above steps, we find that Krasnoselskii’s
fixed point theorem holds and Eq (1.1) contains at least one solution in B. �
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Theorem 3.4. Consider (A1)and (A2) and that inequality (2.1) holds. Then Eq (1.1) is UH stable.

Proof. Let h be a unique solution of Eq (1.1) and i be the solution of the inequality

|Dγ
i(α) − L(α, i(α)ω(α))| ≤ ξ, α ∈ T .

Then by (1.1), we have

h(α) = ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α) +
1

Γ(γ)

∫ T

0
(T − s)γ−1L(s, h(s))ω(s)∇s.

Then,

|(i)(α) − (h)(α)| = |i(α) − ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α)

+
1

Γ(γ)

∫ T

0
(T − s)γ−1L(s, h(s))ω(s)∇s|

≤ ξL +
1

Γ(γ)

∫ α

0
(α − s)γ−1

∣∣∣L(s, h(s))ω(s) − L(s, i(s))ω(s)
∣∣∣∇s.

Hence,

||i − h||c ≤ ξL +
Tγ

Γ(γ + 1)
EL||i − h||c,

||i − h||c ≤
ξM

1 − ξF
.

Thus,

||i − h||c ≤ H(EL,γ)ξ,

where

H(EL,γ) =
L

1 − ξF
.

∴ Equation (1.1) is UH stable.
Setting,

H(EL,γ)(ξ) = H(EL,γ)ξ,

H(EL,γ)(0) = 0.

∴ Equation (1.1) is generalised UH stable. �

4. Non-linear fractional neutral dynamic equations with nonlocal condition

The inspiration for the nonlocal condition, which extends beyond the classical condition, stemmed
from physical issues. Byszewski is credited with conducting the groundbreaking research on nonlocal
conditions. Byszewski initially proposed and provided evidence on the result concerning the existence
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and uniqueness of solutions to abstract Cauchy problems with nonlocal initial conditions mentioned
in [23]. Various articles have examined the topic of existence and uniqueness outcomes in various
types of nonlinear differential equations. Neutral differential equations are found in various fields of
applied mathematics and have gained significant prominence in recent times. In [36], the authors
discussed the Existence and approximation of solutions to neutral fractional differential equations with
nonlocal conditions. In [37], the authors discussed fractional neutral evolution equations with nonlocal
conditions. In [38], the authors discussed semilinear neutral fractional stochastic integro-differential
equations with nonlocal conditions. In [39], the authors discussed existence and data dependence
results for neutral fractional order integro-differential equations. Inspired by the above work, we
discuss the results for non-linear fractional neutral dynamic equations with non-local conditions.

h(0) + g(h) = ho (4.1)

where g : T × T→ T which satisfies the below assumption.

(A6) There appears a constant P > 0 s.t., ||g(h) − g(i)|| ≤ P||h − i||, for h, i ∈ ([0,T],R).

Using the nonlocal condition in physics yields a more advantageous outcome compared to the
classical initial condition (h) = ho. For example g(h) is written as,

g(h) =

m∑
n=1

cnh(tn)

where cn(n = 1, 2, ....n) are known constants and 0 < t1 < ..... < tn ≤ T . Compared with the initial
condition, the nonlocal condition can be more useful.

Theorem 4.1. Assume 0 < γ ≤ 1. In Eq (1.1) for h ∈ X ∩ L∇(T ,R) , h is the solution of integral
equation, and applying the nonlocal condition where the assumption (A6) holds,

h(α) = [ψ(α) − g(h)] + ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α)

+
1

Γ(γ)

∫ T

0
(T − s)γ−1(α, ρ(ϕ))L(ϕ, h(ϕ,Dγ)h(ϕ))∇ϕ.

Proof. AssumeDγh(α) = g(α). Then, using Eq (1.1) in the above equation we get,

h(α) = [ψ(α) − g(h)] + ψ(0) − g(0, ψ(α)) + g(α, h(α))ω(α)

+
1

Γ(γ)

∫ T

0
(T − s)γ−1(α, ρ(ϕ))ω(α)∇ϕ.

By using the technique used in Theorem 3.2, one can show that Ω has a fixed point. Then, one
can show that the fractional dynamic equation of (1.1) has a fixed point by employing the technique
applied in Theorems 3.2 and 3.3. The proof is same as Theorems 3.2 and 3.3 and is omitted. �

5. Example

Our theoretical conclusions are shown by the example that follows. We will also present the path of
the suggested numerical strategy in order to find the numerical solution to the nonlinear problem (1.1).
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Example 5.1. Consider a neutral fractional dynamic equation with a time scale along the initial
condition T = [0, 1] ∪ [2, 3] s.t.

Dγ[h(α) − g(α, h)] =
e−7α

17
+

h(α) +Dγh(α)
10(1 + h(α) +Dγh(α))

, (5.1)

h(α) = Ψ(α) (5.2)

where α ∈ [0, 2] ∩ Tk, γ = 1
2 and h(α) is an ld-function which is continuous on T. Then, for ϕ1, ϕ2 ∈ R,

we set

L(α, ϕ1, ϕ2) =
e−7α

17
+

ϕ1 + ϕ2

10(1 + ϕ1 + ϕ2)
,

h(α) = Ψ(α),

which satisfies the condition

|g(α, h) − g(α, i)| ≤ L|h − i|,
|L(α, h) − L(α, i)| ≤ EL|h − i|.

Then,

|g(α, ϕ1) − g(α, ϕ2)| ≤ L|ϕ1 − ϕ2|

and

|L(α, ϕ1) − L(α, ϕ2)| ≤ EL|ϕ1 − ϕ2)|,

which implies

|g(α, ϕ1) − g(α, ϕ2)| ≤
1

10
|ϕ1 − ϕ2|, (5.3)

|L(α, ϕ1) − L(α, ϕ2)| ≤
1

10
|ϕ1 − ϕ2)|. (5.4)

Thus, from (5.3) and (5.4), one can get EL =
1

10
and L =

1
10

. Therefore, Eq (5.1) confirms
assumptions (A1)–(A3). Substituting the given points in Theorem 3.2, we have

L +
ELTγ

Γ(γ + 1)
,

L +
ELTγ

Γ(γ + 1)
≤

1
10

+

1
102

1
2

Γ
(1

2 + 1
) < 1.

∴ Equation (5.1) has a solution which is unique in the time scale interval [0, 2] ∩ Tk.
Figure 1 reveals a good agreement between the numerical solution and exact solution across the

entire interval.
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Figure 1. Graph of the approximate solution of h(α).

6. Conclusions

This work explores nonlinear fractional neutral dynamic equations results that incorporate the
Riemann-Liouville nabla (∇) derivative and includes initial conditions on time scales. Fixed point
theory is applied to investigate results of existence, uniqueness and stability.

In the future we look forward to developing new mathematical and computational methods for
analysing and modelling the dynamic equation, and applying these methods to solve real-world
problems. Some specific areas of interest include chaos theory, nonlinear dynamics, and network
science. Additionally, we look forward on the analysis of dynamic equations in integration of machine
learning and artificial intelligence techniques.
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