Let $ \gamma(G) $ denote the domination number of a graph $ G $. A vertex $ v\in V(G) $ is called a critical vertex of $ G $ if $ \gamma(G-v) = \gamma(G)-1 $. A graph is called vertex-critical if its every vertex is critical. In this paper, we correspondingly introduce two such definitions: (i) A set $ S\subseteq V(G) $ is called a strong critical vertex-set of $ G $ if $ \gamma(G-S) = \gamma(G)-|S| $; (ii) A graph $ G $ is called strong $ l $-vertex-set-critical if $ V(G) $ can be partitioned into $ l $ strong critical vertex-sets of $ G $. Therefrom, we give some properties of strong $ l $-vertex-set-critical graphs by extending the previous results of vertex-critical graphs. As the core work, we study on the existence of this class of graphs and prove that there exists a strong $ l $-vertex-set-critical connected graph if and only if $ l\notin\{2, 3, 5\} $.
Citation: Weisheng Zhao, Ying Li, Ruizhi Lin. The existence of a graph whose vertex set can be partitioned into a fixed number of strong domination-critical vertex-sets[J]. AIMS Mathematics, 2024, 9(1): 1926-1938. doi: 10.3934/math.2024095
Let $ \gamma(G) $ denote the domination number of a graph $ G $. A vertex $ v\in V(G) $ is called a critical vertex of $ G $ if $ \gamma(G-v) = \gamma(G)-1 $. A graph is called vertex-critical if its every vertex is critical. In this paper, we correspondingly introduce two such definitions: (i) A set $ S\subseteq V(G) $ is called a strong critical vertex-set of $ G $ if $ \gamma(G-S) = \gamma(G)-|S| $; (ii) A graph $ G $ is called strong $ l $-vertex-set-critical if $ V(G) $ can be partitioned into $ l $ strong critical vertex-sets of $ G $. Therefrom, we give some properties of strong $ l $-vertex-set-critical graphs by extending the previous results of vertex-critical graphs. As the core work, we study on the existence of this class of graphs and prove that there exists a strong $ l $-vertex-set-critical connected graph if and only if $ l\notin\{2, 3, 5\} $.
[1] | N. Ananchuen, M. Plummer, Matchings in 3-vertex-critical graphs: the even case, Networks, 45 (2005), 210–213. http://dx.doi.org/10.1002/net.20065 doi: 10.1002/net.20065 |
[2] | N. Ananchuen, M. Plummer, Matchings in 3-vertex-critical graphs: the odd case, Discrete Math., 307 (2007), 1651–1658. http://dx.doi.org/10.1016/j.disc.2006.09.015 doi: 10.1016/j.disc.2006.09.015 |
[3] | J. Bondy, U. Murty, Graph theory with applications, London: Macmillan Press, 1976. |
[4] | R. Brigham, P. Chinn, R. Dutton, Vertex domination-critical graphs, Networks, 18 (1988), 173–179. http://dx.doi.org/10.1002/net.3230180304 doi: 10.1002/net.3230180304 |
[5] | R. Brigham, T. Haynes, M. Henning, D. Rall, Bicritical domination, Discrete Math., 305 (2005), 18–32. http://dx.doi.org/10.1016/j.disc.2005.09.013 |
[6] | T. Burton, D. Sumner, Domination dot-critical graphs, Discrete Math., 306 (2006), 11–18. http://dx.doi.org/10.1016/j.disc.2005.06.029 doi: 10.1016/j.disc.2005.06.029 |
[7] | G. Chartrand, P. Zhang, A chessboard problem and irregular domination, Bull. ICA, 98 (2023), 43–59. |
[8] | X. Chen, S. Fujita, M. Furuya, M. Sohn, Constructing connected bicritical graphs with edge-connectivity 2, Discrete Appl. Math., 160 (2012), 488–493. http://dx.doi.org/10.1016/j.dam.2011.03.012 doi: 10.1016/j.dam.2011.03.012 |
[9] | J. Fulman, D. Hanson, G. Macgillivray, Vertex domination-critical graphs, Networks, 25 (1995), 41–43. http://dx.doi.org/10.1002/net.3230250203 doi: 10.1002/net.3230250203 |
[10] | M. Furuya, Construction of $(\gamma, k)$-critical graphs, Australas. J. Comb., 53 (2012), 53–65. |
[11] | M. Furuya, On the diameter of domination bicritical graphs, Australas. J. Comb., 62 (2015), 184–196. |
[12] | P. Grobler, A. Roux, Coalescence and criticality of graphs, Discrete Math., 313 (2013), 1087–1097. http://dx.doi.org/10.1016/j.disc.2013.01.027 doi: 10.1016/j.disc.2013.01.027 |
[13] | B. Hartnell, D. Rall, On dominating the Cartesian product of a graph and $K_2$, Discuss. Math. Graph T., 24 (2004), 389–402. http://dx.doi.org/10.7151/dmgt.1238 doi: 10.7151/dmgt.1238 |
[14] | T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, New York: Marcel Dekker, 1998. http://dx.doi.org/10.1201/9781482246582 |
[15] | T. Haynes, S. Hedetniemi, P. Slater, Domination in graphs: advanced topics, New York: Marcel Dekker, 1998. http://dx.doi.org/10.1201/9781315141428 |
[16] | A. Kazemi, Every $K_{1, 7}$ and $K_{1, 3}$-free, 3-vertex-critical graph of even order has a perfect matching, J. Discret. Math. Sci. C., 13 (2010), 583–591. http://dx.doi.org/10.1080/09720529.2010.10698316 doi: 10.1080/09720529.2010.10698316 |
[17] | M. Krzywkowski, D. Mojdeh, Bicritical domination and double coalescence of graphs, Georgian Math. J., 23 (2016), 399–404. http://dx.doi.org/10.1515/gmj-2016-0019 doi: 10.1515/gmj-2016-0019 |
[18] | C. Mays, P. Zhang, Irregular domination graphs, Contrib. Math., 6 (2022), 5–14. http://dx.doi.org/10.47443/cm.2022.033 |
[19] | D. Mojdeh, P. Firoozi, Characteristics of $(\gamma, 3)$-critical graphs, Appl. Anal. Discr. Math., 4 (2010), 197–206. http://dx.doi.org/10.2298/AADM100206013M doi: 10.2298/AADM100206013M |
[20] | D. Mojdeh, P. Firoozi, R. Hasni, On connected $(\gamma, k)$-critical graphs, Australas. J. Comb., 46 (2010), 25–35. |
[21] | J. Phillips, T. Haynes, P. Slater, A generalization of domination critical graphs, Utilitas Mathematica, 58 (2000), 129–144. |
[22] | T. Wang, Q. Yu, Factor-critical property in $3$-dominating-critical graphs, Discrete Math., 309 (2009), 1079–1083. http://dx.doi.org/10.1016/j.disc.2007.11.062 doi: 10.1016/j.disc.2007.11.062 |
[23] | T. Wang, Q. Yu, A conjecture on $k$-factor-critical and $3$-$\gamma$-critical graphs, Sci. China Math., 53 (2010), 1385–1391. http://dx.doi.org/10.1007/s11425-009-0192-6 doi: 10.1007/s11425-009-0192-6 |
[24] | Y. Wang, F. Wang, W. Zhao, Construction for trees without domination critical vertices, AIMS Mathematics, 6 (2021), 10696–10706. http://dx.doi.org/10.3934/math.2021621 doi: 10.3934/math.2021621 |
[25] | W. Zhao, R. Lin, J. Cai, On construction for trees making the equality hold in Vizing's conjecture, J. Graph Theor., 101 (2022), 397–427. http://dx.doi.org/10.1002/jgt.22833 doi: 10.1002/jgt.22833 |