Research article

Nonlinear dynamic in a remanufacturing duopoly game: spectral entropy analysis and chaos control

  • Received: 29 December 2023 Revised: 07 February 2024 Accepted: 18 February 2024 Published: 23 February 2024
  • MSC : 39A23, 39A28, 39A30, 39A33, 39A60

  • In this study, our focus is on stabilizing a competitive game involving an original equipment manufacturer (OEM) and a third-party remanufacturer (TPR). To assess the presence of chaos within the dynamics of this game, we employ various analytical tools, including spectral entropy (SE), bifurcation diagrams, and Lyapunov exponents. The unpredictable nature of chaotic dynamics significantly influences the market and has negative implications for the strategic decisions of both firms. Our approach to counteracting this chaotic behaviour and stabilizing the system revolves around the implementation of the Ott, Grebogi, and Yorke (OGY) method. Crucially, our analysis highlights that the marginal costs ($ c_n $ and $ c_r $) incurred by the OEM and TPR emerge as pivotal factors in achieving stabilization within the game. To provide a tangible demonstration of the effectiveness of our proposed stabilization strategy in the context of this competitive environment, we conducted numerical simulations.

    Citation: Rami Amira, Mohammed Salah Abdelouahab, Nouressadat Touafek, Mouataz Billah Mesmouli, Hasan Nihal Zaidi, Taher S. Hassan. Nonlinear dynamic in a remanufacturing duopoly game: spectral entropy analysis and chaos control[J]. AIMS Mathematics, 2024, 9(3): 7711-7727. doi: 10.3934/math.2024374

    Related Papers:

  • In this study, our focus is on stabilizing a competitive game involving an original equipment manufacturer (OEM) and a third-party remanufacturer (TPR). To assess the presence of chaos within the dynamics of this game, we employ various analytical tools, including spectral entropy (SE), bifurcation diagrams, and Lyapunov exponents. The unpredictable nature of chaotic dynamics significantly influences the market and has negative implications for the strategic decisions of both firms. Our approach to counteracting this chaotic behaviour and stabilizing the system revolves around the implementation of the Ott, Grebogi, and Yorke (OGY) method. Crucially, our analysis highlights that the marginal costs ($ c_n $ and $ c_r $) incurred by the OEM and TPR emerge as pivotal factors in achieving stabilization within the game. To provide a tangible demonstration of the effectiveness of our proposed stabilization strategy in the context of this competitive environment, we conducted numerical simulations.



    加载中


    [1] H. Garmani, D. A. Omar, M. E. Amrani, M. Baslam, M. Jourhmane, Analysis of a dynamics duopoly game with two content providers, Chaos Soliton. Fract., 131 (2020), 109466. https://doi.org/10.1016/j.chaos.2019.109466 doi: 10.1016/j.chaos.2019.109466
    [2] D. Rand, Exotic phenomena in games and duopoly models, J. Math. Econ., 5 (1978), 173–184. https://doi.org/10.1016/0304-4068(78)90022-8 doi: 10.1016/0304-4068(78)90022-8
    [3] S. Mitra, S. Webster, Competition in remanufacturing and the effects of government subsidies, Int. J. Prod. Econ., 111 (2008), 287–298. https://doi.org/10.1016/j.ijpe.2007.02.042 doi: 10.1016/j.ijpe.2007.02.042
    [4] L. Xu, C. X. Wang, Sustainable manufacturing in a closed-loop supply chain considering emission reduction and remanufacturing, Resour. Conserv. Recy., 131 (2018), 297–304. https://doi.org/10.1016/j.resconrec.2017.10.012 doi: 10.1016/j.resconrec.2017.10.012
    [5] J. Ginsburg, Manufacturing: once is not enough, more companies are finding profits in remanufacturing, Businessweek, 2001.
    [6] Refurbished and used mobile phones market by type, price range, application: global opportunity analysis and industry forecast, 2023–2029. Available from: https://www.maximizemarketresearch.com/market-report/refurbished-and-used-mobile-phones-market/201320/.
    [7] Global automotive parts remanufacturing market–Forecast and analysis (2023–2029): by component, by vehicle type, by type, and by region. Available from: https://www.maximizemarketresearch.com/market-report/global-automotive-parts-remanufacturing-market/77176/.
    [8] F. J. Weiland, Remanufacturing automotive mechatronics and electronics, 2006. Available from: https://www.apraeurope.org.
    [9] R. Geyer, L. N. van Wassenhove, A. Atalay, The economics of remanufacturing under limited component durability and finite product life cycles, Manage. Sci., 53 (2007), 88–100. https://doi.org/10.1287/mnsc.1060.0600 doi: 10.1287/mnsc.1060.0600
    [10] V. Guide, R. Teunter, L. N. van Wassenhove, Matching demand and supply to maximize profits from remanufacturing, Manuf. Serv. Oper. Manage., 5 (2003), 303–316. https://doi.org/10.1287/msom.5.4.303.24883 doi: 10.1287/msom.5.4.303.24883
    [11] J. Vorasayan, M. Ryans, Optimal price and quantity of refurbished products, Prod. Oper. Manage., 15 (2006), 369–383. https://doi.org/10.1111/j.1937-5956.2006.tb00251.x doi: 10.1111/j.1937-5956.2006.tb00251.x
    [12] L. Shi, Z. Sheng, F. Xu, Complexity analysis of remanufacturing duopoly game with different competition strategies and heterogeneous players, Nonlinear Dyn., 82 (2015), 1081–1092. https://doi.org/10.1007/s11071-015-2218-7 doi: 10.1007/s11071-015-2218-7
    [13] G. I. Bischi, C. Chiarella, M. Kopel, F. Szidarovsky, Nonlinear oligopolies: stability and bifurcations, Springer, 2009. https://doi.org/10.1007/978-3-642-02106-0
    [14] M. S. Abdelouahab, N. Hamri, J. Wang, Chaos control of a fractional-order financial system, Math. Problems Eng., 2010 (2010), 270646. https://doi.org/10.1155/2010/270646 doi: 10.1155/2010/270646
    [15] M. Lampart, A. Lampartová, G. Orlando, On extensive dynamics of a Cournot heterogeneous model with optimal response, Chaos, 32 (2022), 023124. https://doi.org/10.1063/5.0082439 doi: 10.1063/5.0082439
    [16] B. Skyrms, Chaos in game dynamics, J. Logic, Lang. Inf., 1 (1992), 111–130. https://doi.org/10.1007/BF00171693
    [17] T. Chotibut, F. Falniowski, M. Misiurewicz, G. Piliouras, Family of chaotic maps from game theory, Dyn. Syst., 36 (2021), 48–63. https://doi.org/10.1080/14689367.2020.1795624 doi: 10.1080/14689367.2020.1795624
    [18] H. N. Agiza, A. A. Elsadany, Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl. Math. Comput., 149 (2004), 843–860. https://doi.org/10.1016/S0096-3003(03)00190-5 doi: 10.1016/S0096-3003(03)00190-5
    [19] N. Angelini, R. Dieci, F. Nardini, Bifurcation analysis of a dynamic duopoly model with heterogeneous costs and behavioural rules, Math. Comput. Simul., 79 (2009), 3179–3196. https://doi.org/10.1016/j.matcom.2009.04.001 doi: 10.1016/j.matcom.2009.04.001
    [20] H. N. Agiza, A. S. Hegazi, A. A. Elsadany, Complex dynamics and synchronization of a duopoly game with bounded rationality, Math. Comput. Simul., 58 (2002), 133–146. https://doi.org/10.1016/S0378-4754(01)00347-0 doi: 10.1016/S0378-4754(01)00347-0
    [21] Y. Li, L. Wang, Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation, Chaos Soliton. Fract., 120 (2019), 116–126. https://doi.org/10.1016/j.chaos.2018.11.038 doi: 10.1016/j.chaos.2018.11.038
    [22] G. Witvoet, Control of chaotic dynamical systems using OGY, Technische Universiteit Eindhoven, 2005.
    [23] E. M. Elabbasy, H. N. Agiza, A. A. Elsadany, Analysis of nonlinear triopoly game with heterogeneous players, Comput. Math. Appl., 57 (2009), 488–499. https://doi.org/10.1016/j.camwa.2008.09.046 doi: 10.1016/j.camwa.2008.09.046
    [24] J. Ding, Q. Mei, H. Yao, Dynamics and adaptive control of a duopoly advertising model based on heterogeneous expectations, Nonlinear Dyn., 67 (2012), 129–138. https://doi.org/10.1007/s11071-011-9964-y doi: 10.1007/s11071-011-9964-y
    [25] H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos Soliton. Fract., 10 (1999), 1909–1916. https://doi.org/10.1016/S0960-0779(98)00210-0 doi: 10.1016/S0960-0779(98)00210-0
    [26] W. Wu, Z. Chen, W. H. Ip, Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model, Nonlinear Anal., 11 (2010), 4363–4377. https://doi.org/10.1016/j.nonrwa.2010.05.022 doi: 10.1016/j.nonrwa.2010.05.022
    [27] R. Hu, Q. Chen, Chaotic dynamics and chaos control of cournot model with heterogenous players, In: L. Jiang, Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 19-20, 2011, Advances in Intelligent and Soft Computing, 110 (2011), 549–557. https://doi.org/10.1007/978-3-642-25185-6_70
    [28] A. A. Elsadany, A dynamic Cournot duopoly model with different strategies, J. Egypt. Math. Soc., 23 (2015), 56–61. https://doi.org/10.1016/j.joems.2014.01.006 doi: 10.1016/j.joems.2014.01.006
    [29] M. Lampart, A. Lampartová, Chaos control and anti-control of the heterogeneous Cournot oligopoly model, Mathematics, 8 (2020), 1670. https://doi.org/10.3390/math8101670 doi: 10.3390/math8101670
    [30] H. Meskine, M. S. Abdelouahab, R. Lozi, Nonlinear dynamic and chaos in a remanufacturing duopoly game with heterogeneous players and nonlinear inverse demand functions, J. Differ. Equations Appl., 29 (2023), 1503–1515. https://doi.org/10.1080/10236198.2023.2228421 doi: 10.1080/10236198.2023.2228421
    [31] K. Sun, S. He, H. Yi, L. Yin, Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm, Acta Phys. Sin., 62 (2013), 010501. https://doi.org/10.7498/aps.62.010501 doi: 10.7498/aps.62.010501
    [32] A. Wolf, B. J. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D, 16 (1985), 285–317. https://doi.org/10.1016/0167-2789(85)90011-9 doi: 10.1016/0167-2789(85)90011-9
    [33] G. A. Gottwald, I. Melbourne, The 0-1 test for chaos: a review, In: C. Skokos, G. Gottwald, J. Laskar, Chaos detection and predictability, Lecture Notes in Physics, Springer, 915 (2016), 221–247. https://doi.org/10.1007/978-3-662-48410-4_7
    [34] S. M. Pincus, D. L. Keefe, Quantification of hormone pulsatility via an approximate entropy algorithm, Amer. J. Physiol.-Endoc. M., 262 (1992), E741–E754. https://doi.org/10.1152/ajpendo.1992.262.5.E741 doi: 10.1152/ajpendo.1992.262.5.E741
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(740) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog