Research article

General equilibrium of Bertrand game: A spatial computational approach

  • Received: 16 February 2021 Accepted: 30 June 2021 Published: 07 July 2021
  • MSC : 91B50, 37N05

  • In this paper, the competitive equilibrium of the Bertrand game is discussed with bounded rationality and the utility function. When the parameters changing and the number of firms increasing, the competitive equilibrium valve of Bertrand duopoly game is gradually being blurred. When the number of competitors is more than four, it is very difficult to derive the value of the equilibrium points. How to find the general competitive equilibrium points for Bertrand game, which is studied from spatial agglomeration with mean value theorem. A Bertrand duopoly game is proposed based on a demand function. Celestial bodies motion as method is introduced to handle the number and stability of competitive equilibrium points, and the stable points is symmetry. The results are supported by numerical computation and simulations.

    Citation: Bingyuan Gao, Yaxin Zheng, Jieyu Huang. General equilibrium of Bertrand game: A spatial computational approach[J]. AIMS Mathematics, 2021, 6(9): 10025-10036. doi: 10.3934/math.2021582

    Related Papers:

  • In this paper, the competitive equilibrium of the Bertrand game is discussed with bounded rationality and the utility function. When the parameters changing and the number of firms increasing, the competitive equilibrium valve of Bertrand duopoly game is gradually being blurred. When the number of competitors is more than four, it is very difficult to derive the value of the equilibrium points. How to find the general competitive equilibrium points for Bertrand game, which is studied from spatial agglomeration with mean value theorem. A Bertrand duopoly game is proposed based on a demand function. Celestial bodies motion as method is introduced to handle the number and stability of competitive equilibrium points, and the stable points is symmetry. The results are supported by numerical computation and simulations.



    加载中


    [1] J. Bertrand, Th$\acute{e}$orie math$\acute{e}$matique de la richesse sociale, Journal des Savants., 67 (1883), 499-508.
    [2] A. Cournot, Recherches sur les Principes Math$\acute{e}$matique de la Th$\acute{e}$orie des Richesses. Hachette, Paris, 1838. English translation by N.T. Bacon, published in Economic Classics, Macmillan, 1897.
    [3] KG. Dastidar, On the existence of pure strategy Bertrand equilibrium, Econ. THeor., 5 (1995), 19-32. doi: 10.1007/BF01213642
    [4] KG. Dastidar, Bertrand equilibrium with subadditive costs, Econ. Lett., 112 (2011), 202-204. doi: 10.1016/j.econlet.2011.04.014
    [5] SH. Hoernig, Mixed Bertrand equilibria under decreasing returns to scale an embarrassment of riches, Econ. Lett., 74 (2002), 359-362. doi: 10.1016/S0165-1765(01)00564-X
    [6] Y. Sekiguchi, K. Sakahara, T. Sato, Existence of equilibria in quantum Bertrand-Edgeworth duopoly game, Quantum. Inf. Process., 11 (2010), 1371-1379.
    [7] A. Ogawa, K. Kato, Price competition in a mixed duopoly, Econ. B., 12 (2006), 1-5.
    [8] J. Zhang, Q. Da, Y. Wang, The dynamics of bertrand model with bounded rationality, Chaos Soliton. Fract., 39 (2009), 2048-2055. doi: 10.1016/j.chaos.2007.06.056
    [9] J. Bertrand, Complex dynamics of Bertrand duopoly games with bounded rationality, World. Acad. Sci., Eng. Technol., 79 (2013), 106-110.
    [10] E. Ahmed, A. A. Elsadany, T. Puu, On Bertrand duopoly game with differentiated goods, Appl. Math. Comput., 251 (2015), 169-179.
    [11] J. Ma, W. Di, H. Ren, Complexity dynamic character analysis of retailers based on the share of stochastic demand and service, Complexity, 2017 (2017), 1-12.
    [12] D. Hirata, Asymmetric bertrand-edgeworth oligopoly and mergers, B E J. Theor. Econ., 9 (2008), 1-25.
    [13] T. M. Rofin, B. Mahanty, Impact of price adjustment speed on the stability of bertrand-nash equilibrium and profit of the retailers, Kybernetes, 47 (2018), 1494-1523. doi: 10.1108/K-08-2017-0301
    [14] A. A. Elsadany, H. N. Agiza, E. M. Elabbasy, Complex dynamics and chaos control of heterogeneous quadropoly game, Appl. Math. Comput., 219 (2013), 11110-11118.
    [15] AB. Ania, Evolutionary stability and Nash equilibrium in finite populations, with an application to price competition, J. Econ. Behav. Organ., 65 (2008), 472-488. doi: 10.1016/j.jebo.2005.12.002
    [16] K. Abbink, J. Brandts, 24. Pricing in Bertrand competition with increasing marginal costs, Game. Econ. Behav., 63 (2008), 1-31. doi: 10.1016/j.geb.2007.09.007
    [17] C. Al$\acute{o}$s-Ferrer, A. B. Ania, K. R. Schenk-Hoppe, An evolutionary model of bertrand oligopoly, Game. Econ. Behav., 33 (2000), 1-19. doi: 10.1006/game.1999.0765
    [18] D. Hirata, T. Matsumura, On the uniqueness of Bertrand equilibrium, Oper. Res. Lett., 38 (2010), 533-535. doi: 10.1016/j.orl.2010.08.010
    [19] Y. Yu, W. Yu, The stability and duality of dynamic cournot and bertrand duopoly model with comprehensive preference, Appl. Math. Comput., 395 (2021), 125852.
    [20] Z. Sun, J. Ma, Complexity of triopoly price game in chinese cold rolled steel market, Nonlinear Dynam., 67 (2012), 2001-2008. doi: 10.1007/s11071-011-0124-1
    [21] H. Kebriaei, A. Rahimi-Kian, On the stability of quadratic dynamics in discrete time n-player cournot games, Automatica, 48 (2012), 1182-1189. doi: 10.1016/j.automatica.2012.03.021
    [22] M. Ezro, Equilibrium points of rational n-person games, J. Math. Anal. Appl., 54 (1976), 1-4. doi: 10.1016/0022-247X(76)90230-4
    [23] A. Barthel, E. Hoffmann, On the existence and stability of equilibria in N-firm Cournot-Bertrand oligopolies, Theory. Decis., 88 (2020), 471-491. doi: 10.1007/s11238-019-09739-y
    [24] J. Li, G. Kendall, On nash equilibrium and evolutionarily stable states that are not characterised by the folk theorem, Plos One, 10 (2015), e0136032. doi: 10.1371/journal.pone.0136032
    [25] JH. Hamilton, J-F. Thisse, A. Weskamp, Spatial discrimination: Bertrand vs. Cournot in a model of location choice, Reg. Sci. Urban. Econ., 19 (1989), 87-102. doi: 10.1016/0166-0462(89)90035-5
    [26] SM. Anderson, DJ. Neven, Cournot competition yields spatial agglomeration, Int. Econ. Rev., 32 (1991), 793-808. doi: 10.2307/2527034
    [27] H. Hotelling, Stability in competition, Econ. J., 39 (1929), 41-57. doi: 10.2307/2224214
    [28] D. Pal, does Cournot competition yield spatial agglomeration? Econ. Lett., 60 (1998), 49–53.
    [29] T. Mayer, Spatial Cournot competition and heterogeneous production costs across locations, Reg. Sci. Urban. Econ., 30 (2000), 325-352. doi: 10.1016/S0166-0462(99)00043-5
    [30] C. D'Aspremont, G. F. Thisse, On hotelling's "stability in competition", Econometrica: Journal of the Econometric Society, 47 (1979), 1145-1150. doi: 10.2307/1911955
    [31] A. Takanori, Competition between cities and their spatial structure, Discussion Paperss., 2015 (2015).
    [32] N. Matsushima, Cournot competition and spatial agglomeration revisited, Econ. Lett., 73 (2001), 175-177. doi: 10.1016/S0165-1765(01)00481-5
    [33] B. Gupta, D. Pal, J. Sarkar, Spatial Cournot competition and agglomeration in a model of location choice, Reg. Sci. Urban Econ., 27 (1997), 261-282. doi: 10.1016/S0166-0462(97)00002-1
    [34] J. Sarkar, B. Gupta, D. Pal, Location equilibrium for Cournot oligopoly in spatially separated markets, J. Reg. Sci., 37 (1997), 195-212. doi: 10.1111/0022-4146.00051
    [35] A. Takanori, Demand creation and location: a variable consumer-distribution approach in spatial competition, Ann. Reg. Sci., 51 (2013), 775-792. doi: 10.1007/s00168-013-0562-4
    [36] C. Benassi, Dispersion equilibria in spatial Cournot competition, Ann. Reg. Sci., 52 (2014), 611-625. doi: 10.1007/s00168-014-0603-7
    [37] B. Gao, Y. Du, Exploring general equilibrium points for cournot model, Discrete Dyn. Nat. Soc., 67 (2018), 1-7.
    [38] RD. THeocharis, On the stability of the Cournot solution on the oligopoly problem, Rev. Econ. Stud., 27 (1960), 133-134. doi: 10.2307/2296135
    [39] P. M. Picard, T. Tabuchi, Self-organized agglomerations and transport costs, Econ. Theory, 42 (2010), 565-589. doi: 10.1007/s00199-008-0410-4
    [40] C. M. Yu, Price and quantity competition yield the same location equilibria in a circular market, Pap. Reg. Sci., 86 (2007), 643-655. doi: 10.1111/j.1435-5957.2007.00141.x
    [41] C. M. Yu, F. C. Lai, Cournot competition in spatial markets: some further results, Pap. Reg. Sci., 82 (2003), 569-580. doi: 10.1007/s10110-003-0154-2
    [42] O. C. Pitchik, Equilibrium in hotelling's model of spatial competition, Econometrica, 55 (1987), 911-922. doi: 10.2307/1911035
    [43] L. Zhao, Dynamic analysis and chaos control of bertrand triopoly based on differentiated products and heterogeneous expectations, Discrete Dyn. Nat. Soc., 2020 (2020).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2651) PDF downloads(100) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog