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1. Introduction

In the realms of economics and game theory, the term “duopoly game” is used to describe a
scenario in which only two dominant companies or competitors are active within a particular market
or industry [1]. These two companies, with their substantial market share, have a significant impact
on market dynamics. In a duopoly game, each firm’s conduct is highly dependent on the other, since
its strategic choices like pricing, output levels, and marketing tactics directly affect each other’s results
and market positions [2].

With the worsening environmental pollution and the advancement of the circular economy
concept, remanufacturing has emerged as a compelling subject in both business and academia.
Remanufacturing used products can decrease the government’s spending on environmental pollution
treatment, enhance resource utilization by businesses and society, and simultaneously achieve mutually
beneficial economic, environmental, and social outcomes [3, 4]. In the electronics manufacturing
sector, renowned international companies such as Apple, HP, and Fuji Xerox have integrated
remanufacturing into their overall business strategy to achieve the development of both the economy
and environment. Xerox, for instance, succeeded in conserving $200 million in raw material costs
through remanufacturing over five years [5]. The Global Refurbished and Used Mobile Phones Market
reached an estimated value of about USD $57.45 billion in 2022 [6], and the global Automotive Parts
Remanufacturing Market reached an estimated value of about USD $66.30 billion in the same year
2022 [7].

Manufacturers frequently face the decision of whether or not to remanufacture their end-of-life
products, and they often avoid remanufacturing due to concerns that remanufactured products may
adversely affect sales of higher-margin new products. For example, in 2005, third-party remanufacturer
(TPR) represented 54% of the aftermarket for automotive parts in Europe and 66% worldwide [8].
Manufacturers face this dilemma when assessing the benefits of remanufacturing against the potential
negative effects on new products. The decision-making process involves a range of considerations,
encompassing economic, environmental, and social factors. However, this approach could have
negative consequences for manufacturers in industries where their end-of-life products are attractive
to third-party remanufacturers. These third-party remanufacturers may significantly undercut the sales
of the original manufacturer. This dilemma highlights the complex dynamics of the remanufacturing
industry and the potential impact on the sales and market position of the original manufacturer. The
attractiveness of end-of-life products to third-party remanufacturers introduces a competitive challenge
that manufacturers must carefully consider when deciding whether to pursue remanufacturing.

Recent research literature has shown considerable interest in exploring remanufacturing problems.
Geyer [9] examined the remanufacturing strategies of various manufacturers, including BMW,
Kodak, and Xerox, and showed that they achieved significant profitability by realizing cost savings
through remanufacturing practices. Guide [10] investigated the competitive dynamics between
remanufacturing and manufacturing by developing a novel optimal pricing model. Vorasayan [11]
employed mathematical programs to establish the best recycling price and quantity. In [12], the authors
developed a two-period model that involves competition between the original equipment manufacturer
(OEM) and an independent operator capable of producing remanufactured products in the second
period.

Financial dynamical systems have the potential to exhibit chaotic behavior, where even minor
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alterations can lead to significantly amplified and unpredictable consequences, contributing to
fluctuations and instabilities within the game [13–15].

The complex interaction among investors, geopolitical factors, and economic policies can
potentially thrust the market into chaos, resulting in unforeseen fluctuations in asset values, extreme
volatility in prices, or sudden market collapses [16–21]. Consequently, accurately forecasting long-
term trends becomes notably challenging. Hence, such chaotic behavior is deemed unsuitable for
economic and financial systems, proving to be harmful. Thus, the manufacturer and the third-party
both desire market stability, as it enables them to make decisions more easily and consistently pursue
maximum profits. However, the closed-loop supply chain market is intricate; altering decision variables
can shift the market from stability to chaos. Therefore, the manufacturer must collaborate with the
third-party and implement measures to mitigate or prevent chaos, promoting market development and
stability.

Numerous researchers and scholars have invested significant effort in devising effective methods
to manage or eradicate such undesirable behavior [22–25]. While many of them are devoted to
investigating chaos control in duopoly games [26–29], there is a scarcity of literature specifically
addressing chaos control in remanufacturing duopoly games. Furthermore, the Ott, Grebogi, and
Yorke (OGY) control method has not been explored in such remanufacturing models to the best of
our knowledge.

This study focuses on the dynamic exploration and chaos control in a remanufacturing duopoly
game [12, 30]. Within the market, we examine two firms: an OEM that exclusively produces new
products, and a TPR that exclusively produces distinct products. The OEM and the TPR engage in
repeated output competition, with access to only partial market information. It is understood that
customers’ willingness to pay for original and remanufactured products differs due to the need to
distinguish between new products sold by the OEM and remanufactured products sold by the TPR.
The OEM manufactures and sells new products in period “t” with a marginal cost of cn, while the TPR
remanufactures these products in period “t + 1” with a marginal cost of cr, satisfying the condition
cn > cr. The symbol δ represents a consumer’s willingness to pay for a remanufactured product, which
is a fraction of their willingness to pay for the new products. Consumer willingness to pay is uniformly
distributed in the range [0, 1] and is heterogeneous. The variables qn and qr denote the demand for
remanufactured and new products, respectively [12, 30].

This paper is organized as follows: In the second section, we delve into an examination of the
nature of the game under consideration, accompanied by a brief analysis of the stability of the
Nash equilibrium. The third section is dedicated to exploring the presence of chaos using Lyapunov
exponents (LEs), bifurcation diagrams, and spectral entropy (SE), incorporating a comparative analysis
of the results obtained from these three analytical tools. Section 4 introduces and applies the OGY
method to stabilize the unstable Nash equilibrium point. In Section 5, numerical simulations are
conducted to validate the effectiveness of the OGY method in stabilizing the game, employing the
marginal costs cn and cr. The paper is then concluded in the final section.

2. The model

We consider a recurrent remanufacturing duopoly game with diverse competition strategies and
heterogeneous players, assuming that the original equipment manufacturer is boundedly rational and
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pursues profit maximization as its business objective, while the third-party remanufacturer is adaptive
and aims for share maximization based on achieving a certain profit. The dynamics of the resulting
remanufacturer duopoly game are described by the following two-dimensional discrete system [12]: qn(t + 1) = qn(t)

[
1 + α(1 − 2qn(t) − δqr(t) − cn)

]
,

qr(t + 1) = min
{
(1 − β)qr(t) + 1+v

2 β
(
1 − qn(t) − cr

δ

)
, qn(t)

}
.

(2.1)

Here, α, β ∈ [0, 1] are the relative speed of output adjustment of OEM and TPR. The attitude between
the profit and market share for the TPR is given by v ∈ [0, 1].

The stability has been thoroughly examined in [12]. Let δ̄ denote the critical quantity

δ̄ =
1 − v − (3 + v)cn + (1 + v)cr +

√
(1 − v − (3 + v)cn + (1 + v)cr)2 + 8(1 + v)2cr

2(1 + v)
,

and we then distinguish two cases.

2.1. Fixed points and stability if 0 < δ ≤ δ̄

In this case, system (2.1) has only one fixed point E(q∗n, q
∗
r), called the Nash equilibrium, provided

that
(1 + v)(cr − δ) − 2cn + 2 > 0 and (1 + v)(δ + δcn − 2cr) > 0.

Here,

q∗n =
(1 + v)(cr − δ) − 2cn + 2

4 − (1 + v)δ
,

and
q∗r =

(1 + v)(δ + δcn − 2cr)
δ(4 − (1 + v)δ)

.

Proposition 2.1. The Nash equilibrium E∗ is locally asymptotically stable, provided that

cn > 1 + (cr − δ)(
1 + ν

2
) +

(β − 2)(4 − δ(1 + ν))
α(4 − β(2 − δ 1+ν

2 ))
= c̃n. (2.2)

Or, equivalently,

cr < δ +

cn − 1 −
(β − 2)(4 − δ(1 + ν))
α(4 − β(2 − δ1+ν

2 ))

 2
1 + ν

= c̃r. (2.3)

2.2. Fixed points and stability if δ̄ < δ < 1

In this case, the game has two equilibrium points: a boundary equilibrium E0 = (0, 0) and a
conditional equilibrium point E =

(
1−cn
2+δ

, 1−cn
2+δ

)
, for cn < 1.

Proposition 2.2. The boundary equilibrium E0 is unstable (saddle point), and the conditional
equilibrium E is locally asymptotically stable, provided that:

cn > max(cNS
n , cF

n ) = c̃n, (2.4)

where cNS
n = 1 −

2 + δ

δα
, and cF

n = 1 −
2(2 + δ)
α(2 − δ)

.
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Example 2.1. Considering the marginal cost cn ∈]0, 1] as a control parameter:

a) Taking the set of parameter values α = 5.8, b = v = 0.5, δ = 0.3353, and cr = 0.2, we have
δ = δ̄ = 0.3353 for cn = c̄n ≈ 0.5962, and thus

• for cn < c̄n, we have δ̄ > δ, (in this case c̃n ≈ 0.9727, but cn < c̄n < c̃n, thus E∗ is unstable.
This aligns with the observation from Figure 1(a), where |λ1| > 1 and |λ2| < 1 signify the
instability of the Nash equilibrium E∗, characterized as a saddle point).
• for cn > c̄n we have δ̄ < δ, (in this case c̃n ≈ 0.5163, so cn > c̃n, thus E∗ is locally

asymptotically stable. This aligns with the observation from Figure 1(a), where |λ1,2| < 1).

b) Taking the set of parameter values α = 5.8, β = v = cn = 0.5, and δ = 0.3353, we have δ = δ̄ =

0.3353 for cr = c̄r ≈ 0.16779, and thus

• for cr < c̄r, we have δ > δ̄, (in this case c̃n ≈ 0.5163, but cn = 0.5 < c̃n, thus E∗ is unstable.
This corresponds to the observation from Figure 1(b), where |λ1| > 1 and |λ2| < 1 indicate
the instability of the Nash equilibrium E∗, identified as a saddle point).
• for cr > c̄r, we have δ < δ̄, (in this case c̃r ≈ 0.0544, but cr > c̄r > c̃r, thus E∗ is unstable.

This aligns with the observation from Figure 1(b), where |λ1| > 1 and |λ2| < 1 signify the
instability of the Nash equilibrium E∗, characterized as a saddle point).
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Figure 1. Evolution of the eigenvalues versus cn for: (a) α = 5.8, b = 0.5, v = 0.5, δ =

0.3353, and cr = 0.2, (b) α = 6.9, β = δ = v = 0.5, and cr = 0.2.

3. Complexity and chaos

There are various tools for the investigation of the complexity and chaos in dynamical systems, such
as Lyapunov exponent, bifurcation diagram, 0− 1 test, phase portrait SE, and others [31–33]. First, we
highlight the complexity of the model by using the SE test.

3.1. SE analysis

By employing the correlation algorithm, when we refer to the complexity of chaotic systems, we
describe how much a chaotic sequence resembles a random one [34]. The more a model is close to the
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random sequence, the higher its complexity.
We employ the SE algorithm to quantify the complexity of the understudy duopoly game (2.1).
Here is an outline of the SE complexity algorithm, which can generate an energy distribution via the

Fourier transform and determine the corresponding spectrum entropy using the Shannon entropy [31].

Step 1: Let ZN(n), n = 0, 1, . . . ,N − 1 be a chaotic pseudo-randomness sequence of length N. With the
aim of the spectrum being able to reflect the signal’s energy information more effectively, we should
first remove the DC (direct current) part of ZN using the subsequent formula:

z(n) = z(n) − µ̄ ; where µ̄ =
1
N

N−1∑
n=0

z(n). (3.1)

Step 2: We apply a discrete Fourier transform to the sequence z(n).

Z(k) =

N−1∑
n=0

z(n)e− j 2π
N nk =

N−1∑
n=0

z(n)Wnk
N , where k = 0, 1, 2, . . . ,N − 1. (3.2)

Step 3: In this step, we calculate the relative power spectrum. The first half of the sequence for
converted Z(k) is taken and calculated using Parseval’s theorem. At one of its frequency points, the
power spectrum’s value is

p(k) =
1
N
|Z(K)|2, where k = 0, 1, 2, . . . ,N/2 − 1. (3.3)

Then, the relative power spectrum of the sequence is given by

Pk =
p(k)
ptot

=

1
N |Z(k)|2

1
N

∑N/2−1
k=0 |Z(k)|2

=
|Z(k)|2∑N/2−1

k=0 |Z(k)|2
, we have

N/2−1∑
k=0

Pk = 1. (3.4)

Step 4: The SE se is then obtained by utilizing the Shannon entropy and the relative power spectral
density Pk.

se = −

N/2−1∑
k=0

Pk ln Pk. (3.5)

If Pk = 0, define Pk ln Pk = 0. It is demonstrable that the value of the SE converges to ln(N/2). For
comparative analysis, the SE SE is normalized as

S E(N) =
se

ln(N/2)
. (3.6)

The presence of a non-uniform distribution in the sequence power spectrum leads to a simpler
structure in the sequence spectrum and a distinct oscillation pattern in the signal. In such cases, the SE
measure is smaller, indicating a lower complexity. Conversely, when the distribution is more uniform,
the complexity is higher. Figure 2 depicts the relationship between SE and the parameters cn and cr for
the understudy model (2.1).
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Figure 2(a) illustrates the SE versus the marginal cost cn of the OEM for cn ∈ [0.49, 0.65]. We can
see that the SE increases when the marginal cost cn decreases, indicating a possible appearance of the
chaotic behavior in the windows cn ∈ [0.4893, 0.547].

Figure 2(b) illustrates the evolution of the SE versus the marginal cost cr, of the TPR firm, within
the range cr ∈ [0; 0.25]. The SE shows an increase as the marginal cost cr rises, with the possible
appearance of the chaotic behavior in the windows cn ∈ [0.16, 0.25].
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Figure 2. Representation of the spectral entropy (using the sequence qn(t)) of the game (2.1)
with the initial conditions qn(0) = 0.22, qr(0) = 0.21 for the parameter values α = 5.8,
β = v = 0.5, and δ = 0.3353, versus: (a) cn ∈ [0.4987, 0.65], with cr = 0.2, (b) cr ∈ [0, 0.25],
with cn = 0.5.

3.2. Bifurcation diagram and Lyapunov exponents

The Lyapunov exponents tool aims to assess the divergence or convergence of two trajectories
initiated from nearby points. These exponents provide a means to discern various dynamics within
the underlying game, such as regular, periodic, chaotic, and hyperchaotic behavior. The presence of at
least one positive Lyapunov exponent signifies the chaotic nature of the game.

Investigating now the dynamics of the duopoly game (2.1) by employing bifurcation diagrams and
the Largest Lyapunov Exponent (LLE) calculated using the Wolf Swift algorithm [32].

Figure 3 illustrates the LLE and bifurcation diagram versus the marginal cost cn for the set of
parameter values: α = 5.8, β = ν = 0.5, δ = 0.3353, and cr = 0.2. It is evident that LLE is
positive for cn ∈ [0.4897, 0.5466] confirming the chaotic behavior previously predicted by the SE.
Additionally, we can infer that the game exhibits periodic behavior (period-8 points, period-4 points,
and period-2 points) within the interval cn ∈ [0.5466, 0.5961]. We observe the stationary behavior for
cn ∈ [0.5962, 0.65].

Figure 4 depicts the LLE and the bifurcation of qr(t) with respect to the marginal cost cr ∈ [0, 0.25],
for the parameter values α = 5.8, β = cn = ν = 0.5, and δ = 0.3353.

Obviously, LLE is positive for almost cr ∈ [0.1533, 0.2366] confirming the chaotic behavior
predicted by the SE. Furthermore, the game exhibits periodic behavior in the interval [0, 0.1533]. It
is apparent that the largest Lyapunov exponents align well with the bifurcation diagram.
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Figure 3. (a) Evolution of the Largest Lyapunov Exponent versus cn (b) bifurcation diagram
of qr(t) versus cn, indicating a transition to chaos via inverse period-doubling scenario.
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Figure 4. (a) Evolution of the Largest Lyapunov Exponent versus the marginal cost cr, (b)
bifurcation diagram of qr(t) with respect to the marginal cost cr.

The duopoly game (2.1) exhibits strange attractors for various parameter values, some of them are
illustrated in Figures 5 and 6, in blue, accompanied by the corresponding unstable Nash equilibrium
depicted in red.

For instance, considering the parameter values α = 5.8, β = v = cn = 1
2 , δ = 0.3353, and cr = 1

5 ,
we obtain the following Lyapunov exponents: λ1 = 0.4476, λ2 = −1.0816. As λ1 > 0, it indicates
that the duopoly game (2.1) features a chaotic attractor. The Kaplan–Yorke dimension is calculated as
d = 1.5177, revealing a fractal nature.

It is not advisable to select parameter values for cn and cr within the chaotic zone, as this would
result in the duopoly game (2.1) exhibiting chaotic behavior in the market. Given that both firms
lack knowledge of each other’s strategies, we propose implementing control measures in the game to
prevent the occurrence of chaotic market conditions. The objective is to assist the firms in the duopoly
game (2.1) in making informed decisions by selecting appropriate values for their marginal costs cn

and cr.
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Figure 5. Two chaotic attractors of the duopoly game (2.1) with the initial conditions qn(0) =

0.22, qr(0) = 0.21: (a) cr = 0.2, cn = 0.5, v = 0.5, β = 0.5, α = 5.8, and δ = 0.3353, (b)
cr = 0.25, cn = 0.5, v = 0.5, β = 0.5, α = 5.8, and δ = 0.3353.
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Figure 6. Two chaotic attractors of the duopoly game (2.1) with the initial conditions qn(0) =

0.22, qr(0) = 0.21: (a) cr = 0.2, cn = 0.5, v = 0.5, β = 0.5, α = 6.9, and δ = 0.5, (b)
cr = 0.2027, cn = 0.5, v = 0.5, β = 0.5, α = 6.9, and δ = 0.5.

3.3. Market performance measures

To evaluate the system’s performance, particularly when it displays chaos, we use aggregate market
profits as a measure. Let MT (α, cr) denote the aggregate market profits during the time period T , then

MT (α, cr) =

T∑
t=0

(Πn(qn(t), qr(t)) + Πr(qn(t), qr(t))), (3.7)

where, Πn and Πr represent the profit functions of OEM and TPR respectively given by Eqs (4) and (5)
in [12]. We consider the adjustment speed α and the TPR cost cr as a variable parameters and adopt the
same parameter configurations as illustrated in Figure 2, and T = 100. The diagram in Figure 7 depicts
the aggregate profits versus α and cr where we observe that, when the adjustment speed of the OEM

AIMS Mathematics Volume 9, Issue 3, 7711–7727.



7720

or TPR cost cr falls within the chaotic range, the market’s aggregate profits experience a significant
decrease in comparison to the equilibrium state case, meaning that the chaotic output dynamics is
harmful to the market.

3 3.5 4 4.5 5 5.5 6

5

5.1

5.2

5.3

5.4

5.5

A
g
g
r
e
g
a
t
e
 
p
r
o
f
i
t
s

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3

c
r

4

5

6

7

8

9

M
a
r
k
e
t
 
a
g
g
r
e
g
a
t
e
 
p
r
o
f
i
t
s

(b)

Figure 7. Aggregate profits of the duopoly game (2.1) with the initial conditions qn(0) =

0.22, qr(0) = 0.21, and the parameter values cn = 0.5, v = 0.5, β = 0.5, and δ = 0.3353 (a)
versus the adjustment speed α with cr = 0.2, (b) versus the TPR cost cr with α = 5.8.

4. Chaos control of the duopoly game using OGY method

Chaotic behavior in economics is unwelcome, as it adversely affects investor confidence, economic
growth, and operational challenges. It also heightens volatility and financial risks. The manifestation of
chaos in duopoly games leads to unpredictability in the output decisions of both OEM and TPR players
due to its sensitivity to infinitesimal errors. Consequently, there is a desire to discover methods to
control chaos within economic systems. Various approaches have been suggested, including feedback
control [23], adaptive control [24], and OGY method [22, 25], among others. In this study we opt
for the OGY method due to its non-invasive application (very small parameter adjustment during a
very small time period), ensuring that the game’s evolution between TPR and OEM will be stabilized
without great effort.

The fundamental concept behind the OGY method involves making small time-dependent
perturbations to an accessible control parameter of the system to guide the system state toward its
unstable equilibrium, utilizing the stable manifold as a vehicle to achieve the desired outcome as
illustrated in Figure 8.

Consider the map

xn+1 = F(xn, p), (4.1)

where xn ∈ R
2, F : R2 × R→ R2, and p ∈ R is an externally accessible control parameter.

The map (4.1) can be linearized around the fixed point xF(p̄) as follows:

xn+1 − xF( p̄) = A(xn − xF( p̄)) + B(p − p̄),
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where A = ∂F
∂x

∣∣∣
x=xF ( p̄)

and B = ∂F
∂p

∣∣∣∣
p= p̄

. Then,

∆p = p − p̄ = −KT (xn − xF( p̄)),

ere, K is a gain vector that will be determined later. The controlled system can be written as

xn+1 − xF( p̄) = A(xn − xF( p̄)) − BKT (xn − xF( p̄))
= (A − BKT )(xn − xF( p̄)).

The stability of the controlled system is determined by the eigenvalues of (A − BKT ). The system
is controllable if the controllability matrix

P = [B, AB],

has full rank 2.
Assume the matrix A has two eigenvalues λs and λu, with two left eigenvectors vs and vu, and two

right eigenvectors ws and wu. We adjust the parameter p such that wT
u (xn+1 − xF( p̄)) = 0. We get

KT = λu
wT

u

wT
u B

and wT
u B , 0.

Then, the control law can be written as

∆p =

{
−KT (xn − xF( p̄)) if

∣∣∣KT (xn − xF( p̄))
∣∣∣ < ξ,

0 elsewhere.
(4.2)

Xf
v

s

u

s
u

|λs|<1 |λu|>1

v

v

w

w

(p)

Figure 8. Schematic of OGY control method.

4.1. Stabilization of the unstable Nash equilibrium E = (q∗n, q
∗
r)

• If 0 < δ < δ̄. Then,

A =
∂F
∂X

=

 1 − 2αq∗n −δαq∗n
−

1 + v
2

β 1 − β

 and Bcr =
∂F
∂cr

=

 0

−(1 + v)
β

δ

 .
AIMS Mathematics Volume 9, Issue 3, 7711–7727.



7722

The cr controllability matrix is

Pcr = [Bcr , ABcr ] =

 0 αβq∗n (v + 1)

−(1 + v)
β

δ
β

δ
(β − 1) (v + 1)

 ,
and its determinant is

det(Pcr ) =
1
δ
αβ2q∗n

(
v2 + 2v + 1

)
, 0.

Thus, we conclude that TPR can stabilize the Nash equilibrium E by adjusting its marginal cost
cr.
• If δ̄ < δ < 1, then

A =
∂F
∂X

=

[
1 − 2αq∗n −δαq∗n

1 0

]
and Bcn =

∂F
∂cn

=

[
−αq∗n

0

]
.

The cn controllability matrix is

Pcn = [Bcn , ABcn] =

[
−αq∗n αq∗n

(
2αq∗n − 1

)
0 −αq∗n

]
,

and its determinant is
det(Pcn) = α2(q∗n)2 , 0.

Then, we conclude that the OEM firm can stabilize the game around the Nash equilibrium E by
adjusting its marginal cost cn.

5. Numerical simulation

We conduct numerical simulations to confirm the theoretical findings. First, we use the OEM
marginal cost cn as the control parameter, and then we use the TPR marginal cost cr as the control
parameter.

5.1. Stabilizing the unstable Nash equilibrium using the OEM marginal cost cn

Let us consider cn as a control parameter and set the other parameters as follows: α = 5.8, β = δ =

v = 0.5, and cr = 0.2. For cn = c∗n = 0.5 we have E∗ = (0.2279, 0.1317), and the Jacobian matrix

A =

[
−1.6439 −0.4432
−0.375 0.5

]
, with Bcn =

[
−1.322

0

]
and the control gain KT = (1.3, 0.26).

Figure 9 illustrates the response of the controlled duopoly game along with the applied control
effort. The control is activated when the system state approaches the unstable equilibrium E∗ at t = 54
and the marginal cost cn is adjusted by a small perturbation of order 10−3 during the short time period
t ∈ [54, 56]. Subsequently, the control is established at t = 57, stabilizing the duopoly game to its Nash
equilibrium.
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5.2. Stabilizing the unstable Nash equilibrium using the TPR marginal cost cr

Let us consider cr as a control parameter and set the other parameters as follows:
α = 5.8, β = v = cn = 0.5, and δ = 0.3353. For, cr = c∗r = 0.2, we get the Nash equilibrium

E ≈ (0.2279, 0.1317), the Jacobian matrix

A =

[
−1.6439 −0.4432
−0.3750 0.5

]
, with Bcr =

[
0

−1.1184

]
,

and the control gain KT = (7.6930, 1.5368).
Figure 10 shows the response of the controlled duopoly game along with the control effort. The

control was activated when the system state is sufficiently close to the unstable equilibrium E∗ at
t = 96 and the TPR marginal cost cr is slightly adjusted by a perturbation of order 10−4 during the short
time period t ∈ [96, 102]. Subsequently, the control is established at t = 103, stabilizing the duopoly
game to its Nash equilibrium.

5.3. Results and discussion

In contrast to other control methods, the application of the OGY method to stabilize markets offers
the advantage of achieving control with minimal effort of a single firm within a brief time frame. This
means that the method can lead the market towards stability in a smooth manner without compromising
the firms in the game.

For example, in the present study, the control was realized through adjusting the OEM cost cn by
|∆cn| < 6 × 10−3 over only two units of time. Additionally, it was accomplished when adjusting the
TPR cost cr by a perturbation |∆cr| < 1.1× 10−3 over only 6 units of time. In the counter party, Kopel’s
model was controlled in [26] using a state feedback method through adjusting state of the first firm with
a perturbation |u(t)| < 0.4 over about 60 units of time. In [26], a Cournot model was stabilized using a
delay feedback control (Pyragas method) by adjusting the state of the first firm during approximately 50
units of time. In [27], a Cournot model was stabilized using the state variable feedback and parameter
variation method during approximately 40 units of time.
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Figure 9. Response of the controlled duopoly game (2.1) using the OEM marginal cost cn

with the parameter values α = 5.8, β = v = 0.5, δ = 0.3353, and cr = 0.2, for cn = c∗n = 0.5.
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Figure 10. Response of the controlled duopoly game (2.1) using the TPR marginal cost cr

with the parameter values α = 5.8, β = v = cn = 0.5, and δ = 0.3353 for cr = c∗r = 0.2.

6. Conclusions and discussion

We examined a duopoly game model involving distinct competition strategies and heterogeneous
players. The findings reveal significant impacts of the marginal cost cn for the original equipment
manufacturer (OEM) and the marginal cost cr for the third-party remanufacturer (TPR) on their
competitive dynamics within the game. Under specific parameter configurations, a decrease in cn

induces a transition in game behavior from chaos to regular, while an increase in cr results in a shift
from regular to chaotic behavior. By applying a control law derived from the OGY method, with
either the marginal cost cn of the OEM or the marginal cost cr of the TPR as a control parameter, the
chaotic behavior is effectively eliminated, leading to the stabilization of the duopoly game at its Nash
equilibrium point E.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia
through project number (RG-23 045).

Conflict of interest

All authors declare no conflicts of interest in this paper.

AIMS Mathematics Volume 9, Issue 3, 7711–7727.



7725

References

1. H. Garmani, D. A. Omar, M. E. Amrani, M. Baslam, M. Jourhmane, Analysis of a dynamics
duopoly game with two content providers, Chaos Soliton. Fract., 131 (2020), 109466.
https://doi.org/10.1016/j.chaos.2019.109466

2. D. Rand, Exotic phenomena in games and duopoly models, J. Math. Econ., 5 (1978), 173–184.
https://doi.org/10.1016/0304-4068(78)90022-8

3. S. Mitra, S. Webster, Competition in remanufacturing and the effects of government subsidies, Int.
J. Prod. Econ., 111 (2008), 287–298. https://doi.org/10.1016/j.ijpe.2007.02.042

4. L. Xu, C. X. Wang, Sustainable manufacturing in a closed-loop supply chain considering
emission reduction and remanufacturing, Resour. Conserv. Recy., 131 (2018), 297–304.
https://doi.org/10.1016/j.resconrec.2017.10.012

5. J. Ginsburg, Manufacturing: once is not enough, more companies are finding profits in
remanufacturing, Businessweek, 2001.

6. Refurbished and used mobile phones market by type, price range, application:
global opportunity analysis and industry forecast, 2023–2029. Available
from: https://www.maximizemarketresearch.com/market-report/

refurbished-and-used-mobile-phones-market/201320/.

7. Global automotive parts remanufacturing market–Forecast and analysis (2023–
2029): by component, by vehicle type, by type, and by region. Available
from: https://www.maximizemarketresearch.com/market-report/

global-automotive-parts-remanufacturing-market/77176/.

8. F. J. Weiland, Remanufacturing automotive mechatronics and electronics, 2006. Available from:
https://www.apraeurope.org.

9. R. Geyer, L. N. van Wassenhove, A. Atalay, The economics of remanufacturing under
limited component durability and finite product life cycles, Manage. Sci., 53 (2007), 88–100.
https://doi.org/10.1287/mnsc.1060.0600

10. V. Guide, R. Teunter, L. N. van Wassenhove, Matching demand and supply to
maximize profits from remanufacturing, Manuf. Serv. Oper. Manage., 5 (2003), 303–316.
https://doi.org/10.1287/msom.5.4.303.24883

11. J. Vorasayan, M. Ryans, Optimal price and quantity of refurbished products, Prod. Oper. Manage.,
15 (2006), 369–383. https://doi.org/10.1111/j.1937-5956.2006.tb00251.x

12. L. Shi, Z. Sheng, F. Xu, Complexity analysis of remanufacturing duopoly game with different
competition strategies and heterogeneous players, Nonlinear Dyn., 82 (2015), 1081–1092.
https://doi.org/10.1007/s11071-015-2218-7

13. G. I. Bischi, C. Chiarella, M. Kopel, F. Szidarovsky, Nonlinear oligopolies: stability and
bifurcations, Springer, 2009. https://doi.org/10.1007/978-3-642-02106-0

14. M. S. Abdelouahab, N. Hamri, J. Wang, Chaos control of a fractional-order financial system, Math.
Problems Eng., 2010 (2010), 270646. https://doi.org/10.1155/2010/270646

AIMS Mathematics Volume 9, Issue 3, 7711–7727.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2019.109466
http://dx.doi.org/https://doi.org/10.1016/0304-4068(78)90022-8
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2007.02.042
http://dx.doi.org/https://doi.org/10.1016/j.resconrec.2017.10.012
https://www.maximizemarketresearch.com/market-report/refurbished-and-used-mobile-phones-market/201320/
https://www.maximizemarketresearch.com/market-report/refurbished-and-used-mobile-phones-market/201320/
https://www.maximizemarketresearch.com/market-report/global-automotive-parts-remanufacturing-market/77176/
https://www.maximizemarketresearch.com/market-report/global-automotive-parts-remanufacturing-market/77176/
https://www.apraeurope.org
http://dx.doi.org/https://doi.org/10.1287/mnsc.1060.0600
http://dx.doi.org/https://doi.org/10.1287/msom.5.4.303.24883
http://dx.doi.org/https://doi.org/10.1111/j.1937-5956.2006.tb00251.x
http://dx.doi.org/https://doi.org/10.1007/s11071-015-2218-7
http://dx.doi.org/https://doi.org/10.1007/978-3-642-02106-0
http://dx.doi.org/https://doi.org/10.1155/2010/270646


7726
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