Research article Special Issues

Strong consistency rate in functional single index expectile model for spatial data

  • Received: 12 December 2023 Revised: 17 January 2024 Accepted: 23 January 2024 Published: 29 January 2024
  • MSC : 62G05, 62G08, 62R20

  • Analyzing the real impact of spatial dependency in financial time series data is crucial to financial risk management. It has been a challenging issue in the last decade. This is because most financial transactions are performed via the internet and the spatial dependency between different international stock markets is not standard. The present paper investigates functional expectile regression as a spatial financial risk model. Specifically, we construct a nonparametric estimator of this functional model for the functional single index regression (FSIR) structure. The asymptotic properties of this estimator are elaborated over general spatial settings. More precisely, we establish Borel-Cantelli consistency (BCC) of the constructed estimator. The latter is obtained with the precision of the convergence rate. A simulation investigation is performed to show the easy applicability of the constructed estimator in practice. Finally, real data analysis about the financial data (Euro Stoxx-50 index data) is used to illustrate the effectiveness of our methodology.

    Citation: Zouaoui Chikr Elmezouar, Fatimah Alshahrani, Ibrahim M. Almanjahie, Salim Bouzebda, Zoulikha Kaid, Ali Laksaci. Strong consistency rate in functional single index expectile model for spatial data[J]. AIMS Mathematics, 2024, 9(3): 5550-5581. doi: 10.3934/math.2024269

    Related Papers:

  • Analyzing the real impact of spatial dependency in financial time series data is crucial to financial risk management. It has been a challenging issue in the last decade. This is because most financial transactions are performed via the internet and the spatial dependency between different international stock markets is not standard. The present paper investigates functional expectile regression as a spatial financial risk model. Specifically, we construct a nonparametric estimator of this functional model for the functional single index regression (FSIR) structure. The asymptotic properties of this estimator are elaborated over general spatial settings. More precisely, we establish Borel-Cantelli consistency (BCC) of the constructed estimator. The latter is obtained with the precision of the convergence rate. A simulation investigation is performed to show the easy applicability of the constructed estimator in practice. Finally, real data analysis about the financial data (Euro Stoxx-50 index data) is used to illustrate the effectiveness of our methodology.



    加载中


    [1] S. Bouzebda, I. Soukarieh, Non-parametric conditional $U$-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 11 (2023), 16. https://doi.org/10.3390/math11010016 doi: 10.3390/math11010016
    [2] N. A. Cressie, Statistics for spatial data, John Wiley & Sons, Inc., 2015. https://doi.org/10.1002/9781119115151
    [3] X. Guyon, Random fields on a network: modeling, statistics, and applications, Springer-Verlag, 1995.
    [4] B. D. Ripley, Spatial statistics: developments, 1980–1983, Int. Stat. Rev., 52 (1984), 141–150. https://doi.org/10.2307/1403097 doi: 10.2307/1403097
    [5] M. Rosenblatt, Stationary sequences and random fields, Springer-Verlag, 1985. https://doi.org/10.1007/978-1-4612-5156-9
    [6] S. Bouzebda, A. Laksaci, M. Mohammedi, Single index regression model for functional quasi-associated time series data, REVSTAT, 20 (2022), 605–631. https://doi.org/10.57805/revstat.v20i5.391 doi: 10.57805/revstat.v20i5.391
    [7] S. Bouzebda, A. Laksaci, M. Mohammedi, The $k$-nearest neighbors method in single index regression model for functional quasi-associated time series data, Rev. Mat. Complutense, 36 (2023), 361–391. https://doi.org/10.1007/s13163-022-00436-z doi: 10.1007/s13163-022-00436-z
    [8] W. Härdle, P. Hall, H. Ichimura, Optimal smoothing in single-index models, Ann. Stat., 21 (1993), 157–178. https://doi.org/10.1214/aos/1176349020 doi: 10.1214/aos/1176349020
    [9] M. Hristache, A. Juditsky, V. Spokoiny, Direct estimation of the index coefficient in a single-index model, Ann. Stat., 29 (2001), 595–623. https://doi.org/10.1214/aos/1009210682 doi: 10.1214/aos/1009210682
    [10] F. Ferraty, A. Peuch, P. Vieu, Modèle à indice fonctionnel simple, C. R. Math., 336 (2003), 1025–1028. https://doi.org/10.1016/S1631-073X(03)00239-5 doi: 10.1016/S1631-073X(03)00239-5
    [11] D. Chen, P. Hall, H. G. Müller, Single and multiple index functional regression models with nonparametric link, Ann. Stat., 39 (2011), 1720–1747. https://doi.org/10.1214/11-AOS882 doi: 10.1214/11-AOS882
    [12] H. Ding, Y. Liu, W. Xu, R. Zhang, A class of functional partially linear single-index models, J. Multivar. Anal., 161 (2017), 68–82. https://doi.org/10.1016/j.jmva.2017.07.004 doi: 10.1016/j.jmva.2017.07.004
    [13] M. Mohammedi, S. Bouzebda, A. Laksaci, O. Bouanani, Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data, Commun. Stat., 2022. https://doi.org/10.1080/03610926.2022.2150823
    [14] W. K. Newey, J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55 (1987), 819–847. https://doi.org/10.2307/1911031 doi: 10.2307/1911031
    [15] Z. Lu, X. Chen, Spatial kernel regression estimation: weak consistency, Stat. Probab. Lett., 68 (2004), 125–136. https://doi.org/10.1016/j.spl.2003.08.014 doi: 10.1016/j.spl.2003.08.014
    [16] L. T. Tran, Kernel density estimation on random fields, J. Multivar. Anal., 34 (1990), 37–53. https://doi.org/10.1016/0047-259X(90)90059-Q doi: 10.1016/0047-259X(90)90059-Q
    [17] F. Bellini, V. Bignozzi, G. Puccetti, Conditional expectiles, time consistency and mixture convexity properties, Insurance, 82 (2018), 117–123. https://doi.org/10.1016/j.insmatheco.2018.07.001 doi: 10.1016/j.insmatheco.2018.07.001
    [18] Y. Gu, H. Zou, High-dimensional generalizations of asymmetric least squares regression and their applications, Ann. Stat., 44 (2016), 2661–2694. https://doi.org/10.1214/15-AOS1431 doi: 10.1214/15-AOS1431
    [19] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [20] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivar. Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [21] T. Kneib, Beyond mean regression, Stat. Modell., 13 (2013), 275–303. https://doi.org/10.1177/1471082X13494159
    [22] P. H. Eilers, Discussion: the beauty of expectiles, Stat. Modell., 13 (2013), 317–322. https://doi.org/10.1177/1471082X13494313 doi: 10.1177/1471082X13494313
    [23] R. Koenker, Discussion: living beyond our means, Stat. Modell., 13 (2013), 323–333. https://doi.org/10.1177/1471082X13494314 doi: 10.1177/1471082X13494314
    [24] M. C. Jones, Expectiles and M-quantiles are quantiles, Stat. Probab. Lett., 20 (1994), 149–153. https://doi.org/10.1016/0167-7152(94)90031-0 doi: 10.1016/0167-7152(94)90031-0
    [25] I. M. Almanjahie, S. Bouzebda, Z. C. Elmezouar, A. Laksaci, The functional kNN estimator of the conditional expectile: uniform consistency in number of neighbors, Stat. Risk Modell., 38 (2022), 47–63. https://doi.org/10.1515/strm-2019-0029 doi: 10.1515/strm-2019-0029
    [26] F. Alshahrani, I. M. Almanjahie, Z. C. Elmezouar, Z. Kaid, A. Laksaci, M. Rachdi, Functional ergodic time series analysis using expectile regression, Mathematics, 10 (2022), 3919. https://doi.org/10.3390/math10203919 doi: 10.3390/math10203919
    [27] M. Rachdi, A. Laksaci, N. M. A. Kandari, Expectile regression for spatial functional data analysis (sFDA), Metrika, 85 (2022), 627–655. https://doi.org/10.1007/s00184-021-00846-x doi: 10.1007/s00184-021-00846-x
    [28] G. Biau, B. Cadre, Nonparametric spatial prediction, Stat. Infer. Stochastic Process., 7 (2004), 327–349. https://doi.org/10.1023/B:SISP.0000049116.23705.88 doi: 10.1023/B:SISP.0000049116.23705.88
    [29] M. Hallin, Z. Lu, L. T. Tran, Local linear spatial regression, Ann. Stat., 32 (2004), 2469–2500. https://doi.org/10.1214/009053604000000850 doi: 10.1214/009053604000000850
    [30] J. Li, L. T. Tran, Nonparametric estimation of conditional expectation, J. Stat. Plann. Infer., 139 (2009), 164–175. https://doi.org/10.1016/j.jspi.2008.04.023 doi: 10.1016/j.jspi.2008.04.023
    [31] R. Xu, J. Wang, $L_1$-estimation for spatial nonparametric regression, J. Nonparametr. Stat., 20 (2008), 523–537. https://doi.org/10.1080/10485250801976717 doi: 10.1080/10485250801976717
    [32] S. D. Niang, M. Rachdi, A. F. Yao, Kernel regression estimation for spatial functional random variables, Far East J. Theor. Stat., 37 (2011), 77–113.
    [33] S. Koner, A. M. Staicu, Second-generation functional data, Annu. Rev. Stat. Appl., 10 (2023), 547–572. https://doi.org/10.1146/annurev-statistics-032921-033726 doi: 10.1146/annurev-statistics-032921-033726
    [34] J. O. Ramsay, T. Ramsay, L. M. Sangalli, Spatial functional data analysis, Springer-Verlag, 2011. https://doi.org/10.1007/978-3-7908-2736-1_42
    [35] M. Lv, J. E. Fowler, L. Jing, Spatial functional data analysis for the spatial–spectral classification of hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., 16 (2019), 942–946. https://doi.org/10.1109/LGRS.2018.2884077 doi: 10.1109/LGRS.2018.2884077
    [36] J. Mateu, E. Romano, Advances in spatial functional statistics, Stochastic Environ. Res. Risk Assess., 31 (2017), 1–6. https://doi.org/10.1007/s00477-016-1346-z doi: 10.1007/s00477-016-1346-z
    [37] S. D. Niang, A. F. Yao, Kernel spatial density estimation in infinite dimension space, Metrika, 76 (2013), 19–52. https://doi.org/10.1007/s00184-011-0374-4 doi: 10.1007/s00184-011-0374-4
    [38] A. Chouaf, A. Laksaci, On the functional local linear estimate for spatial regression, Stat. Risk Modell., 29 (2012), 189–214. https://doi.org/10.1524/strm.2012.1114 doi: 10.1524/strm.2012.1114
    [39] M. Rachdi, A. Laksaci, F. A. A. Awadhi, Parametric and nonparametric conditional quantile regression modeling for dependent spatial functional data, Spat. Stat., 43 (2021), 100498. https://doi.org/10.1016/j.spasta.2021.100498 doi: 10.1016/j.spasta.2021.100498
    [40] G. Aneiros, S. Novo, P. Vieu, Variable selection in functional regression models: a review, J. Multivar. Anal., 188 (2022), 104871. https://doi.org/10.1016/j.jmva.2021.104871 doi: 10.1016/j.jmva.2021.104871
    [41] S. Bouzebda, B. Nemouchi. Central limit theorems for conditional empirical and conditional $U$-processes of stationary mixing sequences, Math. Methods Stat., 28 (2019), 169–207. https://doi.org/10.3103/S1066530719030013 doi: 10.3103/S1066530719030013
    [42] S. Bouzebda, M. Chaouch, Uniform limit theorems for a class of conditional $Z$-estimators when covariates are functions, J. Multivar. Anal., 189 (2022), 104872. https://doi.org/10.1016/j.jmva.2021.104872 doi: 10.1016/j.jmva.2021.104872
    [43] S. Bouzebda, B. Nemouchi, Weak-convergence of empirical conditional processes and conditional $U$-processes involving functional mixing data, Stat. Infer. Stochastic Process., 26 (2023), 33–88. https://doi.org/10.1007/s11203-022-09276-6 doi: 10.1007/s11203-022-09276-6
    [44] J. Hristov, Special issue: trends in fractional modelling in science and innovative technologies, Symmetry, 15 (2023), 884. https://doi.org/10.3390/sym15040884 doi: 10.3390/sym15040884
    [45] H. G. Müller, Special issue on "functional and object data analysis": guest editor's introduction, Canad. J. Stat., 50 (2022), 8–19. https://doi.org/10.1002/cjs.11690 doi: 10.1002/cjs.11690
    [46] M. Carbon, M. Hallin, L. T. Tran, Kernel density estimation for random fields: the $L_1$ theory, J. Nonparametr. Stat., 6 (1996), 157–170. https://doi.org/10.1080/10485259608832669 doi: 10.1080/10485259608832669
    [47] P. Doukhan, Mixing, Springer-Verlag, 1994. https://doi.org/10.1007/978-1-4612-2642-0
    [48] D. Tjøstheim, Statistical spatial series modelling, Adv. Appl. Probab., 10 (1978), 130–154. https://doi.org/10.2307/1426722 doi: 10.2307/1426722
    [49] X. Guyon, Estimation d'un champ par pseudo-vraisemblance conditionnelle: étude asymptotique et application au cas markovien, Proceedings of the Sixth Franco-Belgian Meeting of Statisticians, 1987.
    [50] R. C. Bradley, Some examples of mixing random fields, Rocky Mountain J. Math., 23 (1993), 495–519. https://doi.org/10.1216/rmjm/1181072573 doi: 10.1216/rmjm/1181072573
    [51] J. Dedecker, P. Doukhan, G. Lang, L. R. J. Rafael, S. Louhichi, C. Prieur, Weak dependence: with examples and applications, Springer-Verlag, 2007. https://doi.org/10.1007/978-0-387-69952-3
    [52] D. Kurisu, Nonparametric regression for locally stationary random fields under stochastic sampling design, Bernoulli, 28 (2022), 1250–1275. https://doi.org/10.3150/21-bej1385 doi: 10.3150/21-bej1385
    [53] I. Soukarieh, S. Bouzebda, Weak convergence of the conditional $U$-statistics for locally stationary functional time series, Stat. Infer. Stochastic Process., 2023. https://doi.org/10.1007/s11203-023-09305-y
    [54] V. I. Bogachev, Gaussian measures, American Mathematical Society, 1998.
    [55] W. V. Li, Q. M. Shao, Gaussian processes: inequalities, small ball probabilities and applications, Handb. Stat., 19 (2001), 533–597. https://doi.org/10.1016/S0169-7161(01)19019-X doi: 10.1016/S0169-7161(01)19019-X
    [56] F. Ferraty, P. Vieu, Nonparametric functional data analysis, Springer-Verlag, 2006. https://doi.org/10.1007/0-387-36620-2
    [57] N. A. Cressie, Spatial prediction in a multivariate setting, Elsevier, 1993.
    [58] J. Mateu, R. Giraldo, Geostatistical functional data analysis, John Wiley & Sons, Ltd., 2021. https://doi.org/10.1002/9781119387916
    [59] A. Ait-Saïdi, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single-functional index model, Statistics, 42 (2008), 475–494. https://doi.org/10.1080/02331880801980377 doi: 10.1080/02331880801980377
    [60] A. Toma, C. Fulga, Robust estimation for the single index model using pseudodistances, Entropy, 20 (2018), 374. https://doi.org/10.3390/e20050374 doi: 10.3390/e20050374
    [61] M. Bonneu, X. Milhaud, A modified Akaike criterion for model choice in generalized linear models, Statistics, 25 (1994), 225–238. https://doi.org/10.1080/02331889408802447 doi: 10.1080/02331889408802447
    [62] S. Bouzebda, M. Cherfi, General bootstrap for dual $\phi$-divergence estimates, J. Probab. Stat., 2012 (2012), 834107. https://doi.org/10.1155/2012/834107 doi: 10.1155/2012/834107
    [63] S. Bouzebda, A. Keziou. A new test procedure of independence in copula models via $\chi^2$-divergence, Commun. Stat., 39 (2009), 1–20. https://doi.org/10.1080/03610920802645379 doi: 10.1080/03610920802645379
    [64] S. Bouzebda, A. Keziou, New estimates and tests of independence in semiparametric copula models, Kybernetika, 46 (2010), 178–201.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(896) PDF downloads(82) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog