Research article Special Issues

Spectral stability analysis of the Dirichlet-to-Neumann map for fractional diffusion equations with a reaction coefficient

  • Received: 28 September 2023 Revised: 13 January 2024 Accepted: 19 January 2024 Published: 29 January 2024
  • MSC : 34K20, 35R11, 35S16, 60K50

  • This paper focused on the stability analysis of the Dirichlet-to-Neumann (DN) map for the fractional diffusion equation with a reaction coefficient $ q $. The main result provided a Hölder-type stability estimate for the map, which was formulated in terms of the Dirichlet eigenvalues and normal derivatives of eigenfunctions of the operator $ A_q : = -\Delta + q $.

    Citation: Ridha Mdimagh, Fadhel Jday. Spectral stability analysis of the Dirichlet-to-Neumann map for fractional diffusion equations with a reaction coefficient[J]. AIMS Mathematics, 2024, 9(3): 5394-5406. doi: 10.3934/math.2024260

    Related Papers:

  • This paper focused on the stability analysis of the Dirichlet-to-Neumann (DN) map for the fractional diffusion equation with a reaction coefficient $ q $. The main result provided a Hölder-type stability estimate for the map, which was formulated in terms of the Dirichlet eigenvalues and normal derivatives of eigenfunctions of the operator $ A_q : = -\Delta + q $.



    加载中


    [1] E. E. Adams, L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resour. Res., 28 (1992), 3293–3307. https://doi.org/10.1029/92WR01757 doi: 10.1029/92WR01757
    [2] J. M. Carcione, F. J. Sanchez-Sesma, F. Luzon, J. J. P. Gavilan, Theory and simulation of time-fractional fluid diffusion in porous media, J. Phys. A, 46 (2013), 345501. https://doi.org/10.1088/1751-8113/46/34/345501 doi: 10.1088/1751-8113/46/34/345501
    [3] A. Ghanmi, R. Mdimagh, I. B. Saad, Identification of points sources via time fractional diffusion equation, Filomat, 32 (2018), 6189–6201. https://doi.org/10.2298/FIL1818189G doi: 10.2298/FIL1818189G
    [4] F. Jday, R. Mdimagh, Uniqueness result for a fractional diffusion coeffcient identification problem, Bound. Value Probl., 2019 (2019), 1–13. https://doi.org/10.1186/s13661-019-1278-x doi: 10.1186/s13661-019-1278-x
    [5] B. Tang, L. J. Qiao, D. Xu, An ADI orthogonal spline collocation method for a new two-dimensional distributed-order fractional integro-differential equation, Comput. Math. Appl., 132 (2023), 104–118. https://doi.org/10.1016/j.camwa.2022.12.006 doi: 10.1016/j.camwa.2022.12.006
    [6] Y. Kian, L. Oksanen, E. Soccorsi, M. Yamamoto, Global uniqueness in an inverse problem for time fractional diffusion equations, J. Differ. Equ., 264 (2018), 1146–1170. https://doi.org/10.1016/j.jde.2017.09.032 doi: 10.1016/j.jde.2017.09.032
    [7] G. Alessandrini, J. Sylvester, Z. Sun, Stability for a multidimensional inverse spectral theorem, Commun. Partial Differ. Equ., 15 (1990), 711–736. http://dx.doi.org/10.1080/03605309908820705 doi: 10.1080/03605309908820705
    [8] V. Isakov, Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse Probl., 8 (1992), 193. https://doi.org/10.1088/0266-5611/8/2/003 doi: 10.1088/0266-5611/8/2/003
    [9] M. Bellassoued, M. Choulli, M. Yamamoto, Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Differ. Equ., 247 (2009), 465–494. https://doi.org/10.1016/j.jde.2009.03.024 doi: 10.1016/j.jde.2009.03.024
    [10] M. Choulli, Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Related Fields, 3 (2013), 143–160. https://doi.org/10.3934/mcrf.2013.3.143 doi: 10.3934/mcrf.2013.3.143
    [11] M. Choulli, P. Stefanov, Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Commun. Partial Differ. Equ., 38 (2013), 455–476. https://doi.org/10.1080/03605302.2012.747538 doi: 10.1080/03605302.2012.747538
    [12] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, Berlin, Heidelberg: Springer, 1972. https://doi.org/10.1007/978-3-642-65161-8
    [13] M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques, Berlin, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-02460-3
    [14] R. Dautray, J. L. Lions, Mathematical analysis and numerical methods for science and technology: Volume 3 Spectral theory and applications, Berlin, Heidelberg: Springer, 1999.
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [16] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [17] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(840) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog