Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article

Approximation by the modified λ-Bernstein-polynomial in terms of basis function

  • Received: 29 August 2023 Revised: 04 January 2024 Accepted: 08 January 2024 Published: 18 January 2024
  • MSC : 33C45, 41A25, 41A36

  • In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's K-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.

    Citation: Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar. Approximation by the modified λ-Bernstein-polynomial in terms of basis function[J]. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217

    Related Papers:

    [1] Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105
    [2] Sima Karamseraji, Shokrollah Ziari, Reza Ezzati . Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404
    [3] Guorong Zhou, Qing-Bo Cai . Bivariate λ-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700
    [4] Lanyin Sun, Siya Wen . Applications of mixed finite element method based on Bernstein polynomials in numerical solution of Stokes equations. AIMS Mathematics, 2024, 9(12): 35978-36000. doi: 10.3934/math.20241706
    [5] Mustafa Kara . Approximation properties of the new type generalized Bernstein-Kantorovich operators. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212
    [6] Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar . Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152
    [7] Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367
    [8] Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157
    [9] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [10] Mei Li, Wanqiang Shen . Integral method from even to odd order for trigonometric B-spline basis. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729
  • In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's K-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.



    The famous Bernstein polynomial, denoted by Bn(g)(ɥ), is defined as:

    Bs(g;ɥ)=si=0g(is)bs,i(ɥ),

    where sN (positive integers) and bs,i(ɥ) are the Bernstein polynomials of degree s at most defined by

    bs,i(ɥ)=(si)ɥi(1ɥ)si(i=0,1,,s;ɥ[0,1])

    and

    bs,i(ɥ)=0(i<0ori>s),

    where gC[0,1] is the function to be approximated and n is a positive integer. The Bernstein polynomial is a linear combination of powers of ɥ and (1ɥ), with coefficients given by the function g evaluated at equidistant points between 0 and 1. The Bernstein polynomial provides a sequence of polynomial approximations to g, which converges uniformly to g on the interval [0,1] as n approaches infinity. This means that the polynomial approximations become arbitrarily close to g for all values of ɥ in the interval [0,1].

    It is very easy to verify the recursive relation for the Bernstein polynomials. The recursive relationship for Bernstein polynomials bs,i(ɥ) is very simple to prove such that

    bs,i(ɥ)=(1ɥ)bs1,i(ɥ)+ɥbs1,i1(ɥ).

    In 2010, Cai et al. defined the Bernstein-polynomials by the introduction of new Bézier bases with shape parameter λ[1,1], known as the λ-Bernstein operators as follows:

    Bs,λ(g;ɥ)=si=0g(is)˜bs,i(λ;ɥ) (1.1)

    where the new Bernstein basis function ˜bs,i(λ;ɥ) in terms of the Bernstein polynomial bs,i(ɥ) is defined by Ye et al. [1] as follows:

    ˜bs,0(λ;ɥ)=bs,0(ɥ)λs+1bs+1,1(ɥ),˜bs,i(λ;ɥ)=bs,i(ɥ)+λ(s2i+1s21bs+1,i(ɥ)s2i1s21bs+1,i+1(ɥ)),for1is1,˜bs,s(λ;ɥ)=bs,s(ɥ)λs+1bs+1,s(ɥ).

    In 2010, Gadjiev et al. introduced the recent Bernstein type Stancu polynomials by means of shifted knots [2] such as:

    Ss,μ,β(g;ɥ)=(s+ν2m)msi=0(si)(ɥμ2s+ν2)i(s+μ2m+ν2ɥ)sig(i+μ1s+ν1) (1.2)

    where ɥ[μ2m+ν2,s+μ2s+ν2] and μi,νi,i=1,2 are positive real numbers provided 0μ2μ1ν1ν2.

    As a result of research conducted in the approximation process, Bernstein type operators have been obtained by researchers within the past few years, for example, a new family of Bernstein-Kantorovich operators [3], q-Bernstein shifted operators [4], the Stancu variant of Bernstein-Kantorovich operators [5], Genuine modified Bernstein-Durrmeyer operators [6], Bézier bases with Schurer polynomials [7], generalized Bernstein-Schurer operators [8], the approximation of Bernstein type operators [9] and Bernstein operators based on Bézier bases [10], etc. For more details and recent published research we refer the reader to [11,12,13,14,15,16,17,18,19,20,21,22,23].

    We take the Bernstein basis function bμ,νs,i by means of shifted knots (see [2]) as follows:

    bμ,νs,i(ɥ)=(si)(ɥμs+ν)i(s+μs+νɥ)si. (2.1)

    We take the Bézier bases function ˜bμ,νs,i by means of Bernstein basis function bμ,νs,i (see [1]) as follows:

    ˜bμ,νs,0(λ;ɥ)=bμ,νs,0(ɥ)λs+1bμ,νs+1,1(ɥ),˜bμ,νs,j(λ;y)=bμ,νs,j(ɥ)+λ(s2j+1s21bμ,νs+1,j(ɥ)s2j1s21bμ,νs+1,j+1(ɥ)),for1js1,˜bμ,νs,s(λ;ɥ)=bμ,νs,s(ɥ)λs+1bμ,νs+1,s(ɥ).

    Thus, for all μs+νɥs+μs+ν and the real number 0μν, we define the new λ-Bernstein shifted knots operators Bμ,νs,λ in terms of Bézier bases function ˜bμ,νs,i as follows:

    Bμ,νs,λ(g;ɥ)=(s+νs)ssi=0˜bμ,νs,i(λ;ɥ)g(is) (2.2)

    where C[0,1] is the set of all continuous functions defined on [0,1] and sN (the set of positive integers). Clearly, for the choice μ=ν=0 in the equality (2.2), our new operators Bμ,νs,λ reduced to the operators of the equality (1.1) defined by Cai et al. [24].

    This paper is structured generally as follows: We look at the moments and central moments of our new operators, (2.2). We investigate a Korovkin approximation theorem, prove a local approximation theorem, provide a convergence theorem for Lipschitz continuous functions and produce a Voronovskaja asymptotic formula.

    Lemma 2.1. Let g(t)=1,t,t2 then for all sN{1}, the operators Bμ,νs,λ defined by (2.2), have the following equalities:

    Bμ,νs,λ(1;ɥ)=1,Bμ,νs,λ(t;ɥ)=(s+νs2λs(s1))(ɥμs+ν)+λs(s1)(s+νs)s(ɥμs+ν)s+1λs(s1)(s+νs)s(s+μs+νɥ)s+1+λs(s1)(s+νs),Bμ,νs,λ(t2;ɥ)=1s[(s+νs)s+2λs1](ɥμs+ν)+(s+νs)[s1ss+νs4λs2](ɥμs+ν)2+λ(s+νs)s[(s+1)2s2(s1)+1s+1](ɥμs+ν)s+1+λs2(s1)(s+νs)s(s+μs+νɥ)s+1λs2(s1)(s+νs).

    Proof. We proof the equalities as follows:

    Bμ,νs,λ(1;ɥ)=(s+νs)ssi=0˜bμ,νs,i(λ;ɥ)=(s+νs)s{si=0bμ,νs,i(ɥ)λs+1bμ,νs+1,1(ɥ)+λs2+1s21bμ,νs+1,1(ɥ)λs21s21bμ,νs+1,2(ɥ)+λs4+1s21bμ,νs+1,2(ɥ)λs41s21bμ,νs+1,3(ɥ)++λs2(s1)+1s21bμ,νs+1,s1(ɥ)λs2(s1)1s21bμ,νs+1,s(ɥ)λs+1bμ,νs+1,s(ɥ)}=(s+νs)ssi=0bμ,νs,i(ɥ)=(s+νs)s(ɥμs+ν+s+μs+νɥ)s=1,Bμ,νs,λ(t;ɥ)=(s+νs)ssi=0is˜bμ,νs,i(λ;ɥ)=(s+νs)s[s1i=0is{bμ,νs,i(ɥ)+λ(s2i+1s21bμ,νs+1,i(ɥ)s2i1s21bμ,νs+1,i+1(ɥ))}+bμ,νs,s(ɥ)λs+1bμ,νs+1,s(ɥ)]=(s+νs)ssi=0isbμ,νs,i(ɥ)+λ(s+νs)ssi=0iss2i+1s21bμ,νs+1,i(ɥ)λ(s+νs)ss1i=1iss2i1s21bμ,νs+1,i+1(ɥ),

    where we can examine the as follows:

    (s+νs)ssi=0isbμ,νs,i(ɥ)=(s+νs)s(ɥμs+ν)s1i=0bμ,νs1,i(ɥ)=(s+νs)(ɥμs+ν),λ(s+νs)ssi=0iss2i+1s21bμ,νs+1,i(ɥ)=λ(s+νs)s[1s1si=0isbμ,νs+1,i(ɥ)2s21si=0i2sbμ,νs+1,i(ɥ)]=λs+1s(s1)(s+νs)s(ɥμs+ν)s1i=0bμ,νs,i(ɥ)λ2s1(s+νs)s(ɥμs+ν)2s2i=0bμ,νs1,i(ɥ)λ2s(s1)(s+νs)s(ɥμs+ν)s1i=0bμ,νs,i(ɥ)=λs+1s(s1)(s+νs)s(ɥμs+ν)[(ss+ν)s(ɥμs+ν)s]λ2s1(s+νs)s(ɥμs+ν)2[(ss+ν)s1(ɥμs+ν)s1]λ2s(s1)(s+νs)s(ɥμs+ν)[(ss+ν)s(ɥμs+ν)s]=λ1s(ɥμs+ν)λ1s(s+νs)s(ɥμs+ν)s+1λ2s1(s+νs)(ɥμs+ν)2+λ2s1(s+νs)s(ɥμs+ν)s+1

    and

    λ(s+νs)ss1i=1iss2i+1s21bμ,νs+1,i+1(ɥ)=λ(s+νs)s1s(ɥμs+ν)s1i=1bμ,νs,i(ɥ)+λ(s+νs)s1s(s+1)s1i=1bμ,νs+1,i+1(ɥ)+λ(s+νs)s2s1(ɥμs+ν)2s2i=0bμ,νs1,i(ɥ)λ(s+νs)s2s(s1)(ɥμs+ν)s1i=1bμ,νs,i(ɥ)+λ(s+νs)s2s(s21)s1i=1bμ,νs+1,i+1(ɥ)=λ(s+νs)s1s(ɥμs+ν)[(ss+ν)s(s+μs+νɥ)s(ɥμs+ν)s]+λ(s+νs)s1s(s+1)[(ss+ν)s+1(s+μs+νɥ)s+1(ɥμs+ν)s+1(s+1)(ɥμs+ν)(s+μs+νɥ)s]+λ(s+νs)s2s1(ɥμs+ν)2[(ss+ν)s1(ɥμs+ν)s1]λ(s+νs)s2s(s1)(ɥμs+ν)[(ss+ν)s(s+μs+νɥ)s(ɥμs+ν)s]+λ(s+νs)s2s(s21)[(ss+ν)s+1(s+μs+νɥ)s+1(ɥμs+ν)s+1(s+1)(ɥμs+ν)(s+μs+νɥ)s]=λs+1s(s1)(ɥμs+ν)+λ(s+νs)2s1(ɥμs+ν)2λ1s1(s+νs)s(ɥμs+ν)s+1λ1s(s1)(s+νs)s(s+μs+νɥ)s+1+λ1s(s1)(s+νs),

    which gives Bμ,νs,λ(t;ɥ).

    Similarly for g(t)=t2, we find

    Bμ,νs,λ(t2;ɥ)=(s+νs)ssi=0i2s2˜bμ,νs,i(λ;ɥ)=(s+νs)s[s1i=0i2s2{bμ,νs,i(ɥ)+λ(s2i+1s21bμ,νs+1,i(ɥ)s2i1s21bμ,νs+1,i+1(ɥ))}+bμ,νs,s(ɥ)λs+1bμ,νs+1,s(ɥ)]=(s+νs)ssi=0i2s2bμ,νs,i(ɥ)+λ(s+νs)ssi=0i2s2s2i+1s21bμ,νs+1,i(ɥ)λ(s+νs)ss1i=1i2s2s2i1s21bμ,νs+1,i+1(ɥ).

    By simple calculations, we get

    (s+νs)ssi=0i2s2bμ,νs,i(ɥ)=(s+νs)2s1s(ɥμs+ν)2+(s+νs)s1s(yμs+ν),λ(s+νs)ssi=0i2s2s2i+1s21bμ,νs+1,i(ɥ)=λ1s2(ɥμs+ν)+λ(s+νs)s5s(s1)(ɥμs+ν)2λ(s+νs)22s(ɥμs+ν)3+λ(s+νs)s(s+1)2s2(s1)(ɥμs+ν)s+1,

    and

    λ(s+νs)ss1i=1i2s2s2i1s21bμ,νs+1,i+1(ɥ)=λs+1s2(s1)(yμs+ν)λ(s+νs)1s(yμs+ν)2+λ(s+νs)22s(ɥμs+ν)3+λ(s+νs)s1s+1(ɥμs+ν)s+1+λ(s+νs)s(s+μs+νɥ)s+1λ(s+νs)1s2(s1).

    Thus, finally, we get Bμ,νs,λ(t2;ɥ).

    Lemma 2.2. For the operators Bμ,νs,λ, we get the following central moments:

    Bμ,νs,λ(tɥ;ɥ)=[(s+νs)2s(s1)1]ɥ+1s(s1)(s+νs)s[(ɥμs+ν)s+1(s+μs+νɥ)s+1]+1s(s1)(s+νs)+2μs(s1)(s+ν)μs,Bμ,νs,λ((tɥ)2;ɥ))=[1s{(s+νs)s+2s1}2(s+νs2ɥs(s1))](ɥμs+ν)+(s+νs)s[((s+1)2s2(s1)+1s+1+ɥs(s1))](ɥμs+ν)s+1+(s+νs)[s1ss+νs4s2](ɥμs+ν)2+ɥ2+(s+νs)s[(1s2(s1)ɥs(s1))](s+μs+νɥ)s+1+(s+νs)[(1s2(s1)+ɥs(s1))].

    We use the properties of the modulus of smoothness in this section of the paper so that we can obtain convergence of the sequence of operators of Bμ,νs,λ defined by (2.2). We can determine the maximum oscillation of ϕ for any δ>0 by taking ω(f;δ), which is the modulus of smoothness of the function ϕ of order one satisfying limδ0+ω(ϕ;δ)=0, and

    ω(ϕ;δ)=supɥ1ɥ2∣≤δϕ(ɥ1)ϕ(ɥ2);y1,ɥ2[0,1], (3.1)
    ϕ(ɥ1)ϕ(ɥ2)∣≤(1+ɥ1ɥ2δ)ω(ϕ;δ). (3.2)

    Theorem 3.1. [25] Let {P}s1 be any sequence of positive linear operators defined in C[u,v]C[x1,x2] such that [ɥ1,ɥ2][u,v] then

    (1) For all ϕC[u,v] and ɥ[x1,x2], it follows that:

    |Ps(ϕ;ɥ)ϕ(ɥ)||ϕ(ɥ)||Ps(1;ɥ)1|+{Ps(1;ɥ)+1δPs((tɥ)2;ɥ)Ps(1;ɥ)}ω(ϕ;δ),

    (2) for all φC[u,v] and ɥ[x1,x2], it follows that:

    |Ps(φ;ɥ)φ(ɥ)||φ(ɥ)||Ps(1;ɥ)1|+|φ(ɥ)||Ps(tɥ;ɥ)|+Ps((tɥ)2;ɥ){Ps(1;ɥ)+1δPs((tɥ)2;ɥ)}ω(φ;δ).

    Theorem 3.2. For any φC[0,1], the set of all continuous functions on [0,1] and ɥ[0,1], the operators Bμ,νs,λ are defined by (2.2) satisfying:

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)|2ω(φ;δμ,νs,λ(ɥ)),

    where δμ,νs,λ(ɥ)=Bμ,νs,λ((tɥ)2;ɥ).

    Proof. By taking into account (1) from Theorem 3.1 and using Lemmas 2.1 and 2.2 we are able to prove the inequality

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)||φ(ɥ)||Bμ,νs,λ(1;ɥ)1|+{Bμ,νs,λ(1;ɥ)+1δBμ,νs,λ((tɥ)2;ɥ)Bμ,νs,λ(1;ɥ)}ω(φ;δ).

    We suppose δ=Bμ,νs,λ((tɥ)2;ɥ)=δμ,νs,λ(ɥ), which is our required result.

    Theorem 3.3. Let ɥ[0,1], then for any φC[0,1] operators Bμ,νs,λ are as follows:

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)||φ(ɥ)|ζμ,νs,λ(ɥ)+2δμ,νs,λ(ɥ)ω(φ;δμ,νs,λ(ɥ)),

    where ζμ,νs,λ(ɥ)=maxɥ[0,1]|Bμ,νs,λ((tɥ);ɥ)| and δμ,νs,λ(ɥ) are defined by Theorem 3.2.

    Proof. If we consider (2) from Theorem 3.1 and Lemmas 2.1 and 2.2, then it is easy to get

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)||φ(ɥ)||Bμ,νs,λ(1;ɥ)1|+|φ(ɥ)||Bμ,νs,λ(tɥ;ɥ)|+Bμ,νs,λ((tɥ)2;ɥ){1+Bμ,νs,λ((tɥ)2;ɥ)δ}ω(φ;δ)|φ(ɥ)|ζμ,νs,λ(ɥ)+2δμ,νs,λ(ɥ)ω(φ;δμ,νs,λ(ɥ)),

    where we take ζμ,νs,λ(ɥ)=maxɥ[0,1]|Bμ,νs,λ((tɥ);ɥ)|.

    The next step is to estimate some local direct approximations of our new operators Bμ,νs,λ by using a Lipschitz-type maximal function, which we assume to be LipϑM. Thus, for any 0<ϑ1, the Lipschitz-type maximal function LipϑM is defined in the form of any positive real parameters β1,β2 (see [26] for more details) such that:

    LipϑM={ΦCB[0,1]:|Φ(t)Φ(ɥ)|M|tɥ|ϑ(β1ɥ2+β2ɥ+t)ϑ2;ɥ,t[0,1]},

    where CB[0,1] is the set of all continuous and bounded functions on [0,1] and M is any positive constant.

    Theorem 3.4. For all ΦLipϑM, operators Bμ,νs,λ satisfy

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|M(δμ,νs,λ(ɥ)(β1ɥ2+β2ɥ))ϑ2,

    where δμ,νs,λ(ɥ) is given by Theorem 3.2.

    Proof. We suppose that the function ΦLipϑM is valid for all 0<ϑ1. We would need to verify first that the results of Theorem 3.4 are valid for ϑ=1. Therefore, it is easy to get the result for any β1,β20 such that (β1ɥ2+β2ɥ+t)1/2(β1ɥ2+β2ɥ)1/2. Consider the Cauchy-Schwarz inequality, thus we have

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)||Bμ,νs,λ(|Φ(t)Φ(ɥ)|;ɥ)|+Φ(ɥ)|(1;ɥ)1|Bμ,νs,λ(|tɥ|(β1ɥ2+β2ɥ+t)12;ɥ)M(β1ɥ2+β2ɥ)1/2Bμ,νs,λ(|tɥ|;ɥ)MBμ,νs,λ((tɥ)2;ɥ)β1ɥ2+β2ɥ.

    As a result, we conclude that the statement is correct for ϑ=1. Next, we'll check to see if the statement is also true when ϑ(0,1). We apply the monotonicity property to the operators Bμ,νs,λ and use the Hölder's inequality to obtain

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|Bμ,νs,λ(|Φ(t)Φ(ɥ)|;ɥ)(Bμ,νs,λ(|Φ(t)Φ(ɥ)|2ϑ;ɥ))ϑ2(Bμ,νs,λ(1;ɥ))2ϑ2M{Bμ,νs,λ((tɥ)2;ɥ)t+β1ɥ2+β2y}ϑ2M(β1ɥ2+β2ɥ)ϑ/2{Bμ,νs,λ((tɥ)2;ɥ)}ϑ2M(β1ɥ2+β2ɥ)ϑ/2(Bμ,νs,λ(tɥ)2;ɥ))ϑ2=M(δμ,νs,λ(ɥ)(β1ɥ2+β2ɥ))ϑ2.

    The statement is valid when 0<ϑ<1, thus we complete the proof.

    On the other hand, we employ the Lipschitz maximum function to establish another another local approximation property for the operators of Bμ,νs,λ. Assume ΦCB[0,1] and t,y[0,1] have the same class of all Lipschitz type maximal functions (see [27]).

    ωϑ(Φ;ɥ)=suptɥ,t[0,1]Φ(t)Φ(ɥ)tɥϑ, (3.3)

    where 0<ϑ1.

    Theorem 3.5. For all ΦCB[0,1] and ɥ[0,1], operators Bμ,νs,λ satisfy

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|(δμ,νs,λ(ɥ))ϑ2ωϑ(Φ;ɥ),

    where ωϑ(Φ;ɥ) is defined by (3.3) and δμ,νs,λ(ɥ) is obtained by Theorem 3.2.

    Proof. One can write by taking the the Hölder inequality,

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|Bμ,νs,λ(|Φ(t)Φ(ɥ)|;ɥ)ωϑ(Φ;ɥ)Bμ,νs,λ(|tɥ|ϑ;ɥ)ωϑ(Φ;ɥ)(Bμ,νs,λ(1;ɥ))2ϑ2(Bμ,νs,λ(|tɥ|2;ɥ))ϑ2=ωϑ(Φ;ɥ)(Bμ,νs,λ((tɥ)2;ɥ))ϑ2,

    where the set of all continuously bounded functions on [0,1] was indicated by CB[0,1]. The anticipated outcome now completes the proof.

    For our new operators Bμ,νs,λ defined by Eq (2.2) this section can provide some direct approximation findings in the space of Peetre's K-functional. Simply, for ΦC[0,1], we define the fundamental concept of Peetre's K-functional supposing Kp(Φ;δ) :

    Thus for any δ>0, the Peetre's Kfunctional is defined by

    Kp(Φ;δ)=inf{(ΦφC[0,1]+δφC[0,1]):φ,φ,φC[0,1]}. (4.1)

    From [28], for an absolute positive constant C we have

    Kp(Φ;δ)Cωδ(Φ;δ),δ>0,Kp(Φ;δ)C{ωδ(Φ;δ)+min(1,δ)||Φ||C[0,1]},

    where ωδ(Φ;δ) is defined for the modulus of smoothness in order two and given as:

    ωδ(Φ;δ)=sup0<θ<δsupɥ[0,1])|Φ(ɥ+2θ)2Φ(ɥ+θ)+Φ(ɥ)|. (4.2)

    Theorem 4.1. For an arbitrary ΨC[0,1], let's define the auxiliary operators Aμ,νs,λ such that

    Aμ,νs,λ(Ψ;ɥ)=Bμ,νs,λ(Ψ;ɥ)+Ψ(ɥ)Ψ(Bμ,νs,λ(Φ;ɥ)), (4.3)

    then, for every ΦC[0,1] we get that

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|Cωδ(Φ;δμ,νs,λ(ɥ)+(τμ,νs,λ(ɥ))22)+ωϑ(Φ;τμ,νs,λ(ɥ)),

    where τμ,νs,λ(ɥ)=Bμ,νs,λ((tɥ);ɥ) and δμ,νs,λ(ɥ) is defined by Theorem 3.2.

    Proof. When i=0,1 and Ψi=ti are taken into consideration, it is simple to prove that Aμ,νs,λ(Ψ0;ɥ)=1 and

    Aμ,νs,λ(Ψ1;ɥ)=Bμ,νs,λ(Ψ1;ɥ)+ɥBμ,νs,λ(Ψ1;ɥ)=ɥ.

    We can deduce the equality from the Taylor series expression

    Λ(t)=Λ(ɥ)+(tɥ)Λ(ɥ)+tɥ(tϑ)Λ(ϑ)dϑ,ΛC2[0,1]. (4.4)

    Apply Aμ,νs,λ, and then

    Aμ,νs,λ(Λ;ɥ)Λ(ɥ)=Λ(ɥ)Aμ,νs,λ(tɥ;ɥ)+Aμ,νs,λ(tɥ(tϑ)Λ(ϑ)dϑ;ɥ)=Aμ,νs,λ(tɥ(tϑ)Λ(ϑ)dϑ;ɥ)=Bμ,νs,λ(tɥ(tϑ)Λ(ϑ)dϑ;ɥ)+ɥɥ(ɥϑ)Λ(ϑ)dϑ;ɥBμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)ϑ)Λ(ϑ)dϑ,Aμ,νs,λ(Λ;ɥ)Λ(ɥ)|Bμ,νs,λ(tɥ(tϑ)Λ(ϑ)dϑ;ɥ)|+|Bμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)ϑ)Λ(ϑ)dϑ|.

    We know the inequality

    |tɥ(tϑ)Λ(ϑ)dϑ|(tɥ)2Λ

    and

    |Bμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)ϑ)Λ(ϑ)dϑ|(Bμ,νs,λ(t;ɥ)ɥ)2Λ.

    Thus we get

    Aμ,νs,λ(Λ;ɥ)Λ(ɥ)∣≤{Bμ,νs,λ((tɥ)2;ɥ)+(Bμ,νs,λ(t;ɥ)ɥ)2}Λ.

    On the other hand we deduce that

    Bμ,νs,λ(Ψ;ɥ)∥≤∥Ψ,

    and

    Aμ,νs,λ(Ψ;ɥ)∣≤∣Bμ,νs,λ(Ψ;ɥ)+Ψ(ɥ)+|Ψ{Bμ,νs,λ(Ψ;ɥ)}|3Ψ. (4.5)

    By accounting for (4.4) and (4.5) we arrive at

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)||Aμ,νs,λ(ΦΛ;ɥ)(ΦΛ)(ɥ)|+|Aμ,νs,λ(Λ;ɥ)Λ(ɥ)|+|Φ(ɥ)Φ(Bμ,νs,λ(t;ɥ))|4||ΦΛ||+ωϑ(Φ;Bμ,νs,λ((tɥ);ɥ))+{Bμ,νs,λ((tɥ)2;ɥ)+Λ(Bμ,νs,λ(tɥ;ɥ))2}.

    Taking the infimum over all ΛC2[0,1] and applying Peetre's K-functional properties, we get

    |Bμ,νs,λ(Φ;ɥ)Φ(ɥ)|4Kp(Φ;δμ,νs,λ(ɥ)+(Bμ,νs,λ((tɥ);ɥ))24+ωϑ(Φ;Bμ,νs,λ((tɥ);ɥ))Cωδ(Φ;δμ,νs,λ(ɥ)+(Bμ,νs,λ((tɥ);ɥ))22)+ωϑ(Φ;Bμ,νs,λ(tɥ;ɥ)).

    As a result, we have our desired proof.

    In this section, we explore the approximation in weighted space, which is the well-known Korovkin's type theorems, for our new operators Bμ,νs,λ. Remember that for each φC[0,1], the equipped normed function on φ(ɥ) is given by φC[0,1]=supɥ[0,1]|φ(ɥ)| for the real valued continuous function φ(ɥ).

    Theorem 5.1. [29,30] Any positive linear operator sequences Ks that act on [a,b] such that limsKS(ti;ɥ)=ɥi, are uniformly on [a,b] for all i=0,1,2. Then for every φC[a,b], the operators limsKs(φ)=φ uniformly converge for any compact subset of [a,b].

    Theorem 5.2. For every φC[0,1] and yC[0,1], the sequence of positive operators Bμ,νs,λ uniformly convergence on each compact subset of [0,1] such that

    Bμ,νs,λ(φ;ɥ)φ(ɥ),

    where stands for uniformly.

    Proof. In order to demonstrate the convergence of our new operators sufficiently so that we may utilize the condition of uniformity for operators Bμ,νs,λ provided by Korovkin's theorem,

    limsBμ,νs,λ(ti;ɥ)=ɥi,i=0,1,2,s}.

    If s we deduce that Bμ,νs,λ(1;ɥ)=1 and

    limsBμ,νs,λ(t;ɥ)=ɥ,limsBμ,νs,λ(t2;ɥ)=ɥ2.

    This is enough to get Bμ,νs,λ(φ;ɥ)φ(ɥ).

    Theorem 5.3. [31,32] For the operator {Ps}s1, which acts C[0,1]C[0,1] satisfying lims||Pm(ti)ɥi||C[0,1]=0,i=0,1,2 then fC[0,1],sN it follows that

    lims||Ps(f)f||C[0,1]=0.

    Theorem 5.4. Assume Bμ,νs,λ acts from C[0,1] to C[0,1] and has the property lims||Bμ,νs,λ(ti)yi||C[0,1]=0. Then, for all φC[0,1], we get the equality

    limsBμ,νs,λ(φ)φC[0,1]=0.

    Proof. When we consider Theorem 5.3 and Korovkin's Theorem, it is simple to demonstrate that

    limsBμ,νs,λ(ti)yiC[0,1]=0,i=0,1,2.

    For i=0, we can easily deduce that from the Lemma 2.1, Bμ,νs,λ(t0)t0C[0,1]=supɥ[0,1]|Bμ,νs,λ(1;ɥ)1|=0. For i=1, it is easy to obtain

    Bμ,νs,λ(t)ɥC[0,1]=supɥ[0,1]|Bμ,νs,λ(t;ɥ)ɥ|=supɥ[0,1]τμ,νs,λ(ɥ),

    since s, then we deduce that Bμ,νs,λ(t)ɥC[0,1]0. Similarly if i=2, we have

    Bμ,νs,λ(t2)ɥ2C[0,1]=supɥ[0,1])|Bμ,νs,λ(t2;ɥ)ɥ2|,

    which gives Bμ,νs,λ(t2)ɥ2C[0,1]0 whenever s. These observations help us to acquire desired results.

    We begin the quantitative Voronovskaja-type approximation theorem for our new operators Bμ,νs,λ, which is primarily driven by [8,33]. The definition of the modulus of smoothness that was covered in the preceding section is used for this purpose. This smoothness modulus is described by:

    ωχ(φ,δ):=sup0<|ρ|δ{|f(ɥ+ρχ(ɥ)2)φ(ɥρχ(ɥ)2)|,ɥ±ρχ(ɥ)2[0,1]}.

    Here φC[0,] and χ(ɥ)=(ɥɥ2)1/2, and the related Peetre's K-functional is known as

    Kχ(φ,δ)=infgωχ[0,1]{||φg||+δ||χg||:gC[0,1],δ>0},

    where ωχ[0,]={g:gC[0,1],χg∥<} and C[0,1] as for the set of absolutely continuous functions on intervals [a,b][0,1]. There exists a positive constant M such that

    Kχ(f,δ)Mωχ(f,δ).

    Theorem 6.1. For all φ,φ,φC[0,1], it follows that

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)τμ,νs,λ(ɥ)φ(ɥ)δμ,νs,λ(ɥ)+12φ(ɥ)|Csχ2(ɥ)ωχ(φ,1s),

    where y[0,1], C>0 is a constant, τμ,νs,λ(ɥ)=Bμ,νs,λ(tɥ;ɥ) and δμ,νs,λ=Bμ,νs,λ((tɥ)2;ɥ) are defined by Lemma 2.2.

    Proof. For any φC[0,1] we consider the Taylor series expansion as follows:

    φ(t)φ(ɥ)φ(ɥ)(tɥ)=tɥφ(θ)(tθ)dθ,

    then it is easy to get

    φ(t)φ(ɥ)(tɥ)φ(ɥ)φ(ɥ)2((tɥ)2+1)tɥ(tθ)[φ(θ)φ(ɥ)]dθ. (6.1)

    Therefore, (6.1) give us,

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)Bμ,νs,λ(tɥ;ɥ)φ(ɥ)φ(ɥ)2(Bμ,νs,λ((tɥ)2;ɥ)+Bμ,νs,λ(1;ɥ))|Bμ,νs,λ(|tɥ|φ(θ)|tθ|φ(ɥ)|dθ|;ɥ). (6.2)

    From the right hand side of equality (6.2) we can estimate:

    |tɥ|tθ||φ(θ)φ(ɥ)|dθ|2φg(tɥ)2+2χgχ1(ɥ)|tɥ|3, (6.3)

    where φωχ[0,1]. There exists constant C>0 such that

    Bμ,νs,λ((tɥ)2;ɥ)C2sχ2(ɥ)andBμ,νs,λ((tɥ)4;ɥ)C2s2χ4(ɥ). (6.4)

    Using the Cauchy-Schwarz inequality, we can conclude that

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)φ(ɥ)Bμ,νs,λ(tɥ;ɥ)φ(ɥ)2(Bμ,νs,λ((tɥ)2;ɥ)+Bμ,νs,λ(1;ɥ))|2φgBμ,νs,λ((tɥ)2;ɥ)+2χ(ɥ)gχ1(ɥ)Bμ,νs,λ(|tɥ|3;ɥ)Csχ2(ɥ)φg+2χ(ɥ)gχ1(ɥ){Bμ,νs,λ((tɥ)2;ɥ)}1/2{Bμ,νs,λ((tɥ)4;ɥ)}1/2Csχ2(ɥ){φg+s1/2χ(ɥ)g}.

    Taking the infimum over all gωχ[0,1], we deduce that

    |Bμ,νs,λ(φ;ɥ)φ(ɥ)τμ,νs,λ(ɥ)φ(ɥ)δμ,νs,λ(ɥ)+12φ(ɥ)|Csχ2(ɥ)ωχ(φ,1s),

    which completes the proof.

    Theorem 6.2. For all ψCB[0,1] which is the set of all continuous and bounded functions on [0,1], we have

    limss[Bμ,νs,λ(ψ;ɥ)ψ(ɥ)τμ,νs,λ(ɥ)ψ(ɥ)δμ,νs,λ(ɥ)2ψ(ɥ)]=0.

    Proof. Let any ψCB[0,1], then from Taylor's series expansion, we can write

    ψ(t)=ψ(ɥ)+(tɥ)ψ(ɥ)+12(tɥ)2ψ(ɥ)+(tɥ)2Qɥ(t), (6.5)

    where Qɥ(t)C[0,1] and is defined for the Peano form of the remainder, moreover, Qɥ(t)0 as tɥ. Applying the operators Bμ,νs,λ(;ɥ) to the equality (6.5), it is easy to see

    Bμ,νs,λ(ψ;ɥ)ψ(ɥ)=ψ(ɥ)Bμ,νs,λ(tɥ;ɥ)+ψ(ɥ)2Bμ,νs,λ((tɥ)2;ɥ)+Bμ,νs,λ((tɥ)2Qɥ(t);ɥ).

    From the Cauchy-Schwarz inequality, we get

    Bμ,νs,λ((tɥ)2Qɥ(t);ɥ)Bμ,νs,λ(Q2ɥ(t);ɥ)Bμ,νs,λ((tɥ)4;ɥ). (6.6)

    We clearly observe here limsBμ,νs,λ(Q2ɥ(t);ɥ)=0 and therefore

    limss{Bμ,νs,λ((tɥ)2Qɥ(t);ɥ)}=0.

    Thus, we have

    limss{Bμ,νs,λ(ψ;ɥ)ψ(ɥ)}=limss{Bμ,νs,λ(tɥ;ɥ)ψ(ɥ)+ψ(ɥ)2Bμ,νs,λ((tɥ)2;ɥ)+Bμ,νs,λ((tɥ)2Qɥ(t);ɥ)}.

    In the present article, we conclude that our new operators (2.2) are the shifted knots variant of the Bézier basis of the λ-Bernstein operators defined by equality (1.1). For the choice μ=ν=0 in the equality (2.2), then our new operators Bμ,νs,λ reduced to the operators by the equality (1.1) defined by Cai et al. [24]. Consequently, we can say that the classical Bernstein-operators and λ-Bernstein operators with Bézier basis are special cases of our operators (2.2). These facts lead us to the conclusion that our new operators are more powerful than earlier varieties of operators.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    All authors declare no conflicts of interest in this paper.



    [1] Z. Ye, X. Long, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: 2010 5th International conference on computer science & education, 2010, 1712–1716. https://doi.org/10.1109/ICCSE.2010.5593563
    [2] A. D. Gadjiev, A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890–901. https://doi.org/10.1016/j.amc.2010.01.099 doi: 10.1016/j.amc.2010.01.099
    [3] S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749–7759. https://doi.org/10.1002/mma.4559 doi: 10.1002/mma.4559
    [4] M. Mursaleen, K. J. Ansari, A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algorithms, 84 (2020), 207–227. https://doi.org/10.1007/s11075-019-00752-4 doi: 10.1007/s11075-019-00752-4
    [5] S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 70. https://doi.org/10.1007/s13398-020-00802-w doi: 10.1007/s13398-020-00802-w
    [6] S. A. Mohiuddine, T. Acar, M. A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, J. Inequal. Appl., 2018 (2018), 104. https://doi.org/10.1186/s13660-018-1693-z doi: 10.1186/s13660-018-1693-z
    [7] F. Özger, On new Bézier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376–393. https://doi.org/10.31801/cfsuasmas.510382 doi: 10.31801/cfsuasmas.510382
    [8] F. Özger, H. M. Srivastava, S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 1173. https://doi.org/10.31801/10.1007/s13398-020-00903-6 doi: 10.31801/10.1007/s13398-020-00903-6
    [9] X. M. Zeng, F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory, 109 (2001), 242–256. https://doi.org/10.1006/jath.2000.3538 doi: 10.1006/jath.2000.3538
    [10] H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators Based on Bézier bases with shape parameter λ, Symmetry, 11 (2019), 316. https://doi.org/10.3390/sym11030316 doi: 10.3390/sym11030316
    [11] R. Aslan, Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 2023, 100168. https://doi.org/10.1016/j.kjs.2023.12.007 doi: 10.1016/j.kjs.2023.12.007
    [12] R. Aslan, Approximation properties of univariate and bivariate new class λ-Bernstein-Kantorovich operators and its associated GBS operators, Comput. Appl. Math., 42 (2023), 34. https://doi.org/10.1007/s40314-022-02182-w doi: 10.1007/s40314-022-02182-w
    [13] M. Ayman-Mursaleen, A. Kilicman, M. Nasiruzzaman, Approximation by q-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36 (2022), 1179–1194. https://doi.org/10.2298/FIL2204179A doi: 10.2298/FIL2204179A
    [14] M. Ayman-Mursaleen, S. Serra-Capizzano, Statistical convergence via q-calculus and a Korovkin's type approximation theorem, Axioms, 11 (2022), 70. https://doi.org/10.3390/axioms11020070 doi: 10.3390/axioms11020070
    [15] M. Ayman-Mursaleen, N. Rao, M. Rani, A. Kilicman, A. A. H. A. Al-Abeid, P. Malik, A note on approximation of blending type Bernstein-Schurer-Kantorovich operators with shape parameter α, J. Math., 2023 (2023), 5245806. https://doi.org/10.1155/2023/5245806 doi: 10.1155/2023/5245806
    [16] M. Y. Chen, M. Nasiruzzaman, M. Ayman-Mursaleen, N. Rao, A. Kilicman, On shape parameter α-based approximation properties and q-statistical convergence of Baskakov-Gamma operators, J. Math., 2022 (2022), 4190732. https://doi.org/10.1155/2022/4190732 doi: 10.1155/2022/4190732
    [17] I. Haque, J. Ali, M. Mursaleen, Solvability of Implicit Fractional Order Integral Equation in p(1p<) Space via Generalized Darbo's Fixed Point Theorem, J. Funct. Spaces, 2022 (2022), 1674243. https://doi.org/10.1155/2022/1674243 doi: 10.1155/2022/1674243
    [18] M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman, M. Ayman-Mursaleen, On one- and two-dimensional α-Stancu-Schurer-Kantorovich operators and their approximation properties, Mathematics, 10 (2022), 3227. https://doi.org/10.3390/math10183227 doi: 10.3390/math10183227
    [19] M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Approximation results on Dunkl generalization of Phillips operators via q-calculus, Adv. Difference Equ., 2019 (2019), 244. https://doi.org/10.1186/s13662-019-2178-1 doi: 10.1186/s13662-019-2178-1
    [20] M. Nasiruzzaman, A. F. Aljohani, Approximation by α-Bernstein-Schurer operators and shape preserving properties via q-analogue, Math. Methods Appl. Sci., 46 (2023), 2354–2372. https://doi.org/10.1002/mma.8649 doi: 10.1002/mma.8649
    [21] N. Rao, M. Raiz, M. Ayman-Mursaleen, V. N. Mishra, Approximation properties of extended Beta-type Szász-Mirakjan operators, Iran. J. Sci., 47 (2023), 1771–1781. https://doi.org/10.1007/s40995-023-01550-3 doi: 10.1007/s40995-023-01550-3
    [22] M. Raiz, R. S. Rajawat, V. N. Mishra, α-Schurer Durrmeyer operators and their approximation properties, An. Univ. Craiova Ser. Mat. Inform., 50 (2023), 189–204. https://doi.org/10.52846/ami.v50i1.1663 doi: 10.52846/ami.v50i1.1663
    [23] H. M. Srivastava, M. Mursaleen, M. Nasiruzzaman, Approximation by a class of q-Beta operators of the second kind via the Dunkl-Type generalization on weighted spaces, Complex Anal. Oper. Theory, 13 (2019), 1537–1556. https://doi.org/10.1007/s11785-019-00901-6 doi: 10.1007/s11785-019-00901-6
    [24] Q. B. Cai, B. Y. Lian, G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7
    [25] O. Shisha, B. Bond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci., 60 (1968), 1196–1200. https://doi.org/10.1073/pnas.60.4.1196 doi: 10.1073/pnas.60.4.1196
    [26] M. A. Ozarslan, H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173–181.
    [27] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces. Indag. Math. (Proc.), 91 (1988), 53–63. https://doi.org/10.1016/1385-7258(88)90007-8 doi: 10.1016/1385-7258(88)90007-8
    [28] R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer Science & Business Media, 1993.
    [29] F. Altomare, Korovkin-type theorems and approximation by positive linear operators, arXiv: 1009.2601v1, 2010.
    [30] P. P. Korovkin, On Convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR., 90 (1953), 961–964.
    [31] A. D. Gadziev, Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20 (1976), 781–786.
    [32] A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR., 218 (1974), 1001–1004.
    [33] D. Barbosu, The Voronovskaja theorem for Bernstein-Schurer operators, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, 18 (2002), 133–136.
  • This article has been cited by:

    1. Abdullah Alotaibi, Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties, 2024, 12, 2227-7390, 3310, 10.3390/math12213310
    2. Naim L. Braha, Toufik Mansour, Mohammad Mursaleen, Some Approximation Properties of Parametric Baskakov–Schurer–Szász Operators Through a Power Series Summability Method, 2024, 18, 1661-8254, 10.1007/s11785-024-01510-8
    3. Nusrat Raza, Manoj Kumar, M. Mursaleen, Approximation with Szász-Chlodowsky operators employing general-Appell polynomials, 2024, 2024, 1029-242X, 10.1186/s13660-024-03105-5
    4. Qing-Bo Cai, Approximation by a new kind of (λ,μ)-Bernstein–Kantorovich operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02801-8
    5. Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Sunil K. Sharma, Qing-Bo Cai, Invariant means and lacunary sequence spaces of order (α, β), 2024, 57, 2391-4661, 10.1515/dema-2024-0003
    6. Md. Nasiruzzaman, Mohammad Dilshad, Bader Mufadhi Eid Albalawi, Mohammad Rehan Ajmal, Approximation properties by shifted knots type of α-Bernstein–Kantorovich–Stancu operators, 2024, 2024, 1029-242X, 10.1186/s13660-024-03164-8
    7. Ahmed Alamer, Md. Nasiruzzaman, Approximation by Stancu variant of λ-Bernstein shifted knots operators associated by Bézier basis function, 2024, 36, 10183647, 103333, 10.1016/j.jksus.2024.103333
    8. Nezihe Turhan, Faruk Özger, Mohammad Mursaleen, Kantorovich-Stancu type (α,λ,s) - Bernstein operators and their approximation properties, 2024, 30, 1387-3954, 228, 10.1080/13873954.2024.2335382
    9. Mohammad Ayman-Mursaleen, Md. Heshamuddin, Nadeem Rao, Brijesh Kumar Sinha, Avinash Kumar Yadav, Hermite polynomials linking Szász–Durrmeyer operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02752-0
    10. Erdem Baytunç, Halil Gezer, Hüseyin Aktuğlu, Kantorovich Variant of the Blending Type Bernstein Operators, 2024, 50, 1017-060X, 10.1007/s41980-024-00917-5
    11. Nadeem Rao, Mohammad Ayman-Mursaleen, Reşat Aslan, A note on a general sequence of λ-Szász Kantorovich type operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02946-6
    12. Nadeem Rao, Avinash Kumar Yadav, Mohammad Shahzad, Mamta Rani, Szaˊsz Chlodowsky type operators coupling adjoint Bernoulli's polynomials, 2025, 0, 2577-8838, 0, 10.3934/mfc.2025002
    13. Ayse Bugatekin, Gokhan Gokdere, The application of Bernoulli trials to the theory of approximation, 2024, 28, 0354-9836, 4991, 10.2298/TSCI2406991B
    14. Nezihe Turhan, Faruk Özger, Zeynep Ödemiş Özger, A comprehensive study on the shape properties of Kantorovich type Schurer operators equipped with shape parameter λ, 2025, 270, 09574174, 126500, 10.1016/j.eswa.2025.126500
    15. İlhan Karakılıç, Sedef Karakılıç, Gülter Budakçı, Faruk Özger, Bézier Curves and Surfaces with the Blending (α, λ, s)-Bernstein Basis, 2025, 17, 2073-8994, 219, 10.3390/sym17020219
    16. Seda Karateke, Complex-Valued Multivariate Neural Network (MNN) Approximation by Parameterized Half-Hyperbolic Tangent Function, 2025, 13, 2227-7390, 453, 10.3390/math13030453
    17. Ayşe Turan Buğatekin, On the Convergence Analysis of Bernstein Operators, 2024, 20, 1308-9080, 1, 10.55525/tjst.1441856
    18. Hussain Al-Qassem, Mohammed Ali, A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels, 2025, 17, 2073-8994, 429, 10.3390/sym17030429
    19. Faruk Özger, Reşat Aslan, Merve Ersoy, Some Approximation Results on a Class of Szász-Mirakjan-Kantorovich Operators Including Non-negative parameter α , 2025, 0163-0563, 1, 10.1080/01630563.2025.2474161
    20. Mohammad Ayman-Mursaleen, Bishnu Lamichhane, Adem Kiliçman, Norazak Senu, On ɠ-statistical approximation of wavelets aided Kantorovich ɠ-Baskakov operators, 2024, 38, 0354-5180, 3261, 10.2298/FIL2409261A
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1401) PDF downloads(68) Cited by(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog