In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's K-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.
Citation: Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Nadeem Rao, Mohammad Dilshad, Kottakkaran Sooppy Nisar. Approximation by the modified λ-Bernstein-polynomial in terms of basis function[J]. AIMS Mathematics, 2024, 9(2): 4409-4426. doi: 10.3934/math.2024217
[1] | Qing-Bo Cai, Melek Sofyalıoğlu, Kadir Kanat, Bayram Çekim . Some approximation results for the new modification of Bernstein-Beta operators. AIMS Mathematics, 2022, 7(2): 1831-1844. doi: 10.3934/math.2022105 |
[2] | Sima Karamseraji, Shokrollah Ziari, Reza Ezzati . Approximate solution of nonlinear fuzzy Fredholm integral equations using bivariate Bernstein polynomials with error estimation. AIMS Mathematics, 2022, 7(4): 7234-7256. doi: 10.3934/math.2022404 |
[3] | Guorong Zhou, Qing-Bo Cai . Bivariate λ-Bernstein operators on triangular domain. AIMS Mathematics, 2024, 9(6): 14405-14424. doi: 10.3934/math.2024700 |
[4] | Lanyin Sun, Siya Wen . Applications of mixed finite element method based on Bernstein polynomials in numerical solution of Stokes equations. AIMS Mathematics, 2024, 9(12): 35978-36000. doi: 10.3934/math.20241706 |
[5] | Mustafa Kara . Approximation properties of the new type generalized Bernstein-Kantorovich operators. AIMS Mathematics, 2022, 7(3): 3826-3844. doi: 10.3934/math.2022212 |
[6] | Faheem Khan, Tayyaba Arshad, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar . Numerical solutions of 2D Fredholm integral equation of first kind by discretization technique. AIMS Mathematics, 2020, 5(3): 2295-2306. doi: 10.3934/math.2020152 |
[7] | Erkan Agyuz . On the convergence properties of generalized Szász–Kantorovich type operators involving Frobenious–Euler–Simsek-type polynomials. AIMS Mathematics, 2024, 9(10): 28195-28210. doi: 10.3934/math.20241367 |
[8] | Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157 |
[9] | Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638 |
[10] | Mei Li, Wanqiang Shen . Integral method from even to odd order for trigonometric B-spline basis. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729 |
In this article by means of shifted knots properties, we introduce a new type of coupled Bernstein operators for Bézier basis functions. First, we construct the operators based on shifted knots properties of Bézier basis functions then investigate the Korovkin's theorem, establish a local approximation theorem, and provide a convergence theorem for Lipschitz continuous functions and Peetre's K-functional. In addition, we also obtain an asymptotic formula of the type Voronovskaja.
The famous Bernstein polynomial, denoted by Bn(g)(ɥ), is defined as:
Bs(g;ɥ)=s∑i=0g(is)bs,i(ɥ), |
where s∈N (positive integers) and bs,i(ɥ) are the Bernstein polynomials of degree s at most defined by
bs,i(ɥ)=(si)ɥi(1−ɥ)s−i(i=0,1,⋯,s;ɥ∈[0,1]) |
and
bs,i(ɥ)=0(i<0ori>s), |
where g∈C[0,1] is the function to be approximated and n is a positive integer. The Bernstein polynomial is a linear combination of powers of ɥ and (1−ɥ), with coefficients given by the function g evaluated at equidistant points between 0 and 1. The Bernstein polynomial provides a sequence of polynomial approximations to g, which converges uniformly to g on the interval [0,1] as n approaches infinity. This means that the polynomial approximations become arbitrarily close to g for all values of ɥ in the interval [0,1].
It is very easy to verify the recursive relation for the Bernstein polynomials. The recursive relationship for Bernstein polynomials bs,i(ɥ) is very simple to prove such that
bs,i(ɥ)=(1−ɥ)bs−1,i(ɥ)+ɥbs−1,i−1(ɥ). |
In 2010, Cai et al. defined the Bernstein-polynomials by the introduction of new Bézier bases with shape parameter λ∈[−1,1], known as the λ-Bernstein operators as follows:
Bs,λ(g;ɥ)=s∑i=0g(is)˜bs,i(λ;ɥ) | (1.1) |
where the new Bernstein basis function ˜bs,i(λ;ɥ) in terms of the Bernstein polynomial bs,i(ɥ) is defined by Ye et al. [1] as follows:
˜bs,0(λ;ɥ)=bs,0(ɥ)−λs+1bs+1,1(ɥ),˜bs,i(λ;ɥ)=bs,i(ɥ)+λ(s−2i+1s2−1bs+1,i(ɥ)−s−2i−1s2−1bs+1,i+1(ɥ)),for1≤i≤s−1,˜bs,s(λ;ɥ)=bs,s(ɥ)−λs+1bs+1,s(ɥ). |
In 2010, Gadjiev et al. introduced the recent Bernstein type Stancu polynomials by means of shifted knots [2] such as:
Ss,μ,β(g;ɥ)=(s+ν2m)ms∑i=0(si)(ɥ−μ2s+ν2)i(s+μ2m+ν2−ɥ)s−ig(i+μ1s+ν1) | (1.2) |
where ɥ∈[μ2m+ν2,s+μ2s+ν2] and μi,νi,i=1,2 are positive real numbers provided 0≤μ2≤μ1≤ν1≤ν2.
As a result of research conducted in the approximation process, Bernstein type operators have been obtained by researchers within the past few years, for example, a new family of Bernstein-Kantorovich operators [3], q-Bernstein shifted operators [4], the Stancu variant of Bernstein-Kantorovich operators [5], Genuine modified Bernstein-Durrmeyer operators [6], Bézier bases with Schurer polynomials [7], generalized Bernstein-Schurer operators [8], the approximation of Bernstein type operators [9] and Bernstein operators based on Bézier bases [10], etc. For more details and recent published research we refer the reader to [11,12,13,14,15,16,17,18,19,20,21,22,23].
We take the Bernstein basis function bμ,νs,i by means of shifted knots (see [2]) as follows:
bμ,νs,i(ɥ)=(si)(ɥ−μs+ν)i(s+μs+ν−ɥ)s−i. | (2.1) |
We take the Bézier bases function ˜bμ,νs,i by means of Bernstein basis function bμ,νs,i (see [1]) as follows:
˜bμ,νs,0(λ;ɥ)=bμ,νs,0(ɥ)−λs+1bμ,νs+1,1(ɥ),˜bμ,νs,j(λ;y)=bμ,νs,j(ɥ)+λ(s−2j+1s2−1bμ,νs+1,j(ɥ)−s−2j−1s2−1bμ,νs+1,j+1(ɥ)),for1≤j≤s−1,˜bμ,νs,s(λ;ɥ)=bμ,νs,s(ɥ)−λs+1bμ,νs+1,s(ɥ). |
Thus, for all μs+ν≤ɥ≤s+μs+ν and the real number 0≤μ≤ν, we define the new λ-Bernstein shifted knots operators Bμ,νs,λ in terms of Bézier bases function ˜bμ,νs,i as follows:
Bμ,νs,λ(g;ɥ)=(s+νs)ss∑i=0˜bμ,νs,i(λ;ɥ)g(is) | (2.2) |
where C[0,1] is the set of all continuous functions defined on [0,1] and s∈N (the set of positive integers). Clearly, for the choice μ=ν=0 in the equality (2.2), our new operators Bμ,νs,λ reduced to the operators of the equality (1.1) defined by Cai et al. [24].
This paper is structured generally as follows: We look at the moments and central moments of our new operators, (2.2). We investigate a Korovkin approximation theorem, prove a local approximation theorem, provide a convergence theorem for Lipschitz continuous functions and produce a Voronovskaja asymptotic formula.
Lemma 2.1. Let g(t)=1,t,t2 then for all s∈N∖{1}, the operators Bμ,νs,λ defined by (2.2), have the following equalities:
Bμ,νs,λ(1;ɥ)=1,Bμ,νs,λ(t;ɥ)=(s+νs−2λs(s−1))(ɥ−μs+ν)+λs(s−1)(s+νs)s(ɥ−μs+ν)s+1−λs(s−1)(s+νs)s(s+μs+ν−ɥ)s+1+λs(s−1)(s+νs),Bμ,νs,λ(t2;ɥ)=1s[(s+νs)s+2λs−1](ɥ−μs+ν)+(s+νs)[s−1ss+νs−4λs2](ɥ−μs+ν)2+λ(s+νs)s[(s+1)2s2(s−1)+1s+1](ɥ−μs+ν)s+1+λs2(s−1)(s+νs)s(s+μs+ν−ɥ)s+1−λs2(s−1)(s+νs). |
Proof. We proof the equalities as follows:
Bμ,νs,λ(1;ɥ)=(s+νs)ss∑i=0˜bμ,νs,i(λ;ɥ)=(s+νs)s{s∑i=0bμ,νs,i(ɥ)−λs+1bμ,νs+1,1(ɥ)+λs−2+1s2−1bμ,νs+1,1(ɥ)−λs−2−1s2−1bμ,νs+1,2(ɥ)+λs−4+1s2−1bμ,νs+1,2(ɥ)−λs−4−1s2−1bμ,νs+1,3(ɥ)+⋯+λs−2(s−1)+1s2−1bμ,νs+1,s−1(ɥ)−λs−2(s−1)−1s2−1bμ,νs+1,s(ɥ)−λs+1bμ,νs+1,s(ɥ)}=(s+νs)ss∑i=0bμ,νs,i(ɥ)=(s+νs)s(ɥ−μs+ν+s+μs+ν−ɥ)s=1,Bμ,νs,λ(t;ɥ)=(s+νs)ss∑i=0is˜bμ,νs,i(λ;ɥ)=(s+νs)s[s−1∑i=0is{bμ,νs,i(ɥ)+λ(s−2i+1s2−1bμ,νs+1,i(ɥ)−s−2i−1s2−1bμ,νs+1,i+1(ɥ))}+bμ,νs,s(ɥ)−λs+1bμ,νs+1,s(ɥ)]=(s+νs)ss∑i=0isbμ,νs,i(ɥ)+λ(s+νs)ss∑i=0iss−2i+1s2−1bμ,νs+1,i(ɥ)−λ(s+νs)ss−1∑i=1iss−2i−1s2−1bμ,νs+1,i+1(ɥ), |
where we can examine the as follows:
(s+νs)ss∑i=0isbμ,νs,i(ɥ)=(s+νs)s(ɥ−μs+ν)s−1∑i=0bμ,νs−1,i(ɥ)=(s+νs)(ɥ−μs+ν),λ(s+νs)ss∑i=0iss−2i+1s2−1bμ,νs+1,i(ɥ)=λ(s+νs)s[1s−1s∑i=0isbμ,νs+1,i(ɥ)−2s2−1s∑i=0i2sbμ,νs+1,i(ɥ)]=λs+1s(s−1)(s+νs)s(ɥ−μs+ν)s−1∑i=0bμ,νs,i(ɥ)−λ2s−1(s+νs)s(ɥ−μs+ν)2s−2∑i=0bμ,νs−1,i(ɥ)−λ2s(s−1)(s+νs)s(ɥ−μs+ν)s−1∑i=0bμ,νs,i(ɥ)=λs+1s(s−1)(s+νs)s(ɥ−μs+ν)[(ss+ν)s−(ɥ−μs+ν)s]−λ2s−1(s+νs)s(ɥ−μs+ν)2[(ss+ν)s−1−(ɥ−μs+ν)s−1]−λ2s(s−1)(s+νs)s(ɥ−μs+ν)[(ss+ν)s−(ɥ−μs+ν)s]=λ1s(ɥ−μs+ν)−λ1s(s+νs)s(ɥ−μs+ν)s+1−λ2s−1(s+νs)(ɥ−μs+ν)2+λ2s−1(s+νs)s(ɥ−μs+ν)s+1 |
and
−λ(s+νs)ss−1∑i=1iss−2i+1s2−1bμ,νs+1,i+1(ɥ)=−λ(s+νs)s1s(ɥ−μs+ν)s−1∑i=1bμ,νs,i(ɥ)+λ(s+νs)s1s(s+1)s−1∑i=1bμ,νs+1,i+1(ɥ)+λ(s+νs)s2s−1(ɥ−μs+ν)2s−2∑i=0bμ,νs−1,i(ɥ)−λ(s+νs)s2s(s−1)(ɥ−μs+ν)s−1∑i=1bμ,νs,i(ɥ)+λ(s+νs)s2s(s2−1)s−1∑i=1bμ,νs+1,i+1(ɥ)=−λ(s+νs)s1s(ɥ−μs+ν)[(ss+ν)s−(s+μs+ν−ɥ)s−(ɥ−μs+ν)s]+λ(s+νs)s1s(s+1)[(ss+ν)s+1−(s+μs+ν−ɥ)s+1−(ɥ−μs+ν)s+1−(s+1)(ɥ−μs+ν)(s+μs+ν−ɥ)s]+λ(s+νs)s2s−1(ɥ−μs+ν)2[(ss+ν)s−1−(ɥ−μs+ν)s−1]−λ(s+νs)s2s(s−1)(ɥ−μs+ν)[(ss+ν)s−(s+μs+ν−ɥ)s−(ɥ−μs+ν)s]+λ(s+νs)s2s(s2−1)[(ss+ν)s+1−(s+μs+ν−ɥ)s+1−(ɥ−μs+ν)s+1−(s+1)(ɥ−μs+ν)(s+μs+ν−ɥ)s]=−λs+1s(s−1)(ɥ−μs+ν)+λ(s+νs)2s−1(ɥ−μs+ν)2−λ1s−1(s+νs)s(ɥ−μs+ν)s+1−λ1s(s−1)(s+νs)s(s+μs+ν−ɥ)s+1+λ1s(s−1)(s+νs), |
which gives Bμ,νs,λ(t;ɥ).
Similarly for g(t)=t2, we find
Bμ,νs,λ(t2;ɥ)=(s+νs)ss∑i=0i2s2˜bμ,νs,i(λ;ɥ)=(s+νs)s[s−1∑i=0i2s2{bμ,νs,i(ɥ)+λ(s−2i+1s2−1bμ,νs+1,i(ɥ)−s−2i−1s2−1bμ,νs+1,i+1(ɥ))}+bμ,νs,s(ɥ)−λs+1bμ,νs+1,s(ɥ)]=(s+νs)ss∑i=0i2s2bμ,νs,i(ɥ)+λ(s+νs)ss∑i=0i2s2s−2i+1s2−1bμ,νs+1,i(ɥ)−λ(s+νs)ss−1∑i=1i2s2s−2i−1s2−1bμ,νs+1,i+1(ɥ). |
By simple calculations, we get
(s+νs)ss∑i=0i2s2bμ,νs,i(ɥ)=(s+νs)2s−1s(ɥ−μs+ν)2+(s+νs)s1s(y−μs+ν),λ(s+νs)ss∑i=0i2s2s−2i+1s2−1bμ,νs+1,i(ɥ)=λ1s2(ɥ−μs+ν)+λ(s+νs)s−5s(s−1)(ɥ−μs+ν)2−λ(s+νs)22s(ɥ−μs+ν)3+λ(s+νs)s(s+1)2s2(s−1)(ɥ−μs+ν)s+1, |
and
−λ(s+νs)ss−1∑i=1i2s2s−2i−1s2−1bμ,νs+1,i+1(ɥ)=λs+1s2(s−1)(y−μs+ν)−λ(s+νs)1s(y−μs+ν)2+λ(s+νs)22s(ɥ−μs+ν)3+λ(s+νs)s1s+1(ɥ−μs+ν)s+1+λ(s+νs)s(s+μs+ν−ɥ)s+1−λ(s+νs)1s2(s−1). |
Thus, finally, we get Bμ,νs,λ(t2;ɥ).
Lemma 2.2. For the operators Bμ,νs,λ, we get the following central moments:
Bμ,νs,λ(t−ɥ;ɥ)=[(s+νs)−2s(s−1)−1]ɥ+1s(s−1)(s+νs)s[(ɥ−μs+ν)s+1−(s+μs+ν−ɥ)s+1]+1s(s−1)(s+νs)+2μs(s−1)(s+ν)−μs,Bμ,νs,λ((t−ɥ)2;ɥ))=[1s{(s+νs)s+2s−1}−2(s+νs−2ɥs(s−1))](ɥ−μs+ν)+(s+νs)s[((s+1)2s2(s−1)+1s+1+ɥs(s−1))](ɥ−μs+ν)s+1+(s+νs)[s−1ss+νs−4s2](ɥ−μs+ν)2+ɥ2+(s+νs)s[(1s2(s−1)−ɥs(s−1))](s+μs+ν−ɥ)s+1+(s+νs)[(−1s2(s−1)+ɥs(s−1))]. |
We use the properties of the modulus of smoothness in this section of the paper so that we can obtain convergence of the sequence of operators of Bμ,νs,λ defined by (2.2). We can determine the maximum oscillation of ϕ for any δ>0 by taking ω(f;δ), which is the modulus of smoothness of the function ϕ of order one satisfying limδ→0+ω(ϕ;δ)=0, and
ω(ϕ;δ)=sup∣ɥ1−ɥ2∣≤δ∣ϕ(ɥ1)−ϕ(ɥ2)∣;y1,ɥ2∈[0,1], | (3.1) |
∣ϕ(ɥ1)−ϕ(ɥ2)∣≤(1+∣ɥ1−ɥ2∣δ)ω(ϕ;δ). | (3.2) |
Theorem 3.1. [25] Let {P}s≥1 be any sequence of positive linear operators defined in C[u,v]→C[x1,x2] such that [ɥ1,ɥ2]⊆[u,v] then
(1) For all ϕ∈C[u,v] and ɥ∈[x1,x2], it follows that:
|Ps(ϕ;ɥ)−ϕ(ɥ)|≤|ϕ(ɥ)||Ps(1;ɥ)−1|+{Ps(1;ɥ)+1δ√Ps((t−ɥ)2;ɥ)√Ps(1;ɥ)}ω(ϕ;δ), |
(2) for all φ′∈C[u,v] and ɥ∈[x1,x2], it follows that:
|Ps(φ;ɥ)−φ(ɥ)|≤|φ(ɥ)||Ps(1;ɥ)−1|+|φ′(ɥ)||Ps(t−ɥ;ɥ)|+Ps((t−ɥ)2;ɥ){√Ps(1;ɥ)+1δ√Ps((t−ɥ)2;ɥ)}ω(φ′;δ). |
Theorem 3.2. For any φ∈C[0,1], the set of all continuous functions on [0,1] and ɥ∈[0,1], the operators Bμ,νs,λ are defined by (2.2) satisfying:
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)|≤2ω(φ;√δμ,νs,λ(ɥ)), |
where δμ,νs,λ(ɥ)=Bμ,νs,λ((t−ɥ)2;ɥ).
Proof. By taking into account (1) from Theorem 3.1 and using Lemmas 2.1 and 2.2 we are able to prove the inequality
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)|≤|φ(ɥ)||Bμ,νs,λ(1;ɥ)−1|+{Bμ,νs,λ(1;ɥ)+1δ√Bμ,νs,λ((t−ɥ)2;ɥ)√Bμ,νs,λ(1;ɥ)}ω(φ;δ). |
We suppose δ=√Bμ,νs,λ((t−ɥ)2;ɥ)=√δμ,νs,λ(ɥ), which is our required result.
Theorem 3.3. Let ɥ∈[0,1], then for any φ′∈C[0,1] operators Bμ,νs,λ are as follows:
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)|≤|φ′(ɥ)|ζμ,νs,λ(ɥ)+2δμ,νs,λ(ɥ)ω(φ′;√δμ,νs,λ(ɥ)), |
where ζμ,νs,λ(ɥ)=maxɥ∈[0,1]|Bμ,νs,λ((t−ɥ);ɥ)| and δμ,νs,λ(ɥ) are defined by Theorem 3.2.
Proof. If we consider (2) from Theorem 3.1 and Lemmas 2.1 and 2.2, then it is easy to get
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)|≤|φ(ɥ)||Bμ,νs,λ(1;ɥ)−1|+|φ′(ɥ)||Bμ,νs,λ(t−ɥ;ɥ)|+Bμ,νs,λ((t−ɥ)2;ɥ){1+√Bμ,νs,λ((t−ɥ)2;ɥ)δ}ω(φ′;δ)≤|φ′(ɥ)|ζμ,νs,λ(ɥ)+2δμ,νs,λ(ɥ)ω(φ′;√δμ,νs,λ(ɥ)), |
where we take ζμ,νs,λ(ɥ)=maxɥ∈[0,1]|Bμ,νs,λ((t−ɥ);ɥ)|.
The next step is to estimate some local direct approximations of our new operators Bμ,νs,λ by using a Lipschitz-type maximal function, which we assume to be LipϑM. Thus, for any 0<ϑ≤1, the Lipschitz-type maximal function LipϑM is defined in the form of any positive real parameters β1,β2 (see [26] for more details) such that:
LipϑM={Φ∈CB[0,1]:|Φ(t)−Φ(ɥ)|≤M|t−ɥ|ϑ(β1ɥ2+β2ɥ+t)ϑ2;ɥ,t∈[0,1]}, |
where CB[0,1] is the set of all continuous and bounded functions on [0,1] and M is any positive constant.
Theorem 3.4. For all Φ∈LipϑM, operators Bμ,νs,λ satisfy
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤M(δμ,νs,λ(ɥ)(β1ɥ2+β2ɥ))ϑ2, |
where δμ,νs,λ(ɥ) is given by Theorem 3.2.
Proof. We suppose that the function Φ∈LipϑM is valid for all 0<ϑ≤1. We would need to verify first that the results of Theorem 3.4 are valid for ϑ=1. Therefore, it is easy to get the result for any β1,β2≥0 such that (β1ɥ2+β2ɥ+t)−1/2≤(β1ɥ2+β2ɥ)−1/2. Consider the Cauchy-Schwarz inequality, thus we have
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤|Bμ,νs,λ(|Φ(t)−Φ(ɥ)|;ɥ)|+Φ(ɥ)|(1;ɥ)−1|≤Bμ,νs,λ(|t−ɥ|(β1ɥ2+β2ɥ+t)12;ɥ)≤M(β1ɥ2+β2ɥ)−1/2Bμ,νs,λ(|t−ɥ|;ɥ)≤M√Bμ,νs,λ((t−ɥ)2;ɥ)β1ɥ2+β2ɥ. |
As a result, we conclude that the statement is correct for ϑ=1. Next, we'll check to see if the statement is also true when ϑ∈(0,1). We apply the monotonicity property to the operators Bμ,νs,λ and use the Hölder's inequality to obtain
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤Bμ,νs,λ(|Φ(t)−Φ(ɥ)|;ɥ)≤(Bμ,νs,λ(|Φ(t)−Φ(ɥ)|2ϑ;ɥ))ϑ2(Bμ,νs,λ(1;ɥ))2−ϑ2≤M{Bμ,νs,λ((t−ɥ)2;ɥ)t+β1ɥ2+β2y}ϑ2≤M(β1ɥ2+β2ɥ)−ϑ/2{Bμ,νs,λ((t−ɥ)2;ɥ)}ϑ2≤M(β1ɥ2+β2ɥ)−ϑ/2(Bμ,νs,λ(t−ɥ)2;ɥ))ϑ2=M(δμ,νs,λ(ɥ)(β1ɥ2+β2ɥ))ϑ2. |
The statement is valid when 0<ϑ<1, thus we complete the proof.
On the other hand, we employ the Lipschitz maximum function to establish another another local approximation property for the operators of Bμ,νs,λ. Assume Φ∈CB[0,1] and t,y∈[0,1] have the same class of all Lipschitz type maximal functions (see [27]).
ωϑ(Φ;ɥ)=supt≠ɥ,t∈[0,1]∣Φ(t)−Φ(ɥ)∣∣t−ɥ∣ϑ, | (3.3) |
where 0<ϑ≤1.
Theorem 3.5. For all Φ∈CB[0,1] and ɥ∈[0,1], operators Bμ,νs,λ satisfy
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤(δμ,νs,λ(ɥ))ϑ2ωϑ(Φ;ɥ), |
where ω∗ϑ(Φ;ɥ) is defined by (3.3) and δμ,νs,λ(ɥ) is obtained by Theorem 3.2.
Proof. One can write by taking the the Hölder inequality,
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤Bμ,νs,λ(|Φ(t)−Φ(ɥ)|;ɥ)≤ωϑ(Φ;ɥ)∣Bμ,νs,λ(|t−ɥ|ϑ;ɥ)≤ωϑ(Φ;ɥ)(Bμ,νs,λ(1;ɥ))2−ϑ2(Bμ,νs,λ(|t−ɥ|2;ɥ))ϑ2=ωϑ(Φ;ɥ)(Bμ,νs,λ((t−ɥ)2;ɥ))ϑ2, |
where the set of all continuously bounded functions on [0,1] was indicated by CB[0,1]. The anticipated outcome now completes the proof.
For our new operators Bμ,νs,λ defined by Eq (2.2) this section can provide some direct approximation findings in the space of Peetre's K-functional. Simply, for Φ∈C[0,1], we define the fundamental concept of Peetre's K-functional supposing Kp(Φ;δ) :
Thus for any δ>0, the Peetre's K−functional is defined by
Kp(Φ;δ)=inf{(∥Φ−φ∥C[0,1]+δ∥φ′′∥C[0,1]):φ,φ′,φ′′∈C[0,1]}. | (4.1) |
From [28], for an absolute positive constant C we have
Kp(Φ;δ)≤Cωδ(Φ;√δ),δ>0,Kp(Φ;δ)≤C{ωδ(Φ;√δ)+min(1,δ)||Φ||C[0,1]}, |
where ωδ(Φ;δ) is defined for the modulus of smoothness in order two and given as:
ωδ(Φ;δ)=sup0<θ<δsupɥ∈[0,1])|Φ(ɥ+2θ)−2Φ(ɥ+θ)+Φ(ɥ)|. | (4.2) |
Theorem 4.1. For an arbitrary Ψ∈C[0,1], let's define the auxiliary operators Aμ,νs,λ such that
Aμ,νs,λ(Ψ;ɥ)=Bμ,νs,λ(Ψ;ɥ)+Ψ(ɥ)−Ψ(Bμ,νs,λ(Φ;ɥ)), | (4.3) |
then, for every Φ∈C[0,1] we get that
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤Cωδ(Φ;√δμ,νs,λ(ɥ)+(τμ,νs,λ(ɥ))22)+ωϑ(Φ;τμ,νs,λ(ɥ)), |
where τμ,νs,λ(ɥ)=Bμ,νs,λ((t−ɥ);ɥ) and δμ,νs,λ(ɥ) is defined by Theorem 3.2.
Proof. When i=0,1 and Ψi=ti are taken into consideration, it is simple to prove that Aμ,νs,λ(Ψ0;ɥ)=1 and
Aμ,νs,λ(Ψ1;ɥ)=Bμ,νs,λ(Ψ1;ɥ)+ɥ−Bμ,νs,λ(Ψ1;ɥ)=ɥ. |
We can deduce the equality from the Taylor series expression
Λ(t)=Λ(ɥ)+(t−ɥ)Λ′(ɥ)+∫tɥ(t−ϑ)Λ′′(ϑ)dϑ,Λ∈C2[0,1]. | (4.4) |
Apply Aμ,νs,λ, and then
Aμ,νs,λ(Λ;ɥ)−Λ(ɥ)=Λ′(ɥ)Aμ,νs,λ(t−ɥ;ɥ)+Aμ,νs,λ(∫tɥ(t−ϑ)Λ′′(ϑ)dϑ;ɥ)=Aμ,νs,λ(∫tɥ(t−ϑ)Λ′′(ϑ)dϑ;ɥ)=Bμ,νs,λ(∫tɥ(t−ϑ)Λ′′(ϑ)dϑ;ɥ)+∫ɥɥ(ɥ−ϑ)Λ′′(ϑ)dϑ;ɥ−∫Bμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)−ϑ)Λ′′(ϑ)dϑ,∣Aμ,νs,λ(Λ;ɥ)−Λ(ɥ)∣≤|Bμ,νs,λ(∫tɥ(t−ϑ)Λ′′(ϑ)dϑ;ɥ)|+|∫Bμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)−ϑ)Λ′′(ϑ)dϑ|. |
We know the inequality
|∫tɥ(t−ϑ)Λ′′(ϑ)dϑ|≤(t−ɥ)2∥Λ′′∥ |
and
|∫Bμ,νs,λ(t;ɥ)ɥ(Bμ,νs,λ(t;ɥ)−ϑ)Λ′′(ϑ)dϑ|≤(Bμ,νs,λ(t;ɥ)−ɥ)2∥Λ′′∥. |
Thus we get
∣Aμ,νs,λ(Λ;ɥ)−Λ(ɥ)∣≤{Bμ,νs,λ((t−ɥ)2;ɥ)+(Bμ,νs,λ(t;ɥ)−ɥ)2}∥Λ′′∥. |
On the other hand we deduce that
∥Bμ,νs,λ(Ψ;ɥ)∥≤∥Ψ∥, |
and
∣Aμ,νs,λ(Ψ;ɥ)∣≤∣Bμ,νs,λ(Ψ;ɥ)∣+∣Ψ(ɥ)∣+|Ψ{Bμ,νs,λ(Ψ;ɥ)}|≤3∥Ψ∥. | (4.5) |
By accounting for (4.4) and (4.5) we arrive at
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤|Aμ,νs,λ(Φ−Λ;ɥ)−(Φ−Λ)(ɥ)|+|Aμ,νs,λ(Λ;ɥ)−Λ(ɥ)|+|Φ(ɥ)−Φ(Bμ,νs,λ(t;ɥ))|≤4||Φ−Λ||+ωϑ(Φ;Bμ,νs,λ((t−ɥ);ɥ))+{Bμ,νs,λ((t−ɥ)2;ɥ)+∥Λ′′∥(Bμ,νs,λ(t−ɥ;ɥ))2}. |
Taking the infimum over all Λ∈C2[0,1] and applying Peetre's K-functional properties, we get
|Bμ,νs,λ(Φ;ɥ)−Φ(ɥ)|≤4Kp(Φ;δμ,νs,λ(ɥ)+(Bμ,νs,λ((t−ɥ);ɥ))24+ωϑ(Φ;Bμ,νs,λ((t−ɥ);ɥ))≤Cωδ(Φ;√δμ,νs,λ(ɥ)+(Bμ,νs,λ((t−ɥ);ɥ))22)+ωϑ(Φ;Bμ,νs,λ(t−ɥ;ɥ)). |
As a result, we have our desired proof.
In this section, we explore the approximation in weighted space, which is the well-known Korovkin's type theorems, for our new operators Bμ,νs,λ. Remember that for each φ∈C[0,1], the equipped normed function on φ(ɥ) is given by ∥φ∥C[0,1]=supɥ∈[0,1]|φ(ɥ)| for the real valued continuous function φ(ɥ).
Theorem 5.1. [29,30] Any positive linear operator sequences Ks that act on [a,b] such that lims→∞KS(ti;ɥ)=ɥi, are uniformly on [a,b] for all i=0,1,2. Then for every φ∈C[a,b], the operators lims→∞Ks(φ)=φ uniformly converge for any compact subset of [a,b].
Theorem 5.2. For every φ∈C[0,1] and y∈C[0,1], the sequence of positive operators Bμ,νs,λ uniformly convergence on each compact subset of [0,1] such that
Bμ,νs,λ(φ;ɥ)⇒φ(ɥ), |
where ⇒ stands for uniformly.
Proof. In order to demonstrate the convergence of our new operators sufficiently so that we may utilize the condition of uniformity for operators Bμ,νs,λ provided by Korovkin's theorem,
lims→∞Bμ,νs,λ(ti;ɥ)=ɥi,i=0,1,2,s→∞}. |
If s→∞ we deduce that Bμ,νs,λ(1;ɥ)=1 and
lims→∞Bμ,νs,λ(t;ɥ)=ɥ,lims→∞Bμ,νs,λ(t2;ɥ)=ɥ2. |
This is enough to get Bμ,νs,λ(φ;ɥ)⇒φ(ɥ).
Theorem 5.3. [31,32] For the operator {Ps}s≥1, which acts C[0,1]→C[0,1] satisfying lims→∞||Pm(ti)−ɥi||C[0,1]=0,i=0,1,2 then f∈C[0,1],s∈N it follows that
lims→∞||Ps(f)−f||C[0,1]=0. |
Theorem 5.4. Assume Bμ,νs,λ acts from C[0,1] to C[0,1] and has the property lims→∞||Bμ,νs,λ(ti)−yi||C[0,1]=0. Then, for all φ∈C[0,1], we get the equality
lims→∞∥Bμ,νs,λ(φ)−φ∥C[0,1]=0. |
Proof. When we consider Theorem 5.3 and Korovkin's Theorem, it is simple to demonstrate that
lims→∞∥Bμ,νs,λ(ti)−yi∥C[0,1]=0,i=0,1,2. |
For i=0, we can easily deduce that from the Lemma 2.1, ∥Bμ,νs,λ(t0)−t0∥C[0,1]=supɥ∈[0,1]|Bμ,νs,λ(1;ɥ)−1|=0. For i=1, it is easy to obtain
∥Bμ,νs,λ(t)−ɥ∥C[0,1]=supɥ∈[0,1]|Bμ,νs,λ(t;ɥ)−ɥ|=supɥ∈[0,1]τμ,νs,λ(ɥ), |
since s→∞, then we deduce that ∥Bμ,νs,λ(t)−ɥ∥C[0,1]→0. Similarly if i=2, we have
∥Bμ,νs,λ(t2)−ɥ2∥C[0,1]=supɥ∈[0,1])|Bμ,νs,λ(t2;ɥ)−ɥ2|, |
which gives ∥Bμ,νs,λ(t2)−ɥ2∥C[0,1]→0 whenever s→∞. These observations help us to acquire desired results.
We begin the quantitative Voronovskaja-type approximation theorem for our new operators Bμ,νs,λ, which is primarily driven by [8,33]. The definition of the modulus of smoothness that was covered in the preceding section is used for this purpose. This smoothness modulus is described by:
ωχ(φ,δ):=sup0<|ρ|≤δ{|f(ɥ+ρχ(ɥ)2)−φ(ɥ−ρχ(ɥ)2)|,ɥ±ρχ(ɥ)2∈[0,1]}. |
Here φ∈C[0,] and χ(ɥ)=(ɥ−ɥ2)1/2, and the related Peetre's K-functional is known as
Kχ(φ,δ)=infg∈ωχ[0,1]{||φ−g||+δ||χg′||:g′∈C[0,1],δ>0}, |
where ωχ[0,]={g:g′∈C∗[0,1],∥χg′∥<∞} and C∗[0,1] as for the set of absolutely continuous functions on intervals [a,b]⊂[0,1]. There exists a positive constant M such that
Kχ(f,δ)≤Mωχ(f,δ). |
Theorem 6.1. For all φ,φ′,φ′′∈C[0,1], it follows that
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)−τμ,νs,λ(ɥ)φ′(ɥ)−δμ,νs,λ(ɥ)+12φ′′(ɥ)|≤Csχ2(ɥ)ωχ(φ′′,1√s), |
where y∈[0,1], C>0 is a constant, τμ,νs,λ(ɥ)=Bμ,νs,λ(t−ɥ;ɥ) and δμ,νs,λ=Bμ,νs,λ((t−ɥ)2;ɥ) are defined by Lemma 2.2.
Proof. For any φ∈C[0,1] we consider the Taylor series expansion as follows:
φ(t)−φ(ɥ)−φ′(ɥ)(t−ɥ)=∫tɥφ′′(θ)(t−θ)dθ, |
then it is easy to get
φ(t)−φ(ɥ)−(t−ɥ)φ′(ɥ)−φ′′(ɥ)2((t−ɥ)2+1)≤∫tɥ(t−θ)[φ′′(θ)−φ′′(ɥ)]dθ. | (6.1) |
Therefore, (6.1) give us,
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)−Bμ,νs,λ(t−ɥ;ɥ)φ′(ɥ)−φ′′(ɥ)2(Bμ,νs,λ((t−ɥ)2;ɥ)+Bμ,νs,λ(1;ɥ))|≤Bμ,νs,λ(|∫tɥ|φ′′(θ)|t−θ|−φ′′(ɥ)|dθ|;ɥ). | (6.2) |
From the right hand side of equality (6.2) we can estimate:
|∫tɥ|t−θ||φ′′(θ)−φ′′(ɥ)|dθ|≤2∥φ′′−g∥(t−ɥ)2+2∥χg′∥χ−1(ɥ)|t−ɥ|3, | (6.3) |
where φ∈ωχ[0,1]. There exists constant C>0 such that
Bμ,νs,λ((t−ɥ)2;ɥ)≤C2sχ2(ɥ)andBμ,νs,λ((t−ɥ)4;ɥ)≤C2s2χ4(ɥ). | (6.4) |
Using the Cauchy-Schwarz inequality, we can conclude that
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)−φ′(ɥ)Bμ,νs,λ(t−ɥ;ɥ)−φ′′(ɥ)2(Bμ,νs,λ((t−ɥ)2;ɥ)+Bμ,νs,λ(1;ɥ))|≤2∥φ′′−g∥Bμ,νs,λ((t−ɥ)2;ɥ)+2∥χ(ɥ)g′∥χ−1(ɥ)Bμ,νs,λ(|t−ɥ|3;ɥ)≤Csχ2(ɥ)∥φ′′−g∥+2∥χ(ɥ)g′∥χ−1(ɥ){Bμ,νs,λ((t−ɥ)2;ɥ)}1/2{Bμ,νs,λ((t−ɥ)4;ɥ)}1/2≤Csχ2(ɥ){∥φ′′−g∥+s−1/2∥χ(ɥ)g′∥}. |
Taking the infimum over all g∈ωχ[0,1], we deduce that
|Bμ,νs,λ(φ;ɥ)−φ(ɥ)−τμ,νs,λ(ɥ)φ′(ɥ)−δμ,νs,λ(ɥ)+12φ′′(ɥ)|≤Csχ2(ɥ)ωχ(φ′′,1√s), |
which completes the proof.
Theorem 6.2. For all ψ∈CB[0,1] which is the set of all continuous and bounded functions on [0,1], we have
lims→∞s[Bμ,νs,λ(ψ;ɥ)−ψ(ɥ)−τμ,νs,λ(ɥ)ψ′(ɥ)−δμ,νs,λ(ɥ)2ψ′′(ɥ)]=0. |
Proof. Let any ψ∈CB[0,1], then from Taylor's series expansion, we can write
ψ(t)=ψ(ɥ)+(t−ɥ)ψ′(ɥ)+12(t−ɥ)2ψ′′(ɥ)+(t−ɥ)2Qɥ(t), | (6.5) |
where Qɥ(t)∈C[0,1] and is defined for the Peano form of the remainder, moreover, Qɥ(t)→0 as t→ɥ. Applying the operators Bμ,νs,λ(⋅;ɥ) to the equality (6.5), it is easy to see
Bμ,νs,λ(ψ;ɥ)−ψ(ɥ)=ψ′(ɥ)Bμ,νs,λ(t−ɥ;ɥ)+ψ′′(ɥ)2Bμ,νs,λ((t−ɥ)2;ɥ)+Bμ,νs,λ((t−ɥ)2Qɥ(t);ɥ). |
From the Cauchy-Schwarz inequality, we get
Bμ,νs,λ((t−ɥ)2Qɥ(t);ɥ)≤√Bμ,νs,λ(Q2ɥ(t);ɥ)√Bμ,νs,λ((t−ɥ)4;ɥ). | (6.6) |
We clearly observe here lims→∞Bμ,νs,λ(Q2ɥ(t);ɥ)=0 and therefore
lims→∞s{Bμ,νs,λ((t−ɥ)2Qɥ(t);ɥ)}=0. |
Thus, we have
lims→∞s{Bμ,νs,λ(ψ;ɥ)−ψ(ɥ)}=lims→∞s{Bμ,νs,λ(t−ɥ;ɥ)ψ′(ɥ)+ψ′′(ɥ)2Bμ,νs,λ((t−ɥ)2;ɥ)+Bμ,νs,λ((t−ɥ)2Qɥ(t);ɥ)}. |
In the present article, we conclude that our new operators (2.2) are the shifted knots variant of the Bézier basis of the λ-Bernstein operators defined by equality (1.1). For the choice μ=ν=0 in the equality (2.2), then our new operators Bμ,νs,λ reduced to the operators by the equality (1.1) defined by Cai et al. [24]. Consequently, we can say that the classical Bernstein-operators and λ-Bernstein operators with Bézier basis are special cases of our operators (2.2). These facts lead us to the conclusion that our new operators are more powerful than earlier varieties of operators.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).
All authors declare no conflicts of interest in this paper.
[1] | Z. Ye, X. Long, X. M. Zeng, Adjustment algorithms for Bézier curve and surface, In: 2010 5th International conference on computer science & education, 2010, 1712–1716. https://doi.org/10.1109/ICCSE.2010.5593563 |
[2] |
A. D. Gadjiev, A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables, Appl. Math. Comput., 216 (2010), 890–901. https://doi.org/10.1016/j.amc.2010.01.099 doi: 10.1016/j.amc.2010.01.099
![]() |
[3] |
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Methods Appl. Sci., 40 (2017), 7749–7759. https://doi.org/10.1002/mma.4559 doi: 10.1002/mma.4559
![]() |
[4] |
M. Mursaleen, K. J. Ansari, A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algorithms, 84 (2020), 207–227. https://doi.org/10.1007/s11075-019-00752-4 doi: 10.1007/s11075-019-00752-4
![]() |
[5] |
S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 70. https://doi.org/10.1007/s13398-020-00802-w doi: 10.1007/s13398-020-00802-w
![]() |
[6] |
S. A. Mohiuddine, T. Acar, M. A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, J. Inequal. Appl., 2018 (2018), 104. https://doi.org/10.1186/s13660-018-1693-z doi: 10.1186/s13660-018-1693-z
![]() |
[7] |
F. Özger, On new Bézier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 376–393. https://doi.org/10.31801/cfsuasmas.510382 doi: 10.31801/cfsuasmas.510382
![]() |
[8] |
F. Özger, H. M. Srivastava, S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 114 (2020), 1173. https://doi.org/10.31801/10.1007/s13398-020-00903-6 doi: 10.31801/10.1007/s13398-020-00903-6
![]() |
[9] |
X. M. Zeng, F. Cheng, On the rates of approximation of Bernstein type operators, J. Approx. Theory, 109 (2001), 242–256. https://doi.org/10.1006/jath.2000.3538 doi: 10.1006/jath.2000.3538
![]() |
[10] |
H. M. Srivastava, F. Özger, S. A. Mohiuddine, Construction of Stancu-type Bernstein operators Based on Bézier bases with shape parameter λ, Symmetry, 11 (2019), 316. https://doi.org/10.3390/sym11030316 doi: 10.3390/sym11030316
![]() |
[11] |
R. Aslan, Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators, Kuwait J. Sci., 2023, 100168. https://doi.org/10.1016/j.kjs.2023.12.007 doi: 10.1016/j.kjs.2023.12.007
![]() |
[12] |
R. Aslan, Approximation properties of univariate and bivariate new class λ-Bernstein-Kantorovich operators and its associated GBS operators, Comput. Appl. Math., 42 (2023), 34. https://doi.org/10.1007/s40314-022-02182-w doi: 10.1007/s40314-022-02182-w
![]() |
[13] |
M. Ayman-Mursaleen, A. Kilicman, M. Nasiruzzaman, Approximation by q-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36 (2022), 1179–1194. https://doi.org/10.2298/FIL2204179A doi: 10.2298/FIL2204179A
![]() |
[14] |
M. Ayman-Mursaleen, S. Serra-Capizzano, Statistical convergence via q-calculus and a Korovkin's type approximation theorem, Axioms, 11 (2022), 70. https://doi.org/10.3390/axioms11020070 doi: 10.3390/axioms11020070
![]() |
[15] |
M. Ayman-Mursaleen, N. Rao, M. Rani, A. Kilicman, A. A. H. A. Al-Abeid, P. Malik, A note on approximation of blending type Bernstein-Schurer-Kantorovich operators with shape parameter α, J. Math., 2023 (2023), 5245806. https://doi.org/10.1155/2023/5245806 doi: 10.1155/2023/5245806
![]() |
[16] |
M. Y. Chen, M. Nasiruzzaman, M. Ayman-Mursaleen, N. Rao, A. Kilicman, On shape parameter α-based approximation properties and q-statistical convergence of Baskakov-Gamma operators, J. Math., 2022 (2022), 4190732. https://doi.org/10.1155/2022/4190732 doi: 10.1155/2022/4190732
![]() |
[17] |
I. Haque, J. Ali, M. Mursaleen, Solvability of Implicit Fractional Order Integral Equation in ℓp(1≤p<∞) Space via Generalized Darbo's Fixed Point Theorem, J. Funct. Spaces, 2022 (2022), 1674243. https://doi.org/10.1155/2022/1674243 doi: 10.1155/2022/1674243
![]() |
[18] |
M. Heshamuddin, N. Rao, B. P. Lamichhane, A. Kiliçman, M. Ayman-Mursaleen, On one- and two-dimensional α-Stancu-Schurer-Kantorovich operators and their approximation properties, Mathematics, 10 (2022), 3227. https://doi.org/10.3390/math10183227 doi: 10.3390/math10183227
![]() |
[19] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Approximation results on Dunkl generalization of Phillips operators via q-calculus, Adv. Difference Equ., 2019 (2019), 244. https://doi.org/10.1186/s13662-019-2178-1 doi: 10.1186/s13662-019-2178-1
![]() |
[20] |
M. Nasiruzzaman, A. F. Aljohani, Approximation by α-Bernstein-Schurer operators and shape preserving properties via q-analogue, Math. Methods Appl. Sci., 46 (2023), 2354–2372. https://doi.org/10.1002/mma.8649 doi: 10.1002/mma.8649
![]() |
[21] |
N. Rao, M. Raiz, M. Ayman-Mursaleen, V. N. Mishra, Approximation properties of extended Beta-type Szász-Mirakjan operators, Iran. J. Sci., 47 (2023), 1771–1781. https://doi.org/10.1007/s40995-023-01550-3 doi: 10.1007/s40995-023-01550-3
![]() |
[22] |
M. Raiz, R. S. Rajawat, V. N. Mishra, α-Schurer Durrmeyer operators and their approximation properties, An. Univ. Craiova Ser. Mat. Inform., 50 (2023), 189–204. https://doi.org/10.52846/ami.v50i1.1663 doi: 10.52846/ami.v50i1.1663
![]() |
[23] |
H. M. Srivastava, M. Mursaleen, M. Nasiruzzaman, Approximation by a class of q-Beta operators of the second kind via the Dunkl-Type generalization on weighted spaces, Complex Anal. Oper. Theory, 13 (2019), 1537–1556. https://doi.org/10.1007/s11785-019-00901-6 doi: 10.1007/s11785-019-00901-6
![]() |
[24] |
Q. B. Cai, B. Y. Lian, G. Zhou, Approximation properties of λ-Bernstein operators, J. Inequal. Appl., 2018 (2018), 61. https://doi.org/10.1186/s13660-018-1653-7 doi: 10.1186/s13660-018-1653-7
![]() |
[25] |
O. Shisha, B. Bond, The degree of convergence of sequences of linear positive operators, Proc. Nat. Acad. Sci., 60 (1968), 1196–1200. https://doi.org/10.1073/pnas.60.4.1196 doi: 10.1073/pnas.60.4.1196
![]() |
[26] | M. A. Ozarslan, H. Aktuğlu, Local approximation properties for certain King type operators, Filomat, 27 (2013), 173–181. |
[27] |
B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces. Indag. Math. (Proc.), 91 (1988), 53–63. https://doi.org/10.1016/1385-7258(88)90007-8 doi: 10.1016/1385-7258(88)90007-8
![]() |
[28] | R. A. DeVore, G. G. Lorentz, Constructive approximation, Springer Science & Business Media, 1993. |
[29] | F. Altomare, Korovkin-type theorems and approximation by positive linear operators, arXiv: 1009.2601v1, 2010. |
[30] | P. P. Korovkin, On Convergence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR., 90 (1953), 961–964. |
[31] | A. D. Gadziev, Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20 (1976), 781–786. |
[32] | A. D. Gadjiev, The convergence problem for a sequence of positive linear operators on bounded sets and theorems analogous to that of P. P. Korovkin, Dokl. Akad. Nauk SSSR., 218 (1974), 1001–1004. |
[33] | D. Barbosu, The Voronovskaja theorem for Bernstein-Schurer operators, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, 18 (2002), 133–136. |
1. | Abdullah Alotaibi, Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties, 2024, 12, 2227-7390, 3310, 10.3390/math12213310 | |
2. | Naim L. Braha, Toufik Mansour, Mohammad Mursaleen, Some Approximation Properties of Parametric Baskakov–Schurer–Szász Operators Through a Power Series Summability Method, 2024, 18, 1661-8254, 10.1007/s11785-024-01510-8 | |
3. | Nusrat Raza, Manoj Kumar, M. Mursaleen, Approximation with Szász-Chlodowsky operators employing general-Appell polynomials, 2024, 2024, 1029-242X, 10.1186/s13660-024-03105-5 | |
4. | Qing-Bo Cai, Approximation by a new kind of (λ,μ)-Bernstein–Kantorovich operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02801-8 | |
5. | Mohammad Ayman-Mursaleen, Md. Nasiruzzaman, Sunil K. Sharma, Qing-Bo Cai, Invariant means and lacunary sequence spaces of order (α, β), 2024, 57, 2391-4661, 10.1515/dema-2024-0003 | |
6. | Md. Nasiruzzaman, Mohammad Dilshad, Bader Mufadhi Eid Albalawi, Mohammad Rehan Ajmal, Approximation properties by shifted knots type of α-Bernstein–Kantorovich–Stancu operators, 2024, 2024, 1029-242X, 10.1186/s13660-024-03164-8 | |
7. | Ahmed Alamer, Md. Nasiruzzaman, Approximation by Stancu variant of λ-Bernstein shifted knots operators associated by Bézier basis function, 2024, 36, 10183647, 103333, 10.1016/j.jksus.2024.103333 | |
8. | Nezihe Turhan, Faruk Özger, Mohammad Mursaleen, Kantorovich-Stancu type (α,λ,s) - Bernstein operators and their approximation properties, 2024, 30, 1387-3954, 228, 10.1080/13873954.2024.2335382 | |
9. | Mohammad Ayman-Mursaleen, Md. Heshamuddin, Nadeem Rao, Brijesh Kumar Sinha, Avinash Kumar Yadav, Hermite polynomials linking Szász–Durrmeyer operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02752-0 | |
10. | Erdem Baytunç, Halil Gezer, Hüseyin Aktuğlu, Kantorovich Variant of the Blending Type Bernstein Operators, 2024, 50, 1017-060X, 10.1007/s41980-024-00917-5 | |
11. | Nadeem Rao, Mohammad Ayman-Mursaleen, Reşat Aslan, A note on a general sequence of λ-Szász Kantorovich type operators, 2024, 43, 2238-3603, 10.1007/s40314-024-02946-6 | |
12. | Nadeem Rao, Avinash Kumar Yadav, Mohammad Shahzad, Mamta Rani, Szaˊsz Chlodowsky type operators coupling adjoint Bernoulli's polynomials, 2025, 0, 2577-8838, 0, 10.3934/mfc.2025002 | |
13. | Ayse Bugatekin, Gokhan Gokdere, The application of Bernoulli trials to the theory of approximation, 2024, 28, 0354-9836, 4991, 10.2298/TSCI2406991B | |
14. | Nezihe Turhan, Faruk Özger, Zeynep Ödemiş Özger, A comprehensive study on the shape properties of Kantorovich type Schurer operators equipped with shape parameter λ, 2025, 270, 09574174, 126500, 10.1016/j.eswa.2025.126500 | |
15. | İlhan Karakılıç, Sedef Karakılıç, Gülter Budakçı, Faruk Özger, Bézier Curves and Surfaces with the Blending (α, λ, s)-Bernstein Basis, 2025, 17, 2073-8994, 219, 10.3390/sym17020219 | |
16. | Seda Karateke, Complex-Valued Multivariate Neural Network (MNN) Approximation by Parameterized Half-Hyperbolic Tangent Function, 2025, 13, 2227-7390, 453, 10.3390/math13030453 | |
17. | Ayşe Turan Buğatekin, On the Convergence Analysis of Bernstein Operators, 2024, 20, 1308-9080, 1, 10.55525/tjst.1441856 | |
18. | Hussain Al-Qassem, Mohammed Ali, A Note on Generalized Parabolic Marcinkiewicz Integrals with Grafakos–Stefanov Kernels, 2025, 17, 2073-8994, 429, 10.3390/sym17030429 | |
19. | Faruk Özger, Reşat Aslan, Merve Ersoy, Some Approximation Results on a Class of Szász-Mirakjan-Kantorovich Operators Including Non-negative parameter α , 2025, 0163-0563, 1, 10.1080/01630563.2025.2474161 | |
20. | Mohammad Ayman-Mursaleen, Bishnu Lamichhane, Adem Kiliçman, Norazak Senu, On ɠ-statistical approximation of wavelets aided Kantorovich ɠ-Baskakov operators, 2024, 38, 0354-5180, 3261, 10.2298/FIL2409261A |