Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.
Citation: Abu Zaid Ansari, Suad Alrehaili, Faiza Shujat. An extension of Herstein's theorem on Banach algebra[J]. AIMS Mathematics, 2024, 9(2): 4109-4117. doi: 10.3934/math.2024201
Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.
[1] | S. Ali, On generalized left derivations in rings and Banach algebras, Aequationes Math., 81 (2011), 209–226. https://doi.org/10.1007/s00010-011-0070-5 doi: 10.1007/s00010-011-0070-5 |
[2] | M. Ashraf, S. Ali, On generalized Jordan left derivations in rings, B. Korean Math. Soc., 452 (2008), 253–261. https://doi.org/10.4134/BKMS.2008.45.2.253 doi: 10.4134/BKMS.2008.45.2.253 |
[3] | M. Bresar, Jordan mappings of semiprime rings, J. Algebra, 127 (1089), 218–228. http://dx.doi.org/10.1016/0021-8693(89)90285-8 doi: 10.1016/0021-8693(89)90285-8 |
[4] | J. Cusack, Jordan derivations in rings, P. Am. Math. Soc., 53 (1975), 321–324. https://doi.org/10.1090/S0002-9939-1975-0399182-5 doi: 10.1090/S0002-9939-1975-0399182-5 |
[5] | B. L. M. Ferreira, W. Feng, Mixed $*$-Jordan-type derivations on $*$-algebras, J. Algebra Appl., 22 (2023), 2350100. https://doi.org/10.1142/S0219498823501001 doi: 10.1142/S0219498823501001 |
[6] | B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, F. Wei, Jordan derivations of alternative rings, Commun. Algebra, 48 (2020), 717–723. https://doi.org/10.1080/00927872.2019.1659285 doi: 10.1080/00927872.2019.1659285 |
[7] | I. N. Herstein, Derivations in prime rings, P. Am. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2 |
[8] | B. E. Johnson, A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Am. J. Math., 90 (1968), 1068–1073. https://doi.org/10.2307/2373290 doi: 10.2307/2373290 |
[9] | E. C. Posner, Derivations in prime rings, P. Am. Math. Soc., 1957, 1093–1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0 |
[10] | G. Scudo, A. Z. Ansari, Generalized derivations on Lie ideals and power values on prime rings, Math. Slovaca, 65 (2015), 975–980. https://doi.org/10.1515/ms-2015-0066 doi: 10.1515/ms-2015-0066 |
[11] | I. M. Singer, J. Wermer, Derivations on commutative normed spaces, Math. Ann., 129 (1995), 435–460. |
[12] | M. P. Thomos, The image of a derivation is contained in the radical, Ann. Math., 128 (1988), 435–460. https://doi.org/10.2307/1971432 doi: 10.2307/1971432 |
[13] | J. Vukman, On left Jordan derivations on rings and Banach algebras, Aequationes Math., 75 (2008), 260–266. https://doi.org/10.1007/s00010-007-2872-z doi: 10.1007/s00010-007-2872-z |
[14] | S. M. A. Zaidi, M. Ashraf, S. Ali, On Jordan ideals and left ($\theta, \theta$)-derivation in prime rings, Int. J. Math. Math. Sci., 37 (2004), 1957–1965. https://doi.org/10.1155/S0161171204309075 doi: 10.1155/S0161171204309075 |
[15] | B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Ca., 32 (1991), 609–614. |
[16] | J. Zhu, C. Xiong, Generalized derivations on rings and mappings of $P$-preserving kernel into range on Von Neumann algebras, Acta. Math. Sin., 41 (1998), 795–800. https://doi.org/10.12386/A1998sxxb0133 doi: 10.12386/A1998sxxb0133 |