In modern engineering, the dynamics of many practical problems can be described by hyperbolic distributed parameter systems. This paper is devoted to the adaptive prescribed performance control for a class of typical uncertain hyperbolic distributed parameter systems, since uncertainties are inevitable in practice. The systems in question simultaneously have unknown in-domain spatially varying damping coefficient and unknown boundary constant damping coefficient. Moreover, dynamic boundary condition is considered in the present paper. These characteristics make the control problem in the paper essentially different from those in the related works. To solve the problem, using adaptive technique based projection operator, backstepping method developed for ODEs and Lyapunov stability theories, a powerful adaptive prescribed performance control scheme is proposed to successfully guarantee that all states of the resulting closed-loop system are bounded, furthermore, the original system state converges to an arbitrary prescribed small neighborhood of the origin. Compared with the existing results, the developed control schemes can not only effectively handle the serious uncertainties, but also overcome the technical difficulties in the infinite-dimensional backstepping control design method caused by the dynamic boundary condition and guarantee prescribed performance.
Citation: Zaihua Xu, Jian Li. Adaptive prescribed performance control for wave equations with dynamic boundary and multiple parametric uncertainties[J]. AIMS Mathematics, 2024, 9(2): 3019-3034. doi: 10.3934/math.2024148
In modern engineering, the dynamics of many practical problems can be described by hyperbolic distributed parameter systems. This paper is devoted to the adaptive prescribed performance control for a class of typical uncertain hyperbolic distributed parameter systems, since uncertainties are inevitable in practice. The systems in question simultaneously have unknown in-domain spatially varying damping coefficient and unknown boundary constant damping coefficient. Moreover, dynamic boundary condition is considered in the present paper. These characteristics make the control problem in the paper essentially different from those in the related works. To solve the problem, using adaptive technique based projection operator, backstepping method developed for ODEs and Lyapunov stability theories, a powerful adaptive prescribed performance control scheme is proposed to successfully guarantee that all states of the resulting closed-loop system are bounded, furthermore, the original system state converges to an arbitrary prescribed small neighborhood of the origin. Compared with the existing results, the developed control schemes can not only effectively handle the serious uncertainties, but also overcome the technical difficulties in the infinite-dimensional backstepping control design method caused by the dynamic boundary condition and guarantee prescribed performance.
[1] | J. Wang, S. X. Tang, M. Krstic, Adaptive output-feedback control of torsional vibration in off-shore rotary oil drilling systems, Automatica, 111 (2020), 108640. https://doi.org/10.1016/j.automatica.2019.108640 doi: 10.1016/j.automatica.2019.108640 |
[2] | X. Y. Xing, J. K. Liu, Robust adaptive control allocation for a class of cascade ODE-String systems with actuator failures, IEEE T. Autom. Contr., 67 (2022), 1474–1481. https://doi.org/10.1109/TAC.2021.3063345 doi: 10.1109/TAC.2021.3063345 |
[3] | C. T. Yilmaz, H. I. Basturk, Adaptive output regulator for wave PDEs with unknown harmonic disturbance, Automatica, 113 (2020), 108808. https://doi.org/10.1016/j.automatica.2020.108808 doi: 10.1016/j.automatica.2020.108808 |
[4] | M. Szczesiak, H. I. Basturk, Adaptive boundary control for wave PDEs with unknown in-domain/boundary disturbances and system parameter, Automatica, 120 (2020), 109115. https://doi.org/10.1016/j.automatica.2020.109115 doi: 10.1016/j.automatica.2020.109115 |
[5] | T. T. Meng, W. He, X. Y. He, Tracking control of a flexible string system based on iterative learning control, IEEE T. Contr. Syst. Technol., 29 (2021), 436–443. https://doi.org/10.1109/TCST.2020.2971957 doi: 10.1109/TCST.2020.2971957 |
[6] | Y. Ren, P. C. Zhu, Z. J. Zhao, J. F. Yang, T. Zou, Adaptive fault-tolerant boundary control for a flexible string with unknown dead zone and actuator fault, IEEE T. Cybern., 52 (2022), 7084–7093. https://doi.org/10.1109/TCYB.2020.3044144 doi: 10.1109/TCYB.2020.3044144 |
[7] | Z. D. Mei, Output feedback exponential stabilization for a 1-d wave PDE with dynamic boundary, J. Math. Anal. Appl., 508 (2022), 125860. https://doi.org/10.1016/j.jmaa.2021.125860 doi: 10.1016/j.jmaa.2021.125860 |
[8] | S. Wang, Z. J. Han, Z. X. Zhao, Anti-disturbance stabilization for a hybrid system of non-uniform elastic string, J. Franklin Inst., 358 (2021), 9653–9677. https://doi.org/10.1016/j.jfranklin.2021.10.018 doi: 10.1016/j.jfranklin.2021.10.018 |
[9] | L. L. Su, Y. L. Chen, G. Q. Xu, Stabilization for a cable with tip mass under boundary input disturbance, Appl. Anal., 102 (2023), 4359–4375. https://doi.org/10.1080/00036811.2022.2108412 doi: 10.1080/00036811.2022.2108412 |
[10] | Z. H. Xu, Y. G. Liu, J. Li, F. Z. Li, Adaptive output-feedback stabilisation for wave equations with dynamic boundary condition and corrupted boundary measurement, Int. J. Contr., 94 (2021), 2669–2678. https://doi.org/10.1080/00207179.2020.1730007 doi: 10.1080/00207179.2020.1730007 |
[11] | Y. G. Zhai, H. C. Zhou, Active disturbance rejection control and disturbance observer-based control approach to 1-d flexible string system, Chinese Contr. Conf., 2021,855–860. https://doi.org/10.23919/CCC52363.2021.9550106 doi: 10.23919/CCC52363.2021.9550106 |
[12] | M. Szczesiak, H. I. Basturk, Adaptive boundary control for wave PDE on a domain with moving boundary and with unknown system parameters in the boundary dynamics, Automatica, 145 (2022), 110526. https://doi.org/10.1016/j.automatica.2022.110526 doi: 10.1016/j.automatica.2022.110526 |
[13] | C. Roman, D. Bresch-Pietri, C. Prieur, O. Sename, Robustness to in-domain viscous damping of a collocated boundary adaptive feedback law for an anti-damped boundary wave PDE, IEEE T. Autom. Contr., 64 (2019), 3284–3299. https://doi.org/10.1109/TAC.2019.2899048 doi: 10.1109/TAC.2019.2899048 |
[14] | P. Bernard, M. Krstic, Adaptive output-feedback stabilization of non-local hyperbolic PDEs, Automatica, 50 (2014), 2692–2699. https://doi.org/10.1016/j.automatica.2014.09.001 doi: 10.1016/j.automatica.2014.09.001 |
[15] | Z. H. Xu, Y. G. Liu, Adaptive boundary stabilization for first-order hyperbolic PDEs with unknown spatially varying parameter, Int. J. Robust Nonlin., 26 (2016), 613–628. https://doi.org/10.1002/rnc.3331 doi: 10.1002/rnc.3331 |
[16] | H. Anfinsen, O. M. Aamo, Adaptive output-feedback stabilization of linear $2\times2$ hyperbolic systems using anti-collocated sensing and control, Syst. Contr. Lett., 104 (2017), 86–94. https://doi.org/10.1016/j.sysconle.2017.03.008 doi: 10.1016/j.sysconle.2017.03.008 |
[17] | H. Anfinsen, O. M. Aamo, Model reference adaptive control of $2\times 2$ coupled linear hyperbolic PDEs, IEEE T. Autom. Contr., 63 (2018), 2405–2420. https://doi.org/10.1109/TAC.2017.2767378 doi: 10.1109/TAC.2017.2767378 |
[18] | B. d'Andréa-Novel, J. M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587–593. https://doi.org/10.1016/S0005-1098(99)00182-X doi: 10.1016/S0005-1098(99)00182-X |
[19] | M. Wijnand, B. d'Andréa-Novel, L. Rosier, Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension, ESAIM Contr. Optim. Calc. Var., 27 (2021), 1–30. https://doi.org/10.1051/cocv/2021090 doi: 10.1051/cocv/2021090 |
[20] | R. Mlayeh, S. Toumi, L. Beji, Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system, Appl. Math. Comput., 322 (2018), 66–78. https://doi.org/10.1016/j.amc.2017.11.034 doi: 10.1016/j.amc.2017.11.034 |
[21] | S. Toumi, L. Beji, R. Mlayeh, A. Abichou, Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system, Int. J. Contr., 91 (2018), 241–252. https://doi.org/10.1080/00207179.2016.1278269 doi: 10.1080/00207179.2016.1278269 |
[22] | W. He, S. S. Ge, S. Zhang, Adaptive boundary control of a flexible marine installation system, Automatica, 47 (2011), 2728–2734. https://doi.org/10.1016/j.automatica.2011.09.025 doi: 10.1016/j.automatica.2011.09.025 |
[23] | B. V. E. How, S. S. Ge, Y. S. Choo, Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations, IEEE T. Contr. Syst. Technol., 19 (2011), 208–220. https://doi.org/10.1109/TCST.2010.2041931 doi: 10.1109/TCST.2010.2041931 |
[24] | J. Wang, S. X. Tang, Y. J. Pi, M. Krstic, Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator, Automatica, 95 (2018), 122–136. https://doi.org/10.1016/j.automatica.2018.05.022 doi: 10.1016/j.automatica.2018.05.022 |
[25] | J. Wang, Y. J. Pi, M. Krstic, Balancing and suppression of oscillations of tension and cage in dual-cable mining elevators, Automatica, 98 (2018), 223–238. https://doi.org/10.1016/j.automatica.2018.09.027 doi: 10.1016/j.automatica.2018.09.027 |
[26] | B. Chentouf, S. Mansouri, Exponential decay rate for the energy of a flexible structure with dynamic delayed boundary conditions and a local interior damping, Appl. Math. Lett., 103 (2020), 106185. https://doi.org/10.1016/j.aml.2019.106185 doi: 10.1016/j.aml.2019.106185 |
[27] | F. Zheng, H. Zhou, State reconstruction of the wave equation with general viscosity and non-collocated observation and control, J. Math. Anal. Appl., 502 (2021), 125257. https://doi.org/10.1016/j.jmaa.2021.125257 doi: 10.1016/j.jmaa.2021.125257 |
[28] | M. Krstic, B. Z. Guo, A. Balogh, A. Smyshlyaev, Control of a tip-force destabilized shear beam by observer-based boundary feedback, SIAM J. Contr. Optim., 47 (2008), 553–574. https://doi.org/10.1137/060676969 doi: 10.1137/060676969 |
[29] | Y. Liu, F. Guo, X. Y. He, Q. Hui, Boundary control for an axially moving system with input restriction based on disturbance observers, IEEE T. Syst. Man Cybern., 49 (2019), 2242–2253. https://doi.org/10.1109/TSMC.2018.2843523 doi: 10.1109/TSMC.2018.2843523 |
[30] | M. Krstic, I. Kanellakopoulos, P. V. Kokotović, Nonlinear and adaptive control design, New York: John Wiley Sons Inc., 1995. https://dl.acm.org/doi/10.5555/546475 |
[31] | F. J. Jia, C. Lei, J. W. Lu, Y. M. Chu, Adaptive prescribed performance output regulation of nonlinear systems with nonlinear exosystems, Int. J. Contr., Autom. Syst., 18 (2020), 1946–1955. https://doi.org/10.1007/s12555-019-0443-4 doi: 10.1007/s12555-019-0443-4 |
[32] | G. Z. Cui, Z. Wang, G. M. Zhuang, Z. Li, Y. M. Chu, Adaptive decentralized NN control of large-scale stochastic nonlinear time-delay systems with unknown dead-zone inputs, Neurocomputing, 158 (2015), 194–203. https://doi.org/10.1016/j.neucom.2015.01.048 doi: 10.1016/j.neucom.2015.01.048 |
[33] | A. Smyshlyaev, M. Krstic, Adaptive control of parabolic PDEs, New Jersey: Princeton University Press, 2010. https://doi.org/10.1515/9781400835362 |
[34] | W. Y. Yang, W. Cao, T. S. Chung, J. Morris, Applied numerical methods using MATLAB, New Jersey: John Wiley Sons Inc., 2005. https://doi.org/10.1002/0471705195 |
[35] | A. R. Alharbi, M. B. Almatraf, Exact solitary wave and numerical solutions for geophysical KdV equation, J. King Saud Univ. Sci., 34 (2022), 102087. https://doi.org/10.1016/j.jksus.2022.102087 doi: 10.1016/j.jksus.2022.102087 |
[36] | A. Alharbi, M. A. E. Abdelrahman, M. B. Almatrafi, Analytical and numerical investigation for the DMBBM equation, Comput. Model. Eng. Sci., 122 (2020), 743–756. https://doi.org/10.32604/cmes.2020.07996 doi: 10.32604/cmes.2020.07996 |